APPLICABLE ANALYSIS .
2021,VOL. 100, NO. 2, 253-274 IalyloFr &Francis
https://doi.org/10.1080/00036811.2019.1600676 aylor &Francis Group

8 OPEN ACCESS ’ N Checkforupdates‘

Homogenization of the generalized Poisson-Nernst-Planck
problem in a two-phase medium: correctors and estimates

V. A. Kovtunenko ©2-P and A. V. Zubkova?

3Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Graz, Austria;
bl avrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia

ABSTRACT ARTICLE HISTORY
The paper provides a rigorous homogenization of the Poisson- Received 11 April 2018
Nernst-Planck problem stated in an inhomogeneous domain composed of ~ Accepted 22 March 2019
two, solid and pore, phases. The generalized PNP model is constituted of the

o P . . ] . COMMUNICATED BY
Fickian cross-diffusion law coupled with electrostatic and quasi-Fermi elec- Andrey Piatnitski
trochemical potentials, and Darcy’s flow model. At the interface between
two phases inhomogeneous boundary conditions describing electrochem- KEYWORDS

ical reactions are considered. The resulting doubly non-linear problem Generalized

admits discontinuous solutions caused by jumps of field variables. Using P°'55°?‘Ner”5t‘P|?”Ckf

an averaged problem and first-order asymptotic correctors, the homoge- ~ Model; two-phase interface
R . . h 7 5 condition; homogenization;

nization procedure gives us an asymptotic expansion of the solution which

L X . eriodic unfolding method;
is justified by residual error estimates. ?esidual error esti?nate

AMS SUBJECT
CLASSIFICATIONS
35B27;35M10; 82C24

1. Introduction

The paper is devoted to the mathematical study of homogenization of a non-linear diffusion model
in a two-phase domain.

The Poisson-Nernst-Planck (PNP) model extends the diffusion law due to electro-kinetic phe-
nomena. Namely, we consider cross-diffusion of multiple charged species coupled with an overall
electrostatic potential. Motivated by the physical nature, species concentrations satisfy the total mass
balance and the positivity conditions. Following [1-4], this approach generalizes the classic PNP
model.

The problem under consideration is characterized by the following issues.

We describe a two-phase medium with a micro-structure consisting of solid and pore phases
which are separated by a thin interface. The corresponding geometry is represented by a discon-
nected domain. Therefore, field variables defined in the two-phase domain allow discontinuity with
jumps across the interface.

A special interest of our consideration is the interface between the two phases because of elec-
trochemical reactions that occur here. At the interface we state mixed, inhomogeneous Neumann
and Robin-type conditions. Diftfusion fluxes and the electric current are assumed continuous across
the phase interface. The key issue is that the inhomogeneous boundary fluxes are to be described by
non-linear functions of the field variables.

From a mathematical point of view, we examine a mixed system of partial differential equations
of the parabolic-elliptic type. The governing equations are non-linear, coupled, and differ on the two
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phases. The non-linearity is due to the presence of electrochemical potentials in the model. The solv-
ability of classic PNP systems was studied in [5,6]. Based on a general approach from [7,8], in the
previous works [9-11], we proved existence theorem for the generalized PNP problem and derived
a-priori estimates.

Homogenization of diffusion equations is widely studied in the literature, see, for instance [12-17]
for adopted approaches. Most of the asymptotic results concern either linear equations, or homo-
geneous Neumann conditions excluding interface reactions, which are of primary importance in
electro-chemistry. For possible transmission conditions stated at the interface we refer to [18-20].
Homogenization of classic PNP equations was studied in [21-23]. A homogenization procedure in
a two-phase domain for steady-state Poisson-Boltzmann equations and homogeneous Neumann
boundary conditions was investigated in [24]. In the present work we continue this approach to the
inhomogeneous conditions in the dynamic case. We rely on hydrostatic setting of the non-stationary
problem, which is typical, e.g. for modelling of Li-ion batteries [25]. For homogenization accounting
for velocity fields, we refer to [26,27].

The difficulty of the homogenization procedure is caused by the two-phase domain. Typically,
homogenization problems are considered in a perforated domain. In contrast, we describe a dis-
continuous prolongation from the perforated domain inside solid particles following the approach
of [28]. In this respect, the two-phase homogenization procedure differs from a perforated domain
case. To describe jumps of the field variables across the interface and interface reaction terms, we will
specify their suitable asymptotic orders.

To derive an averaged model, typically, the two-scale convergence is applied. As an advantage, we
endow our asymptotic expansion with residual error estimates.

As the result of homogenization of the PNP model, we obtain an averaged model consisting of
linear parabolic-elliptic equations and supported by first-order correctors. The correctors appear
due to oscillating and interface data expressed by solutions of auxiliary cell problems in a unit cell.
Respectively, there are three correctors given with respect to:

e the periodic boundary function of the electric current at the phase interface;
o the periodic matrix of permittivity;
o the periodic matrices of diffusivity.

In order to justify cell problems we use the periodic unfolding technique. It is based on the unfolding
operator and the averaging operator, which were defined for perforated domains in [29]. We extend
the concept of the unfolding operator to a two-phase domain, and we define its extension to a non-
periodic boundary according to [30].

The paper has the following structure. Section 2 contains a brief description of the unfolding
method: definitions and main properties. In Section 3, we formulate the PNP problem and describe
its solution. Section 4 accounts for auxiliary cell problems. In Section 5, a homogenization procedure
is introduced and proved rigorously. By this, the averaged problem is formulated and supported by
error estimates of the corrector terms.

2. Unfolding technique

Let Q be a domain in R¥, where d € N, with the smooth boundary 92 and the unit normal vector
v, which is outward to 2. We consider the unit cell Y = (0, 1)? consisted of the isolated solid part
@ C Y and the complementary pore part IT := Y \ @suchthat Y = ITU w U dw and dw N IY = 0.
The interface dw is assumed to be a smooth continuous manifold with a unit normal vector v. We set
v outward to w, thus inward to IT.

For a small & € R, every spacial point x € R can be decomposed as follows
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Figure 1. A two-phase domain consisted of solid particles w, and the pore space Q. with the phase interface dw.

into the floor part | x/¢] € Z¢ and the fractional part {x/e} € Y. There exists a bijection € : 7% > N
implying a natural ordering, and its inverse is €~! : N > Z¢. Based on (1), we can determine a local
cell Yé with the index I = €(|x/¢e]), such that x € Yé, and {x/e} € Y are the local coordinates with
respect to the cell Y?.

Let I :={le N: Yé C 2} be the set of indexes of all periodic cells contained in €2, and Q; :=
int(|J Y!) be the union of these cells. For every index [ € I?, after rescaling y = {x/¢}, the local coor-

lel®
dinate y € w determines the solid particle such that {x/e} € w! with the smooth boundary d!. Its
complement composes the pore [T} := Y. \ wl by analogy with [T = Y \ @.

Gathering over all local cells, we define the multi-component domain of periodic particles (the

solid phase) denoted by w; := | J !, with the union of boundaries dw, := | J de' and the unit nor-
lel® lel¢

mal vector v to each of Bwé. The Hausdorff measure |dw, | of the interface dw; is of the order O(s 1)
due to |8a)é| = O(¢% ') and the cardinality |I°]| = O(e~%). We denote I, := €2, \ @,, whichisa per-
forated domain. Adding a thin layer 2 \ €2, possibly attached to the external boundary 92, composes
the pore phase Q; := (2 \ ;) U I,.

For fixed ¢ > 0, a two-phase medium associated to the disconnected domain Q. U w, with the
external boundary 9€2 and the interface dw is considered, see an example geometry in Figure 1.

Following [29,30] and based on the decomposition (1), we introduce two linear continuous oper-
ators: the unfolding operator f(x) > Te : H'(Q.) x H'(we) > L*(; H(IT) x H'(w)), defined
by

= L2} o) serees

f(x), a.e forxe Q\ Q,

and yeIllUow, (2)

and its left-inverse operator u(x,y) — T;l (L2 HY(TT) x HY(w)) = H' (Y ng) x HY(w;) x
lert
HY(Q\ Q) called the averaging operator:

x X
u (8 L_J + ¢z, {—}) dz, ae. forx e I, Uw,
Uw € €

i
(1 uy ) = { 1V 3)

f u(x, y) dy, ae forx e Q\ Q,
I

|Y| Uw

where | Y| stands for the Hausdorff measure of the set Y in R%. We note that T, L4 in (3) is discontin-
uous across dY! and 3€2,. In the homogenization theory, usually x refers to as a macro-variable, y as
a micro-variable, and (x, y) as the two-scale variables.
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Lemma 2.1 (Properties of the operators T and T, ! in the domain): For arbitrary functions
f.q.h € H(Q.) x H'(w,), the following properties hold:

(i) invertibility: (T, ' Te)f (x) = f(x); (4a)
(T T;lu)(x,y) = u(y) when u is constant for x € Q. U wg,
or a periodic function u(y) of y € I1 U w for x € T1, U wg;

(ii) product rule: Te(fq) = (Tof)(Teq); (4b)
(iii)  integration rules in the periodic domain and in the boundary layer:
1
/ F)qx) dx = — / / (Tef) (%, p) - (Teq) (%, y) dy dx, (4¢)
MU, 1Yl Jo, Jrue
1
/ fog(x)dx = — / / (Tef)(%p) - (Teq) (x,y) dy dx; (4d)
Q\Q: Yl Jave, Jnue
(iv) boundedness of T, in the L?-norm and the H"-semi-norm:
/ W) d = f / (o1 (x,y) dy dx, (4e)
QcVwe |Y| Q JIMUw
1
/ VAP () dx = —— / / 19, (T2 y) dy d. (4f)
Q:Uwg e*lY| Q JTUw

Proof: (i) For x € Q\ Q, and f € L2(Q2\ ), we calculate straightforwardly (T, 1Tg)f(x) =
(TN (Tef)(x) = (T 1) (x) = f(x). Forx € I, U we andf € L*(T1;) x L*(w,) according to (1), the
definitions (2) and (3) with z € Y we have

» 1 e|f]+ez *
(TN TN = rwwf({ : J“U) 4

—— [ jmde=rfo,
|Y| MNuw

since | |x/e] + z] = [x/e], hence (4a) holds. The assertion for T, T, ! can be checked.

(ii) The identity (4b) is obvious.

(iii) The proof of (4c) is known (see [29, Section 2]). In the boundary layer, we derive straightfor-
wardly (4d) from (2) and (3).

(iv) Taking first g=f = h, then ¢ = f = Vhin (4c) and (4d), summing them, and using T, (Vf) =
(1/8)V,(Tef) due to the chainrule V = (1/¢)V,, we arrive at (4e) and (4f). This completes the proof.

|

A function f € H'(Q.) x H'(w;) given in the two-phase domain allows discontinuity across the
interface dwy, see zoom in Figure 1. In each local cell Y we distinguish the negative face (dw!)™ as
the boundary of the particle !, and the positive face (3w )™ as the opposite part of the boundary of
the pore TT.. Gathering over all local cells establishes the positive and negative faces of the interface

as doF = | (dwl)*. We set the interface jump of f across dw, by
ler®

U1 = flawt — flows> (5)

where the corresponding traces of f at dwZ are well defined, see [31, Section 1.4]. Analogously, we
define the interface jump for a function u(y) € H'(I1) x H!(w) in the unit cell as [[u] y = Ulgp+ —

ZI P
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Motivated by the traces, we extend to the interface dw, the unfolding operator f(x) > T :
L*(dwe) = L*(R) x L*(dw) by

(TeH ey =f (s \f—cj + 8)/> , aeforxe Q; and y € do, (6)
&
and similarly the averaging operator u(x, y) = T: ! : L?(RQ;) x L*(dw) > L?(dw,),
1 x x
-1 _ x z
(T, u)(x) = 71 oo u (8 LSJ + ez, {8 }) dz, ae. forx e Q. (7)

Their properties are stated below in the manner of Lemma 2.1.

Lemma 2.2 (Properties of the operators T and T, ! at the interface): For arbitrary functionsf,q €
L*(dw,), the following properties hold:

() invertibility: (T; ' To)f = f; (82)
(ii) product rule: Te(fq) = (Tef)(Teq); (8b)

(iii)  integration rule:
1
f(x)g(x) dSx = —/ f (Tef)(x,p) - (Teq)(x, y) dSy dx; (8¢)
e elYl Jo, Jow
(iv) boundedness of T, in the L*-norm:

Pds, = f / (TP2(x,y) dS, dx. (8d)
de elYl Ja, Jow

Proof: The proof of assertions (i) and (ii) is similar to the proof in Lemma 2.1. The proof of (8¢c) is
known (see [29, Section 4]). Taking g=f in (8c) immediately follows formula (8d) in (iv). [ |

The geometric construction of the operators T, and T; ! in this section will be used further for
homogenization over Q; U w, and dw; as & \, 0.

3. Problem formulation

We formulate a generalized Poisson-Nernst-Planck system depending on a fixed parameter ¢ > 0,
see [9-11]. We consider the number n of charged species with specific charges z;, molar masses
m; > 0, volume factors §; > 0, and unknown concentrations ¢{ for i = 1,...,n and n > 2. By ¢°
we denote the overall electrostatic potential. The two-phase medium introduced in Section 2 will be
characterized below separately in the pore phase Q; and the solid phase w;.

For the time-space variables (,x) in (0, 7) X (Q U w,) with a fixed final time t > 0, we consider

the following governing equations for speciesi = 1,.. ., n:
. o L

The Fick’s law of diffusion: Fvie divjy = 0; (9a)

T S £ o7 ij
cross-diffusion fluxes: (Jf)' = Z cf(V,uf + 1q, NACUS) m; (T, ' DY); (9b)

j=1

. . e e " 1 & &

electrochemical potentials:  p; = kg®In(Bic;) + IQSJTA EP + zip® ) (9¢)
n

the Darcy flow in pores: nv° + Vp© = — szcf Ve, divv® =0; (9d)

j=1
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n
and the Gauss’s flux law: — div((VgoS)T(T;lA)) =1q, Z zjcf. (9e)
j=1
The indicator function 1, is equal to 1in Qg, and 0 in w,. The Equation (9¢) contains the Boltzmann
constant kg, the temperature ©, the Avogadro constant Ny, and x > 1 in (9¢) allows us to average
the non-linear diffusion fluxes (see (71)). The fluxes contain the flow velocity following e.g. [3,4],
and the dependence of potentials on the fluid pressure is due to the works by Dreyer (see [1,2]). The
Equations (9b)-(9d) will be not solved with respect to electro-chemical potentials (u{,. .., us), flow
velocity vector v¥ = (v{, ..., v5) with the drug coefficient 7, and the pressure p®, but rather reduced
within a weak formulation (see (22)). Conversely, after finding (c5, .. .,c) and ¢°, all the entropy
variables (uf, ..., u%), v%, p® can be restored from the Equations (9¢) and (9d) supported by suitable
boundary conditions.
In (9e) and (9b) the d-by-d matrices A and DY fori,j = 1,.. ., n imply the electric permittivity and
diftusivity, respectively. They can be discontinuous in the two-phase unit cell IT U @ and satisfy the
following assumptions.

o Ay) € R4 for y € I1 U w is uniformly bounded and symmetric positive definite (spd) matrix:
there exist 0 < g < asuch that a|£]® < STA(y)E < alg)? forg e RY (10)

o m;D¥(y) € R¥?fory e I U ware uniformly bounded and elliptic matrices: there exist 0 < d < d
such that

42@4%25 miDY (y)§; < dZm for £1,..., & € R%
i= ij=1

e the mass balance needs a symmetric positive definite (see (13) below) matrix D(y) € R4 for
y € IT U w such that:

ZmiDij(y) :D(y) forj=1,...,n. (11)

It is worth noting that conditions (11) together with (14a) below are sufficient to conserve the mass
within the laws (9b)-(9d) as follows:

K T n
Z(}) 28 Vil 1o vt ) T'D= k0 Ve
NaC :
] 1 ]:l
.

n n
n -
+1 QSN Zc Vp® + szc}? Vgps—i-a ch v® T.,'D=0.
=1 j=1

For homogenization reason, we assume that the diffusivity matrices D¥ from (11) admit the asymp-
totic decomposition as follows

miD’j(y) = §;D(y) + sﬁij(y) forye MU w, (12)

with d-by-d matrices DY, i,j = 1,...,n and a d-by-d uniformly bounded, symmetric positive definite
matrix D such that

diE? <e"D()E < dg]* forg e R (13)

The oscillating matrices (T; ! D¥)(x) = D¥({x/e}) and (T; 'A)(x) = A({x/e}) in the Equations (9b)
and (9e) are defined in €2, and they are periodic in Q.
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A constant C> 0 in (9¢) stands for the summary concentration. For the physical consistency,
species concentrations need to satisfy in pores (0, 7) X Qg:

n

the total mass balance : Z ¢ =G (14a)
i=1

the positivity : ¢ >0, fori=1,...,n. (14b)

The system (9) is supported by the initial condition for ci* € H!(£):

&= c}n on Q; U w, (15)

1

where the initial data satisfy the relations in the manner of (14) in pores Q:

1

n
Zciinzc, d">0, fori=1,...,n. (16)
i—1

For given functions CID e HY(0,7; L*(Q)) N L*(0, 7; HY(R)) and P € L>(0, ; H(2)) the Dirichlet
boundary conditions are:

E=cP, fori=1,....,n, ¢*=¢” on(0,7)x 9%, (17)

1 1

with the boundary data satisfying the similar relations and compatibility:
n
Zc? =C, c? >0 on(0,7) x 0% CP(O,-) =¢" inQs U w,. (18)
i=1

The most delicate part of modelling is the interface conditions on (0, T) X dw:

Uilv =0, —Jfv =e*g(&, ¢%); (19a)

[(Ve) (T Ay =0, —(Ve*) (TS A + %Wﬂ =T, g, (19b)

where the jump across dw, is defined in (5). The notation & := (c® o> ct o) and
¢° == (¢°ly,t> ¢°ly,-) implies the pair of traces at the phase interface dw,. The function g €
L®(0, 7; L*(dw)) denotes the electric current through the interface in the unit cell, and (T 1 9x) =
g({x/e}) in (19b) is periodic at dw,. The capacitance density & > 0. The equality in (19b) implies
that the potential jump is asymptotically small [¢®]] = O(e) in the electric double layer. The factor
&2 in (19a) is used in Theorem 5.1 for averaging of the nonlinear, thus non-periodic interface data
(see (72)), and the factor 1/¢ in (19b) will be explained later in (24). For modelling and numerical
simulations of data for scaling of potentials, interface and boundary conditions, we refer to [25].

In (19a), the functions (¢, §) — g, R x R? > R, i = 1,...,n, describing the boundary fluxes
of species with respect to the traces ¢ := (cly,+» €ly,,-) and ¢ = (@|,+>¢l,,,-) of the variables ¢ =
(15 .. .,cn) and g, should satisfy

n
balance of the mass : Z gi(6,9) = 0; (20a)
i=1
positive production rate at Bw;r : gi(¢,®) - min(0, ¢ dot) =0 (20b)

uniform boundedness (K > 0) : |g; (¢, 1> < K. (20¢)
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The example of g; satisfying all assumptions (20) can be found in [9,10], e.g.

maX(O) Cl |3a)g’) maX(O, C2 |8w;r)
[Zzzl max (0, Ck|3wg')]2

F4! (2" @) = > gZ(é’ @) ==& (é) @))

and gx(¢,9) = 0fork >3
A weak formulation of the generalized PNP problem is the following one: Find (¢, . . ., ¢}) and ¢°
suchthatfori=1,...,n

¢ € L0, 7; L*(Qs) x L*(we)) NL*(0, 7; HY(Qe) x H' (wp)), (21a)
¢° € L0, 7; H (Qe) x H' (we)), Vi € L*((0,7) x (Qe Uwy)), (21b)

which satisfy the Dirichlet boundary conditions (17), the initial conditions (15), the total mass balance
and positivity conditions (14), and fulfil the equations:

T ..
// —c,+Z[kB®VC + e°1¢, Yj(c° )V(p] m;(T; ' DY)Ve; ¢ dxdt
e Uwe

j=1
=/ / e2gi (@, ¢ [EldSydt, i=1,...,n, (22a)
0 dwe
" [07
/ ((Vgog)T(T;lA)w —1q. (Z chi> @) dx+— | [e*1l@ldSs
Q:Uwg k=1 € Jow,
=/ (T, 9@l dSy, te (0,7), (22b)

for all test functions¢; € H' (0, 7; L*(Q,) % L*(we)) N L*(0, 7; H' (Qy) x HY(wg)) and @ € H'(Q,) X
H'(w,) such that ¢; = 0 on (0,7) x 32 and ¢ = 0 on Q. In (22a) the following notation was used
for short:

Yi(c) := ( - = szck> (23)

The time-derivative in (22a) is understood in the weak sense such that

T
/—c, /c—dt+c ilf—o-
0 ad

The factor 1/¢ in the left-hand side of (22b) comes from the discontinuous Poincaré inequality, see
[28, Lemma 3.3], that holds for f € H'(Q.) x H'(w,) with f =0 on 9Q:

||'f||%_II(QE)><H1(CU€) = (fz + Ivflz) dx

QsUws
1
<kDp{/ |VfI? dx + — [Lf]]zdsx}. (24)
Qe Uwe € Jowe
Under the assumptions made here, the following theorem is based on [9,10].
Theorem 3.1 (Well-posedness): (i) There exists a solution (21) of the generalized Pois-

son-Nernst-Planck problem (22) satisfying the total mass balance (14a). The positivity (14b) is guar-
anteed locally at least for small T(¢) > t9 > 0 for all ¢ > 0, where the uniform bound is provided by
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the local in time positivity ¢ > 0 of the limit solution of (64). Moreover, if instead of (11) the stronger
assumption

mDI = 8;D, ij=1,...,n,
is imposed, then the non-negativity ¢ > 0 is guaranteed globally for all T > 0.

(ii) The solution satisfies the following a-priori estimates, which are uniform in ¢ € (0, &o) foreg > 0
sufficiently small, with constants Ky, ve, Kc > 0:

|||C8 "|2 = ”CS”iOO(O,T;LZ(QE)XLZ(wE)) + ”Ce”iz(O,T;Hl(Qg)XHl(a)E)) g KC + VCK(ps (253)

&2
”(p ”LOO(O,'L’;HI(QS)XHI(Q)S)) < K(p' (25b)

4. Asymptotic analysis

We aim to homogenize the generalized PNP problem (22) and to get residual error estimates. This
task needs the asymptotic analysis as ¢ \, 0.

In the following, the Poincaré and trace inequalities will be used. For functions u € H L(©) defined
in a connected domain O = Y, I1, w, there exists Kp(O) > 0 such that

1
lu = oli oy < KeO)IVulhp), o =100 fo u(y) dy. (26)

In the particles w, applying to (26) with O = w the averaging operator T ! such that f = T, 'u €
H!(w,) and using the integration rules (4e) and (4f) provides

1
2 2 = a2y < Ke@)1VF I, (27)
lel®

In the pore phase, for f € H'(Q.), f =0 on 3, the Poincaré inequality holds

1720 < Ke(QIVS T2, Kp(Qe) > 0. (28)

In the following, we write a unique Poincaré constant Kp in (26)-(28) for short.
For a discontinuous across the interface dw function u € H(IT) x H!(w), the trace theorem
provides the following estimate with a constant Ky > 0:

”II”]])'”]%Z(;;CM < KO (||u||]%2(H)XL2(w) + ||Vyu||]2}(l'[)><L2(w)) = KO”“”%—II(H)XHI(LU)' (29)

Forf e H 1(Q¢) x H'(w;) in the two-phase domain such that f=T; ly, applying the trace theorem
and the integration rules (4e), (4f), and (8d), from (29) it follows

1 2 1 2 2
g”[[f]]”Lz(ng) g KO (8_2|U(”L2(Q£)XL2(LOS) + ”Vf”LZ(QS)xLz(a)S)

Ko ..,
g 8_2||f||H1(Qg)XH1(CU5). (30)

Based on [13,24], we formulate an auxiliary lemma for homogenization over the pore part Q, of the
reference domain .

Lemma 4.1 (Asymptotic formula for restriction to pores): For given functions f,q € H' (), which
are continuous over the interface dwe, the asymptotic representation in the pore space Q. with the
porosity 3 == |T1|/|Y| holds as e N\ 07 :

stfqu— « [ fads= o). (31)
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4.1. Cell problems

For homogenization of the periodic function ¢ and periodic matrices A and D, three auxiliary
problems below are formulated in the two-phase unit cell IT U w.
First, for the interface data g we set the cell problem for A (y) as follows:

— div, ((VyA)TA) =0 inMUw, (32a)
[(V,A) A,y =0, —(V,A) Av+a[Al, =g ondw, (32b)
(VM) " Al lymo = (VyA) T Ak lye=t,  Alymo = Aly=1 fork=1,...,d. (32¢)

Using the space of periodic functions
Hy(T) := {u € H'(ID) : uly—o = ulym1, k= 1,...,d}

we get the weak formulation of (32): Find A € H}(IT) x H'(w) such that

/H ] (V,A) AVyudy + /a af[ATly[ull, dS, = /a gllull, ds, (33)

for all test functions u € H}(IT) x H'(w). Based on the standard elliptic theory, there exists a solution
A defined up to a constant value in the cell Y.

Lemma 4.2 (Asymptotic formula for periodic interface data): For a given function g €

L>®(0, 7; L*(dw)) and fixed & > 0, a periodic function (T;IA)(x) = A({x/e}) defined in (33) satisfies
the following asymptotic relation:

/ e(V(T;'A) (T, ' A) Vg dx + f al TP AT@] dSx
Qeuwe

dwe

=/, (T '9)[¢]1 dSx + OCe), (34)

for all test functions ¢ € H'(Qg) x H'(w) such that = 0 on d.

Proof: For ¢ € H(Q;) x H'(w,) such that $ = 0 on 3, we multiply (32a) with T.@(x,y) and
integrate by parts for y € Il U w using (32b) such that

0= —/ div, ((vyA)TA> (T+ %) dy:/ (V,A)TAV,(T,3) dy
MuUw MUw
+ /d @IAly - 9IT:51, dS, — /3 (04T ds,

After integration of this relation over x € €2, using the periodicity in (32c) for (VyA)TAv ondY,we
get

/ / (V,A) T AV, (T ) dy dx + / /(a[[A]]y—gmwﬂydsydx
Q. JIMUw Qe Jow

= / / (V,A) " Av(T,) dS, dx. (35)
e JOYNIQ,
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Adding to the first integral over €2; in the left-hand side of (35) the term in € \ €2,, which is of the
order O(g), we apply to (35) the integration rules (4f) and (8c) from Section 2. The resulting integral
in the right-hand side of (35) is integrated by parts in €2 \ €, using ¢ = 0 on 9<2 such that

e|Y| / e (V(T7'A)) T (T Ay ds,
02,
— || (div[(V(T;lA))T (T A6 — (VT )T (T;IA)W) dx = O(e),
\Q:

where the factor &2 is cancelled according to (4f), and |22 \ Q| = O(e). It follows (34) and finishes
the proof. n

Based on Lemma 4.2, the corrector &(T- ! A) will appear in expansion (66b) of the solution ¢¢ of
the inhomogeneous equation (22b) after homogenization.
Second, for the permittivity matrix A(y) we formulate the following boundary value problem for

a vector-function ® = (Py,..., P4)(p) in the two-phase unit cell:
—div, (0@ +DA) =0 inMUo, (36a)
[(0,® + DA,y =0, —(3,®+ DAV +a[[®], =0 ondow, (36b)

(3},q) + I)A(.)k) |}’k=0 = (3yq) + I)A(.)k) |}’k=1’ q)|}’k=0 = qDlyk:l fork=1,...,d. (36¢)

In (36), the divergence div,, is taken for every ®;(y), the notation 9, @ (y) € R*d for y € IT U wstands
for the matrix of derivatives with entries (3,®);; = d®;/dy; for i,j = 1,...,d, and I € R¥*? is the
identity matrix.

The weak form of (36) implies: Find ® € (H}(IT) x H! ()4 such that

/ (0y® + DAVyudy + f a[®]ly[ul,dS, =0 (37)
Muw dw

forall u € H}(IT) x H'(w). A solution ® exists up to a constant in the cell Y .
Based on &, another corrector will appear in the asymptotic expansion (66b) as argued in the
following lemma.

Lemma 4.3 (Asymptotic formula for periodic permittivity matrix):

(i) For the solution ® of the cell problem (37) the following representation holds:
(3@ +DAY) = A"+ Bi(y), yeNUo, (38)

where the constant d-by-d matrix A® is given in the cell Y by the averaging A° := ((3,® + )A) riuw»
it is symmetric positive definite:

there exist a° > 0 such that TA% > a’|£? for& e RY. (39)

The d-by-d matrix By in (38) has the form inTTU w :

& 1 1 dbjy,
B = Z bl(clr)n,m’ where b](dr)n’m = —Km (40)
m=1 3)/m
which components are skew-symmetric:
by + b0 =0, klm=1,....4d, (41)
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the average (B1)niuw = 0, and the matrix By is divergence-free as follows

S M 8by,
Y B =0 where by = #> (42)
Lm=1 Yi0Ym
and satisfies the following conditions at the interface:
(Bi]yv =0, (A° 4+ B)v = af[®], ondw. (43)

(ii) Assume that the solution of (36) is such that ® and 0,® are uniformly bounded in I1 U w. For
given functions € H'(Q.) x H'(w;) and ¢° € H>(Q), the following asymptotic formula holds
with an arbitrary weight § > 0 :

Iy — fQ (V)T (T AV dx + /d * 10" 1051 dSs
:Uwg 0

We

K
< / (S[[(,B]]2 dS, + 58, with some K > 0,
dwe

for Lo == / (V") TA'V @ dx + (Ve T (A [@]] dS,, (44)
Qe Uwe

dwe

where the notation ¢' := ¢° + e(Ve®) (T 1 ®)ng,, and ng, is a smooth cut-off function sup-
ported in Q. and equals one outside an e-neighbourhood of 02,

Proof: (i) For the vector-valued solution ® of (37), the representation (38) with properties (39)-(42)
follows from the Helmholtz theorem, see [17, Section 1.1]. The interface conditions (43) are obtained
after substitution of (38) into (36b) because of [A°] = 0.

(ii) Let ¢ € H'(Q.) x H'(w,) and ¢° € H?(Q) be given. To prove (44), we rewrite I40 in virtue
of the integration rules (4f) and (8¢) in the micro-variable y:

1 -
Tpo 82|Y|/;2{/Huw(vy(Tewo))T(TsAO)Vy(Tg(p) dy

+ | (Vy(Tep®) T (T AW T: 5], dsy} dx. (45)

dw
For the constant matrix A® = T.A° holds. Then, expressing A° from (38), using the product
rule (Vy(To9®) T8,® = (Vy[(V)(Tep?) T @) T — ®T3,(V,(To¢")), the chain rule eT,(Vg?) =
V,(T.¢"), and the notation ¢! := ¢° + £(V¢®) T (T; ! ®), we rearrange the following terms:

(Vy(Tep") " (TeA®) = (Vy(Te9®) T (A + (3,P)A — By)
= (Vy(Te¢" ) TA — @7 3,(V)(Te¢")A — (Vy(Ts9") By

Taking into account this formula, I40 in (45) is equivalent to:
1 <IN\ T . T 0 .
I = (VTG ) TAY,(T:9) = T0,(V(Tee* DAY, (T:9) | dy
Y| Ja MUw

+ f (Vy(Tep®) TAV[ To @1, dS, + Ip, } dx, (46)
dw
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with the integral Ip, written component-wisely as follows:

d
Ip, = — / (Vy(Teg")) "BV (T @) dy = — / Y (Tep®) kbji, o (Te) 1 dy.
Muw Muw kLm=1
Recalling B; from (40), we integrate by parts Ig, and use the fact that By is divergence-free according
to (42) such that Z:Z{Lm:l(T8<p0),kbl(c}z1 m = 0 to get

d
I, = fn 3 (T bl (1.9 dy

Vo 11 m=1
+ fa (V) (Te¢")) " Biv[ T ¢, dS, — /a (Vy(Te¢®) T B1v(T: @) dS,. (47)
w Y

After integration by parts the second time and rearranging the mixed derivatives (Tb«(po),klm such that
ZZ,I,m:l (TEQDO),klmb}(c}r)n = 0 because bl(c}r)n is skew-symmetric as written in (41), we proceed (47):

d
Iy, = — Y (Te®) pabi, (Te@)m dy
Vo 4 1 m=1

d
+ /d V(T By = 3 (L") b v | [T:61 S, + Lo,
@ kL m=1

where Iy i= [ (34 et (Te0) i, v — (Vy(Teg®) T Bv) (Te) d,.
Substituting the expression of Ip, into (46) and using the formula at dw:

allT.¢'ly = 2l Te@ly + (Vy(Te") Ta[ @1, = (V) (Te9”) T (A° + By)v

following from (43) and [ T:¢°]] y = 0, with the help of the integration rules (4f) and (8c) we rewrite
I4, again with respect to the macro-variable x in the form:

o= [ @87 - a1 Tauvet (1 v
QsUw,

d
— 1 -
— > e (T by P ¢ dx

klm=1
o d
+ f 00— Y QT b0 v | 18148, + Ire,. (48)
ow
€ klLm=1

where the last two terms in the integral over Q, U w, have the asymptotic order O(¢), and Iyy is
transformed to the integral over €2, such that

d

he, = / 3 gl (T b Y — (V") Te(T; 1 By)v | G dS..
Q2
€ k,L,m=1

Here, the factor ¢ appears due to the integration rule over the boundary dY analogously to (8c),
the chain rule gives (Tg(po),kl = &’T, (‘/’,(;cl) and Vy(Tg(pO) = T, (V¢"), while in the second term &
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appears since

d d
I I 1) -1
Br= 2 gy b = 2 e (T ) = T B »

m=1 m=1

By this, the factor &2 is cancelled by division by &2 in (46).
We estimate the interface term in the integral over dw; in the right-hand side of the Equation (48)
by Young’s inequality with a weight § > 0 as follows:

2
d 2 d
— - & _
fa Y (T b vmllBll S, | < /3 51 2 T b
Wg

@e ko lm=1 klLm=1

K
+ 5[[(/_)]]2 de < / 8[[@]]2 de + 38, K > 0,
dwe
(50)

since |dw,| = O(¢™!). Applying Green's formula in the boundary layer € \ €, and using ¢ = 0 on
02 leads to the asymptotic expansion of the boundary term:

d

lo, = f > <s¢1,<T;1b,£}3n)¢,m + (ST b ) @)
Qe \ ko pm=1 o
— (V" T (TS 'By) V@ — div ((chO)T(sT;lBl)) ¢) dx = O(e). (51)

Here the g-order is due to the fact that |Q \ Q;| = O(¢), the uniform boundedness of e T 1B, and
the chain rule T;lb(l) = (e T;lb]i}zn),m according to (49).

klm,m
Gathering in (48) the asymptotic terms of the same order ¢ and accounting for formulas (50)

and (51), the following estimate takes place with some K > 0:

Ly — / (VehH (T A) VG dx — / 2 [6'11&1 dss
Qe Uwe dwe €

We

K
g/ S[@]? dS, + —e. (52)
dwe )
For a cut-off function ng, supported in Q, we set ¢! := ¢° + £(Ve®) T (T 1 ®)ngq, such thatp! =0
in Q \ Q, the jump [¢'] = [¢'] at dw,, and
o' — @ i @y xmi @p) = O(). (53)

From (52) and (53) if follows (44) and the assertion of Lemma 4.3. |

Third, for a diffusivity matrix D corresponding to the assumption (12) in Theorem 5.1 below, in
analogy with (36), we establish the cell problem for N = (Ny,...,Ny)(y):

—div, ((3yN+D)D) =0 inTTUw, (54a)

[@N +DDlyw =0, —(@,N-+DDv=0 ondw, (54b)

(8)/N + DD |}’k=0 = (3yN + DD i |)’k=1’ N|)’k:0 = N|)’k:1 fork=1,...,d. (54c¢)
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The system (54) differs from (36) by the interface condition and implies the following weak formu-
lation: Find a vector-function N € (H}(IT) x H'(w))? such that

f (0yN + I)DV,udy =0 (55)
MNUw

for all test functions u € H}(IT) x H!(w). A solution of (55) exists and is defined up to a piecewise
constant in IT U w. Moreover, since @ C Y is assumed, this fact follows that N = —y and dyN = —Iin

w. Based on N, the following lemma justifies the use of the corrector s(VC?)T(T; IN) in the formula
(66a).

Lemma 4.4 (Asymptotic formula for periodic diffusivity matrix):

(i) For the solution N of the cell problem (55) the following representation holds:
(3,N() + DD(y) = D’ + By (y), (56)
where the d-by-d matrix D is constant in the cell Y and given by
D" := ()N + DD)nuw = ((3yN + DD),
it is symmetric positive definite:
there exist d° > 0 such that D% > d°|g)? for& e RY. (57)
The d-by-d matrix B has the following form in I1 U w :

d
B = Z b,g,)nm kil=1,...,d (58)

m=1

Its components bl(j;)m are skew-symmetric, (Ba)niuw = 0, and B, is divergence-free in the manner of
(41) and (42). At the interface the conditions hold

[B:l,v =0, (D°+B)v=0 ondo. (59)
(i) Assume N € (WH®(I1) x Wh®(w))4. For ¢ € L2(0,t; H'(Q:) x H (w;)) such that ¢ =0

on dQ and arbitrary ¢ € L*(0,7; H*(Q)), the following asymptotic formula with c! := ) +
e(VeO (T IN)ng, holds

T T
/ IDodtz/ / (Veh T (T71D)VE dx dt 4 OCe),
0 0 . Uwg
Ipo = / (VO TDOVE dx + (V) T DO [[E] dS,. (60)
Qe Uw; dwe

Proof: The proof is analogous to those from the previous Lemma 4.3 until (47). Indeed, we derive
similar to (45) and (46) formulas in micro-variables:

1 i i _
I = 7 /Q { /n y ((Vy(Tgcil))TDVy(Tgci) — NTBy(Vy(Tgc?))DVy(Tsci)> dy

- / (Vy(Tec))) D[ TecDl, dSy + IBZ} dx, (61)
ow
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with ¢} == ¢ + &(Ve)) (T, 'N) and Ip, == — [, (Vy(Tec)) T By V(T ¢) dy. Likewise (47), inte-
gration by parts of Ip, follows that

d
= [ Y @b, @@+ [ O md) Bnal, ds,
MUw kLm=1 dw

- / (V,(Toc2) T By (T,5) d,. (62)
oY

After substitution of (62) in (61), the integral over dw disappears due to the interface condition (59).

Returning to the micro-variables x with the help of the chain rule (3/0y)Te = €T¢(9/0xy,), the
second term in the integral over IT U w in (61) has the asymptotic order O(e). The integral over 3Y
in (62) divided by £? is transformed to the integral over 32, with the factor 1/e, and after integration
by parts in the boundary layer 2 \ €2,, it is of the order O(eg), too.

The principal difference from Lemma 4.3 consists in estimation of the domain integral in Ip, .

By adding and subtracting the averaged values, we rewrite equivalently

d
f > (Tec) b, (Tet) dy = I + I,
I

Yo g 1 m=1

using the property (B2)nue = 0, and

d
him [ 3 ()b (T~ (T ) b
Vo 1 m=1

d
L = (TeGi)nuow D UTee) = (Tec) i) 1w 1 b, d-
Vo 1 m=1

We rewrite I; and I in the macro-variable x in all local cells using the integration rules (4c) and (8¢),
applying the chain rule (9/0y,) Te = €T:(9/0xm) to VC? and to B, (see (49)), then apply to the result
the Cauchy-Schwarz inequality and the Poincaré inequality (27). First, there are some constants 0 <
Ki €< K; and K3 > 0 such that

d
_1 0 —17,(2) - -\
e2|Y] /;211 dx = Z/H]gud Z Cz‘,kl(STg bklm,m)(ci - <Ci>I'IJqu;fg)dx

jerIe € k,l,m=1

< Kl g2, ueop 1B2 | oo (11Ue) V&l 211, U )
< Kl 521, ) (K3 + 13y N 1201w el VEill 21, Uwy) = OCE),

where we have used the fact that the integral over the boundary layer Q\ @, of T, L(T.¢; —
(TeCi)ruw) is zero due to the definition of the operator T, Lin Q \ Q;. Similarly, there exists Ky > 0
such that

d

1 -
27 / Ldx < K4 E NV (D2 (1,00 Ks + 13Nl (rmua) 1€l 1211, U0, = O(E).
Q
k=1

Finally, we integrate the estimate of I over the time t € (0, t) for further use. n

The functions ¢? and ¢° will associate the averaged solution in the homogenization problem
presented in the next section.
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5. The main homogeneous result

In this section, we establish the averaged PNP equations for the functions (% ¢°)(t, x) in the time-
space domain (0, 7) x €2 as follows:

ac?

%G diy (kB(a(vC?)TDO) =0 fori=1,...,n (63a)
at

—div ((V(pO)TAO) = %szcz, where » = %, (63b)

k=1

which are supported by the Dirichlet boundary and initial conditions:

A= and ¢"=¢" on(0,7)x0Q, &= Q. (63¢)
In (63), the averaged matrices AY = ((3y® + DA)riuw and DY = ((dyN + I)D)y are from Lemma 4.3
and Lemma 4.4, the matrix D is from (12), the vectors N and ® are the solutions of the two-phase
cell problems (55) and (37), respectively.

From the standard existence theorems on elliptic and parabolic systems, the solution ¢° €
L>®(0,7; HY(RQ)) and ¢? € L>(0, 7; L2(2)) N L*(0, 7; H'(Q)) of the linear problem (63) exists and
fulfils the following variational equations:

T P 0
/ / {%Eiﬁ—kB@(VC?)TDOVEi}dxdt:O, fori=1,...,m, (64a)
0 Q

/Q i(w“)TAOv(;; — (Z zkc2> @} dx =0, (64b)

k=1

for all test functions ¢; € L*(0, T; Hé (R))and ¢ € Hé ().
The main result of this paper is the following theorem.

Theorem 5.1 (Averaged problem and correctors): Let the solutions N, ® of the two-phase cell
problems (55), (37), and 9,N, 0,® be uniformly bounded in T1 U w, the averaged solutions o0 €
L®(0, 7; H3(RQ)) and c? € L2(0,7; H3(Q)), i = 1,...,n. Then a solution (c®,¢?) of the inhomoge-
neous PNP problem (22) and the solution (c°, ¢°) of the homogeneous PNP problem (64) satisfy the
residual error estimates:

e — €' I? = 0(e) 19" = 9 oo (o rt () ! (@n)) = O (65)
with the norm || - || defined in (25a), and the approximate functions are

=4V (T Ny, (66a)

¢ = eI Mg, ¢! =0 + (Vo) (T O)ng, . (66b)

In (66), the vector A is a solution of the two-phase cell problem (33), and ng, is the cut-off function from
Lemmas 4.3 and 4.4.

Proof: Based on the asymptotic results of Section 3, we will prove the error estimates (65). In
particular, this will justify the averaged problem (63).



270 V. A. KOVTUNENKO AND A. V. ZUBKOVA

Estimate of ¢ — c'. We start with derivation of an asymptotic equation for ¢} asi = 1,...,n. We
apply to div((Vc?) " D®) Green’s formulas on the pore phase:

f [div ((VC?)TD°> G+ (Vc?)TDOVE,-] dx = — / (V) TDOvE; S, (67a)

e 3(1)2’

for all ¢; € H'(Q.) such that ¢; = 0 on 32, and on the solid phase:

/ [div ((VC?)TDO) E,‘—i-(VC?)TDOVEi] dx = f (V<) TDOvE; dS,, (67b)

dwg
forall¢; € H!(w,). Summing up the Equations (67), using the diffusion equation (63a) and the con-

tinuity of (Vc?) " D% across dwe, the variational problem (64a) in §2 can be expressed equivalently
over the two-phase domain as follows:

T oo
/ / — &+ kgO(V) T DOVE | dxde
0 . Uwg ot

+ / kp® (V) " DOv[[e;]] dS, dt = 0, (68)
0 dwe

for all discontinuous over dw; test functions ¢; € L2(0, 7; H' (Q,) x H'(w;)) such that¢; = 0 on 9.
Further, we employ the asymptotic arguments as & \ 0.
We apply to the left-hand side of (68) the asymptotic formula (60) from Lemma 4.4, which implies:

T 9 0
0= [ f {%a + kB®(vC})T(T;1D)vz,-} dxdt + O(e), (69)
0 . Uwe

where ci1 is defined in (66a). In virtue of the relation

act 0 T Ay
5= a[‘? + (VY (T N)ng, 1 = 55+ 0,

then (69) can be rewritten in terms of ¢} in the asymptotically equivalent form:

T ¢!
f / {%zi + kB@(vC})T(T;ID)vzi} dxdt = O(e). (70)
0 e Uwe

We continue with an asymptotic expansion of the perturbed problem (22a). Due to the assump-
tion (12) on the diffusivity matrices and the uniform estimate |Y;(c®)| < (|zj| + Y 1ziDC/Ny,
which follows that £“Yj(c®) = O(¢) for k > 1, the Equation (22a) is expressed in the asymptotic
form:

t acf— exT (p—1 -
/0 /Uw SEi k@ (Ve)) T (' D) Ve dxdt

= / f szg,»(EE, @) [[ci1l dSy dt + O(e). (71)
0 dwe
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Since |dw,| = O(e 1), the interface integral over dw, in (71) is estimated by Young’s inequality due
to the boundedness property (20c) and the trace theorem (30):

1 e A _
<ez{—/ g (@&, 6 S, + / |[[c,»]]|2dsx}
4 dwe dws

K Ko -
< 52 {Iglawd + ?“Ci”%‘[l(Qg)XHl(wS)} = O(e). (72)

/ €26, ¢°) [2:] ds,
dwse

Next, we subtract the Equation (70) from (71) and utilize (72) to obtain that
T 9(ct — ¢!
/ / {%zi +ks® (V(cE — )" (T;lD)VEi} dxdt = O(e). (73)
e Uwe

Integrating by parts over time in the first term in (73) implies

/ & =D
Qe Uw, 2

The initial difference here (¢! — c})|,—o = —&(Vc™) (T IN)ng, = O(e). Using the uniform pos-
itive definiteness (13) of D, after taking the supremum over t € (0, 7) and summing up (74) over
i=1,...,n wearrive at the first estimate in (65):

/ ks® (V(cE — b)) (T D)Vt —c)dt}dx—O(s) (74)

n z
Z sup f (c; — c,-l)2 dx + / / ]V(cf - cl-l)‘2 dxdt; = O(e). (75)
= e JQuo, 0 JQ:Uw,s

i=

In particular, applying the triangle inequality for ¢! given by the sum in (66a), due to the uniform
boundedness of N, d,N, and Ve € L2(0, 7; HY(2))4, from (75) it follows the estimate which will be
used further in (82):

2
e = lixgrrziuxizeon < 2016 = €l o xi2)

+ 2082 | (VNI Nyng, 11

e 07322 (QuyxL2(weyy = O (76)

Estimate of ¢° — @ Similarly to (67), we apply to the term div((Ve?) TA%) the following Green’s
formulas on the both phases Q; and w,:

/ [(V(pO)TAOV(Z) + div ((V(pO)TAO) @] dx = — [ (Ve®) TA%G dS,, (77a)
Bw

£

/ [(V(pO)TAOVq_) + div ((V(pO)TA°> ¢] dx = f (Vo) TA%v3 dS,, (77b)
we dwg

for test functions ¢ € H'(Q,) such that ¢ = 0 at 32, and ¢ € H' (w,), respectively. We sum up the
Equations (77), use the Poisson equation (63b) and the continuity of (Ve®) T A% across the interface
dw,. Applying the asymptotic formula (31) from Lemma 4.1 we rewrite (64b) over the two-phase
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domain as follows:
n
| (weave -1 (Y ad) o) ax
Qe U, k=1
+ / (Vo) TA% @] dSx = OCe), (78)
dwe
for all test functions ¢ € H'(Qg) x H'(w,) such that ¢ = 0 at L.

Applying the inequality (44) from Lemma 4.3 with ¢! := ¢° + £(V¢®) (T 1 ®)ngq, proceeds the
expansion (78) with some K > 0 as

/Q ! ((V¢1)T(T81A)V¢_’_1Qe (Zwﬁ) @) dx + /a %[{wlﬂ[[@]] ds,

k=1

< / S[@]% dS, + Ke. (79)
dwe

Next, we add to (79) the Equation (34) describing A from Lemma 4.2 and use the definition of
@? = ol + (T A)ng, to get

/ (<V¢2>T<T81A>V¢ —1q, (Z chz) @) dx
Q:Uw, k=1
ol ) —1 -
o (Crr-rg) e,

The subtraction of (80) from the perturbed equation (22b) implies that

< / S[@]? dS, + Ke. (80)
dwe

' / ! (Ve — D) (T AV dx+ /B %[[ws—wz]][[@]]dsx

/ sz(ck — ck)tp dx| <

Qe k=1

\/ S[@]% dS, + Ke. (81)

After substitution in (81) the test function ¢ := ¢ — ¢?, which is zero at 32, using Young’s inequality
with a weight §; > 0 and applying the asymptotic bound (76) of (¢! — ), we obtain the asymptotic
inequality for § < a/gp such thata/e — 8 > (o — 8g¢)/e > 0for 0 < & < &¢:

0< / (Vg — %) (TS A)V(pf — ¢?) dx +/ (g - 5) [¢® — @2]2 dS,
Qe Uwe dwe €

o
1)
e 02 1, ¢ 2012
o kZ i — T2, + 5 197 = @*lE2q, + Ke
=1

Sy 2912
where Z := ; 1{nax |zx|. For 8; chosen small enough, using the uniform positive definiteness of A
{1

in (10) and the lower bound (24), taking the supremum over ¢ € (0, 7) in (82) follows the second
estimate in (65) and finishes the proof. |
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6. Discussion

Passing to the limit in (14), we derive the total mass balance and the non-negativity for the averaged

species concentrations c”.

0

According to the governing relations (9¢) and (9d), we can introduce the entropy variables

0
(uys - -

o), 0 =), ., vg), and p° corresponding to the solution of the averaged problem (63)

as follows:

n
M? = kB®ln(ﬂ,~c?); n’ + Vpo =— szcjo Ve®, div® =o.
j=1

We observe the following technical assumptions used for the homogenization:

the asymptotic factor £, k > 1, in the electrochemical potentials 1t; in (9¢);
the asymptotic factor &2 by the interface reactions &i(-, ) in (19a);
asymptotic decoupling of the diffusivity matrices DY in (12).

Our future work is pointed towards possible relaxing these assumptions.
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