P26147 | Object identification problems: numerical analysis (PION) | |
|
[1] V.A. Kovtunenko and K. Kunisch, High precision identification of an object: optimality conditions based concept of imaging, SIAM J. Control Optim. 52 (2014), 773-796 [pdf] [2] K. Fellner and V.A. Kovtunenko, A singularly perturbed nonlinear Poisson-Boltzmann equation: uniform and super-asymptotic expansions, Math. Meth. Appl. Sci. 38 (2015), 3575-3586 [pdf] [3] B.D. Annin, V.A. Kovtunenko and V.M. Sadovskii, Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks, in: Analysis, Modelling, Optimization, and Numerical Techniques, G.O. Tost, O. Vasilieva (Eds.), Springer Proc. Math. Stat. 121 (2015), 49-56 [pdf] [4] V.A. Kovtunenko, Electro-kinetic structure model with interfacial reactions, Proc. 7th ECCOMAS Thematic Conference on Smart Structures and Materials SMART 2015, A.L. Araujo, C.A. Mota Soares, F.M. Duarte, C.M. Mota Soares, A. Suleman (Eds.), IDMEC, Lissabon, 2015, 20pp. [pdf] [5] V.A. Kovtunenko and G. Leugering, A shape-topological control problem for nonlinear crack - defect interaction: the anti-plane variational model, SIAM J.Control Optim. 54 (2016), 1329-1351 [pdf] [6] V.A. Kovtunenko and G. Leugering, A shape-topological control of variational inequalities, Eurasian Math. J. 7 (2016), 3, 41-52 [pdf] [7] K. Fellner and V.A. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: homogenisation and residual error estimate, Appl. Anal. 95 (2016), 12, 2661-2682 [pdf] [8] V.A. Kovtunenko, Two-parameter topological expansion of Helmholtz problems with inhomogeneity, in: Mathematical Analysis of Continuum Mechanics and Industrial Applications (CoMFoS15), H. Itou, M. Kimura, V. Chalupecky, K. Ohtsuka, D. Tagami, A. Takada (Eds.), Mathematics for Industry 26, 51-81, Springer, Singapore, 2017 [pdf] [9] V.A. Kovtunenko and A.V. Zubkova, On generalized Poisson-Nernst-Planck equations with inhomogeneous boundary conditions: a-priori estimates and stability, Math. Meth. Appl. Sci. 40 (2017), 6, 2284-2299 [pdf] [10] V.A. Kovtunenko and A.V. Zubkova, Solvability and Lyapunov stability of a two-component system of generalized Poisson-Nernst-Planck equations, in: Recent Trends in Operator Theory and Partial Differential Equations (The Roland Duduchava Anniversary Volume), V. Maz'ya, D. Natroshvili, E. Shargorodsky, W.L. Wendland (Eds.), Operator Theory: Advances and Applications 258, 173-191, Birkhaeuser, Basel, 2017 [pdf] [11] H. Itou, V.A. Kovtunenko and K.R. Rajagopal, Nonlinear elasticity with limiting small strain for cracks subject to non-penetration, Math. Mech. Solids 22 (2017), 6, 1334-1346 [pdf] [12] V.A. Kovtunenko, High-order topological expansions for Helmholtz problems in 2d, in: Topological Optimization and Optimal Transport, M. Bergounioux, E. Oudet, M. Rumpf, G. Carlier, T. Champion, F. Santambrogio (Eds.), Radon Ser. Comput. Appl. Math. 17, 64-122, De Gruyter, Berlin, 2017 [pdf] [13] H. Itou, V.A. Kovtunenko and K.R. Rajagopal, Contacting crack faces within the context of bodies exhibiting limiting strains, JSIAM Letters 9 (2017), 61-64 [pdf] [14] V.A. Kovtunenko, P. Krejci, E. Bauer, L. Sivakova and A.V. Zubkova, On Lyapunov stability in hypoplasticity, Proc. Equadiff 2017 Conference, K. Mikula, D. Sevcovic, J. Urban (Eds.), 107-116, Slovak University of Technology, Bratislava, 2017 [pdf] [15] V.A. Kovtunenko and A.V. Zubkova, Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium, Kinet. Relat. Mod. 11 (2018), 1, 119-135 [pdf] [16] F. Cakoni and V.A. Kovtunenko, Topological optimality condition for the identification of the center of an inhomogeneity, Inverse Probl. 34 (2018), 3, 035009 [pdf] [17] H. Itou, V.A. Kovtunenko and K.R. Rajagopal, On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids 23 (2018), 3, 433-444 [pdf] [18] V.A. Kovtunenko and K. Kunisch, Revisiting generalized FEM: a Petrov-Galerkin enrichment based FEM interpolation for Helmholtz problem, Calcolo 55 (2018), 38 [pdf] [19] V.A. Kovtunenko and K. Ohtsuka, Shape differentiability of Lagrangians and application to Stokes problem, SIAM J. Control Optim. 56 (2018), 5, 3668-3684 [pdf] [20] J.R. Gonzalez Granada, J. Gwinner and V.A. Kovtunenko, On the shape differentiability of objectives: a Lagrangian approach and the Brinkman problem, Axioms 7 (2018), 4, 76 [pdf] [21] J.R. Gonzalez Granada and V.A. Kovtunenko, Entropy method for generalized Poisson-Nernst-Planck equations, Anal. Math. Phys. 8 (2018), 4, 603-619 [pdf] [22] A.V. Zubkova, The generalized Poisson-Nernst-Planck system with nonlinear interface conditions, in: Extended Abstracts Summer 2016. Slow-Fast Systems and Hysteresis: Theory and Applications, A. Korobeinikov (Ed.), Trends in Mathematics 10, 101-106, Birkhaeuser, Ham, 2018 [pdf] [23] H. Itou, V.A. Kovtunenko and K.R. Rajagopal, Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress, Int. J. Eng. Sci. 136 (2019), 17-25 [pdf] [24] H. Itou, V.A. Kovtunenko and K.R. Rajagopal, Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Mod. Meth. Appl. Sci. 29 (2019), 2, 355-372 [pdf] [25] V.A. Kovtunenko, Mathematical model of crack diagnosis: inverse acoustic scattering problem and its high-precision numerical solution, Vibroengineering PROCEDIA 22 (2019), 31-35 [pdf] [26] A.V. Zubkova, The two-scale periodic unfolding technique, in: Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications, A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes (Eds.), Trends in Mathematics 11, 45-50, Birkhaeuser, Ham, 2019 [pdf] [27] E. Bauer, V.A. Kovtunenko, P. Krejci, N. Krenn, L. Sivkova and A.V. Zubkova, Modified model for proportional loading and unloading of hypoplastic materials, in: Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications, A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes (Eds.), Trends in Mathematics 11, 201-210, Birkhaeuser, Ham, 2019 [pdf] [28] V.A. Kovtunenko and A.V. Zubkova, Homogenization of the generalized Poisson-Nernst–Planck problem in two-phase medium: The corrector due to nonlinear interface condition, in: Modern Treatment of Symmetries, Differential Equations and Applications (Symmetry 2019), S. Moyo, S.V. Meleshko and E. Schulz (Eds.), AIP Conf. Proc. 2153, 020010, AIP Publishing, College Park, MD, 2019 [pdf] [30] V.A. Kovtunenko, S. Reichelt and A.V. Zubkova, Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains, Math. Meth. Appl. Sci. 43 (2020), 4, 1838-1856 [pdf] [31] D. Ghilli, K. Kunisch and V.A. Kovtunenko, Inverse problem of breaking line identification by shape optimization, J. Inv. Ill-Posed Problems 28 (2020), 1, 119-135 [pdf] [31] V.A. Kovtunenko and A.V. Zubkova, Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates, Appl. Anal. 100 (2021), 2, 253-274 [pdf] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
With support from |