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Inverse problem of breaking line identification by
shape optimization

Daria Ghilli, Karl Kunisch and Victor A. Kovtunenko,

Abstract. An inverse breaking line identification problem formulated as an optimal con-
trol problem with a suitable PDE constraint is studied. The constraint is a boundary value
problem describing the anti-plane equilibrium of an elastic body with a stress-free break-
ing line under the action of a traction force at the boundary. The behavior of the displace-
ment is observed on a subset of the boundary and the optimal breaking line is identified
by minimizing the L2-distance between the displacement and the observation. Then, the
optimal control problem is solved by shape optimization techniques via a Lagrangian ap-
proach. Several numerical experiments are carried out to show its performance in diverse
situations.
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1 Introduction

The inverse problem of identification of a free interface (breaking line) from bound-
ary measurements is investigated as shape optimization problem for a class of ad-
missible shapes of the breaking line. It has implications for testing of cracks for
inhomogeneities, and discontinuities of media [3, 13, 21, 23].

The problem is formulated as a least squares problem with a possible regular-
ization term as:

J(u,Γ) =
1
2

∫
Γo

(u− z)2dx+ βη(u), (1.1)

where Γo is the observation part of the boundary ∂Ω of a domain Ω ⊂ Rd, (d ∈
N), and z is the observed datum. The displacement u in Ω itself satisfies a varia-
tional principle consisting of minimization of the following energy functional

E(u,Γ) =
1
2

∫
Ω\Γ
|∇u|2dx−

∫
ΓN

guds+ φ(JuKΓ), (1.2)
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where Γ is the breaking line in Ω, and g is the traction force at ΓN ⊂ ∂Ω. For
fixed Γ, minimization of E(u,Γ) in (1.2) with respect to feasible u describes the
forward PDE problem, whose well-posedness is insured by conditions imposed
on φ. For instance, in [14] an example for non-uniqueness in a hemi-variational
inequality is given, which is caused by (1.2) with non-smooth (piecewise-linear)
φ.

Note that the PDE constraint obtained by the variational formulation describes
the anti-plane equilibrium under the action of the traction force g of an elastic body
with a breaking line. The penalty η in (1.1) is a regularizing term with a parameter
β ≥ 0. The function φ in (1.2) denotes the fracture energy released with the
opening of the breaking line, which is active on the jump of the displacement u on
Γ, denoted by JuKΓ.

Typically, the function φ is non-smooth and non-convex. From the physical
point of view, it describes dissipative, non-ideal contact phenomena at the breaking
line due to cohesion, non-linear friction, drag forces, etc. For the mathematical
modelling, analysis, and numerical treatment of related problems within the theory
of hemivariational and pseudo-monotone variational inequalities, see [1,14,26,29].
In the cohesive case, a buried crack can be determined by the set of points in Γ

where an opening JuKΓ 6= 0 occurs. This is the complement to the closed part of
the breaking line where JuKΓ = 0, see the corresponding fracture modelling and
numerics in [20]. This formulation readily extends brittle fracture to frictional-
type non-linear phenomena and demonstrates the importance of the problem of
identifying the breaking line.

Now the optimal breaking line identification problem can be formulated in the
following way

inf
Γ∈G

J(u,Γ) such that Eu(u,Γ) = 0, (1.3)

where G denotes the set of admissible breaking lines and Eu implies the variation
with respect to u. The identification of Γ in (1.3) represents a shape optimization,
which is a specific case of an inverse problem, see the survey [17]. We refer to [30]
for existence theorems in shape optimization. Uniqueness cannot be guaranteed
as is typical for nonconvex optimization problems. In the present paper we chose
β = 0 and φ ≡ 0.

To this regard we mention that, for fixed Γ, in [9] and [10] non-linear models for
quasi-static evolution of cohesive fractures are studied and numerically solved by
a finite dimensional approach. The non-linearity of the models investigated in [9]
and [10] stems from the non-convexity and non-smoothness of the term φ used to
model the cohesive fracture energy. A very interesting (and challenging) problem
for further work would be to solve the shape optimal control problem (1.3) with a
non convex and non smooth φ 6= 0 in (1.2).
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In the context of shape optimization theory, variations of geometry are ex-
pressed with the help of the shape (Eulerian) derivative of the objective based
on the Hadamard structure theorem (see [5]). Using a Lagrangian approach (see
[15]) applied to variational problems, explicit analytic representation of the shape
derivative for free boundary problems were derived in [8, 16, 25], and in [24] for
our specific case. Finally, we mention [6] where free discontinuity problems were
approximated by Γ-convergence and solved numerically by an iterative threshold-
ing algorithm.

Among the earlier contributions addressing shape optimization of cracks, we
refer to [28] where 2D curved cracks were identified using an optimization ap-
proach, and to [2, 7] for sensitivity formulas at the singular crack tip. Within
the variational theory of non-linear crack problems subject to the non-penetration
condition JuKΓ ≥ 0 (see [18]), we cite [19, 22] for the shape differentiability. It is
important to note that singular solutions, that areH1-functions but lacking theH2-
regularity at the tips of crack, are inherent in cracked domains with non-Lipschitz
boundaries. However, our study relies on piece-wise smooth H2-solutions (see
Proposition 4.1), because the breaking line is assumed meeting the domain bound-
ary and splitting it into polyhedric subdomains.

Starting with preliminaries in Section 2, we formulate rigorously the optimal
breaking line identification problem in Section 3, and state its regularity in Sec-
tion 4. For the computation of the shape derivative of the objective functional J
(see Section 5, Theorem 5.1), we use a Lagrangian approach. We compute the
adjoint v of the state variable u and we write the shape optimization problem (1.3)
as a min max problem of a suitable Lagrangian depending on u and v. Then, the
derivative of the Lagrangian is computed by shape optimization and differential
calculus techniques. The vector fields along which we compute the derivative are
called velocities and denoted by θ.

The result of Theorem 5.1 shows that the shape derivative of J is represented
by four terms: one term defined by jumps of the variables across the breaking line
Γ, the second one given on the traction part, a third term on the observation part of
the boundary, and a last term on the part of the boundary under Dirichlet boundary
conditions (see formula (5.10)). A suitable choice of the velocity, taking into ac-
count the geometric configuration, provides a negative sign of the derivative, and
thus a descent direction for the numerical optimization purposes.

In Section 6 we propose an algorithm to identify the breaking line. The main
structure is described in Algorithm 1. It is based on a gradient step procedure
where the breaking line is updated by adding the velocity, which is derived from
the shape derivative of the objective functional. The reference boundary value
problem and its adjoint are approximated by a finite element method. The key
point for the computation of the velocity is the term defined by the jumps of the
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gradient of the variables across the breaking line Γ. Its treatment is described in
Algorithm 2.

In Section 7 the performance of our identification algorithm is shown for three
numerical experiments carried out in diverse situations. Different shapes of the
true breaking line, admissible velocities and traction forces are tested. In the first
experiment one tip (the left tip) of the trial breaking lines is moved during the iter-
ations along the Dirichlet boundary to the true breaking line tip. The results show
that our scheme is able to recover also the shape of the true breaking line quite
well and in few iterations. The second experiment takes into account the velocity
in the traction part, that is, the right breaking line tip, which is no more fixed, but
rather moved during the iterations along the Neumann boundary under traction
force. While for the first two test cases, the breaking line geometry is represented
in a local basis, for the third one non-local ansatz functions are used.

2 Notation

Let P(D) be the set of subsets compactly contained in D ⊂ Rd, where D is
assumed to be open and bounded. Define for 0 ≤ α ≤ 1 the space of vector fields

C0,α
c (D,Rd) := {θ ∈ C0,α(D,Rd) | θ has compact support in D}.

For a given domain Ω ⊂ D with at least a piece-wise C1 boundary ∂Ω with no
singular points, we introduce the set of boundary-preserving fields

C0,α
c (∂Ω) := {θ ∈ C0,α

c (D,Rd) | θ · n = 0 on ∂Ω}

where n is the outward unit normal vector to Ω.
Consider a vector field θ ∈ C0,1

c (D,Rd) and the associated flow φθt : D →
Rd, t ∈ [0, t0] defined for each x ∈ D as φθt (x) := y(t), where y : [0, t0] → Rd
solves the first order non-linear ODE

d

dt
y(t) = θ(y(t)) for t ∈ (0, t0), y(0) = x.

We will use the simpler notation φθt = φt.
Since θ ∈ C0,1

c (D,Rd) we have by Nagumo's theorem [27] that, for fixed t ∈
[0, t0], the flow φt is a homeomorphism fromD into itself and maps boundary onto
boundary and interior onto interior.

3 Optimal breaking line identification problem

We consider domains which arise from splitting a hold-all-domain Ω by means of
an interface representing the breaking line Γ into subdomains Ω+ and Ω−. More-
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over, here is assumed that the graph of the breaking line can be described by a
function. In the following we refer to specific representatives Ω and Γ in 2D.

Let Ω = (0, 2)× (−0.5, 0.5) ⊂ R2. Assume

Ω = Ω
+ ∪Ω

− ∪ Γ, Γ = ∂Ω
+ ∩ ∂Ω

−,

where the breaking line Γ ∈ G and

G = {(x1, x2) ∈ Ω such that

x2 = ψ(x1), ψ ∈ C1([0, 2]), ψ′(0) = 0, ψ′(2) = 0}. (3.1)

Let the Dirichlet and Neumann boundaries be

ΓD := {0} × [−0.5, ψ(0)) ∪ {0} × (ψ(0), 0.5], ΓN (:= ∂Ω \ ΓD) := Γ
0
N ∪ Γ

+
N ∪ Γ

−
N ,

where
Γ

0
N = {2} × [−0.5, ψ(2)) ∪ {2} × (ψ(2), 0.5],

and
Γ
+
N = (0, 2)× {0.5}, Γ

−
N = (0, 2)× {−0.5}.

We note that ΓD and Γ0
N consist of two disjoint segments separated by the end

points (tips) {0} × {ψ(0)} and {2} × {ψ(2)} of the breaking line Γ. Since Γ

belongs to both ∂Ω+, ∂Ω−, we will use the notation Γ± denoting it as part of
∂Ω± respectively.

Consider the forward boundary value problem in Ω \ Γ:
∆u = 0 in Ω+ ∪Ω−,

u = 0 on ΓD,

∇u · n = g on ΓN ,

∇u · n± = 0 on Γ±,

(3.2)

where g ∈ L2(ΓN ), and n± stands for the unit outer normals to Ω±. Denote by
HΓD(Ω \ Γ) = {u ∈ H1(Ω±) : u = 0 on ΓD}. Clearly (3.2) admits a unique
variational solution u ∈ HΓD(Ω \ Γ).

System (3.2) describes the anti-plane equilibrium of an elastic body with a
stress-free breaking line under the action of the force g. Note that (3.2) can be
written as the following variational formulation

〈Eu(u,Γ), v〉 =
∫

Ω\Γ
∇u · ∇vdx−

∫
ΓN

gvds,
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where the energy functional E is defined as follows

E(u,Γ) =
1
2

∫
Ω\Γ
|∇u|2dx−

∫
ΓN

guds.

Let the observation boundary Γo be a subset of ΓN and let z ∈ H2(Ω±) be a given
function.

We consider the following cost functional

J(u,Γ) =
1
2

∫
Γo

(u− z)2dx, (3.3)

where u is the solution to problem (3.2) corresponding to Γ and Ω, as described
above. The optimal breaking line identification problem is defined as follows

inf
Γ∈G

J(u,Γ) such that Eu(u,Γ) = 0. (3.4)

If the observation z is feasible, i.e. solves the problem (6.2) similar to (3.2), then
(3.4) is trivially solvable with J(z,Γ) = 0. An example for a non-unique solution
to (3.4) can be given by u = x1 with g = 0 on Γ

±
N , g = 1 on Γ0

N , and the
measurement z = x1 on Γo = Γ

+
N ∪ Γ

−
N , such that J(u,Γ) = 0 for any Γ =

[0, 2]× {c} with c ∈ (−0.5, 0.5).

4 Regularity and adjoint state

We have the following regularity of the solution u of problem (3.2).

Proposition 4.1. Let Ω and Ω± be as described above and Γ ∈ G. Then the
solution u ∈ H1(Ω±) of (3.2) satisfies

u ∈ H2(Ω±).

Proof. The proof is based on the fact that ∂Ω± has no singular points as defined
in [12], where we used that Γ ∈ G. For a complete proof we refer to [12], Chapter
2.

Our goal is to differentiate the functional J(u,Γ) with respect to Γ.
For this purpose we use a Lagrangian method which is based on the following

Lagrangian
L(u, v,Γ) = J(u,Γ)− 〈Eu(u,Γ), v〉. (4.1)

Note that problem (3.4) is equivalent to

min
u∈HΓD

(Ω\Γ)
max

v∈HΓD
(Ω\Γ)

L(u, v,Γ).



Inverse problem of breaking line identification 7

The adjoint state is given by the following boundary value problem in Ω \ Γ:
∆v = 0 in Ω+ ∪Ω−,

v = 0 on ΓD,

∇v · n = u− z on Γo,

∇v · n = 0 on {ΓN \ Γo} ∪ Γ±,

(4.2)

where we set the normal n = −n+ = n− on the breaking line faces Γ±. Further
we will use the notation for the jump along Γ (see [18], Section 1.4):

JvK = v|Γ+ − v|Γ− .

Denoting by u, v the solution to (3.2) and (4.2) respectively, the optimal value
functional Γ→ J(u,Γ) satisfies the following identity

J(u,Γ) = L(u, v,Γ). (4.3)

5 Shape derivative via Lagrangian approach

Let θ ∈ C0,1
c (∂Ω) and x 7→ φt : HΓD(Ω \ Γ) 7→ HΓD(Ω \ Γt) be the associated

perturbation flow. Define Γt = φt(Γ) such that Γ0 = Γ.
The Eulerian derivative of J at Γ in the direction of θ, when the limit exists, is

defined as
d

dt
J(ut,Γt)θ|t=0 := lim

t→0

J(ut,Γt)− J(u,Γ)
t

,

where u = ut|t=0 and ut satisfies the state constraint

Eu(ut,Γt) = 0.

By (4.3) we have

d

dt
J(ut,Γt)θ|t=0 =

d

dt
L(ut, vt,Γt)θ|t=0.

By a change of variable we can write

L(ut, vt,Γt) = L̃(t, ut ◦ φt, vt ◦ φt,Γ).

Specifically we have

L̃(t, ut ◦ φt, vt ◦ φt,Γ) = −
∫

Ω\Γ
A(t)∇(ut ◦ φt)∇(vt ◦ φt)dx

+

∫
ΓN

gt(vt ◦ φt)ξ(t)ds+
1
2

∫
Γo

((ut ◦ φt)− zt)2ξ(t)ds,
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where gt = g ◦ φt, zt = z ◦ φt, the Jacobian matrix Dφt = {(φt)i,j}2
i,j=1, and

ξ(t) := det(Dφt)
∣∣∣Dφ−Tt n

∣∣∣ , A(t) := det(Dφt)Dφ−1
t Dφ−Tt .

Then by [5], Chapter 10, Thm. 5.1, we have

d

dt
J(ut,Γt)θ|t=0 =

d

dt
L̃(t, ut ◦ φt, vt ◦ φt,Γ)θ|t=0 =

∂

∂t
L̃(0, u, v,Γ). (5.1)

We simplify the notation and we write

L̃(t, u, v,Γ) := I1(t) + I2(t) + I3(t), (5.2)

where

I1(t) = −
∫

Ω\Γ
(A(t)∇u) · ∇vdx, I2(t) =

∫
ΓN

gtvξ(t)ds,

I3(t) =
1
2

∫
Γo

(u− zt)2ξ(t)ds.

By (5.1) we calculate A′(0) = (divθ)I −DθT −Dθ and the derivatives

d

dt
I1(t)|t=0 = −

∫
Ω\Γ

[((divθ)I −DθT −Dθ)∇u] · ∇vdx (5.3)

with the identity matrix I , and

d

dt
I2(t)|t=0 =

∫
ΓN

(∇g · θv + gvdivΓN θ) ds, (5.4)

where the tangential divergence

divΓN θ = divθ|ΓN − (Dθn) · n,

and finally

d

dt
I3(t)|t=0 =

∫
Γo

(
−(u− z)(∇z · θ) + 1

2
(u− z)2divΓoθ

)
ds, (5.5)

where
divΓoθ = divθ|Γo − (Dθn) · n.
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Consider the first term in the right side of (5.3) component-wise and integrate by
parts to obtain

−
∫

Ω\Γ
(divθ∇u) · ∇vdx = −

∫
Ω\Γ

θk,kujvjdx =

∫
Ω\Γ

θk(uj,kvj + ujvj,k)dx

−
∫
∂Ω

θkujvjnkds+

∫
Γ

θkJujvjKnkds. (5.6)

Another integration by parts on the second and third term in (5.3) implies that∫
Ω\Γ

(θj,k + θk,j)ukvjdx = −
∫

Ω\Γ
(θk(uk,jvj + ukvj,j) + θj(uk,kvj + ukvj,k)) dx

+

∫
∂Ω

(θkukvjnj + θjukvjnk) ds

−
∫

Γ

(θkJukvjKnj + θjJukvjKnk) ds. (5.7)

Since by the first of (3.2) and (4.2) we have

−
∫

Ω\Γ
(θkukvj,j + θjuk,kvj) dx = 0,

summing up (5.6) and (5.7) we obtain

d

dt
I1(t)|t=0 =

∫
∂Ω

(θk(ukvjnj − ujvjnk) + θjukvjnk) ds

−
∫

Γ

(θk(JukvjKnj − JujvjKnk) + θjJukvjKnk)ds.

Then we express in compact form

d

dt
I1(t)|t=0 =

∫
∂Ω

(
θ ·
(
∇u∂v

∂n
+∇v ∂u

∂n

)
− (∇u · ∇v)(θ · n)

)
ds

−
∫

Γ

s
θ ·
(
∇u∂v

∂n
+∇v ∂u

∂n

)
− (∇u · ∇v)(θ · n)

{
ds.

By (3.2) and (4.2) and since θ · n = 0 on ∂Ω, we get

d

dt
I1(t)|t=0 =

∫
Γ

J∇u·∇vK(θ·n)ds+
∫

ΓN

(θ · ∇v) gds+
∫

Γo

(θ · ∇u) (u− z) ds

+

∫
ΓD

θ ·
(
∇u∂v

∂n
+∇v ∂u

∂n

)
. (5.8)
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Gathering (5.2), (5.4), (5.5), (5.8), we have

d

dt
J(ut,Γt)θ|t=0 =

∫
ΓN

(θ · ∇(gv) + gvdivΓN θ) ds

+
1
2

∫
Γo

(
θ · ∇

[
(u− z)2]+ (u− z)2divΓoθ

)
ds

+

∫
Γ

J∇u · ∇vK(θ · n)ds+
∫

ΓD

θ ·
(
∇u∂v

∂n
+∇v ∂u

∂n

)
ds.

(5.9)

We can now state our main result.

Theorem 5.1. Under the previous notations and assumptions, we have

d

dt
J(ut,Γt)θ|t=0 = JgvKθt|Γ∩ΓN

+
1
2
(u− z)2θt|∂Γo +

∫
Γ

J∇u · ∇vK(θ · n)ds

+

∫
ΓD

θ ·
(
∇u∂v

∂n
+∇v ∂u

∂n

)
ds, (5.10)

where the tangential velocity θt := θ − n(θ · n).

Proof. Consider the decomposition of the gradient vector into the normal and the
tangential components as follows ∇ = n ∂

∂n + ∇t. Since θ · n = 0, it holds
θ · ∇ = θt · ∇t on ∂Ω. Therefore, integrating along the boundary by formula
(2.125) in [31], due to θ = n(θ · n) + θt, we get

∫
ΓN

(θ · ∇(gv) + (gv)divΓN θ) ds = JgvKθt|Γ∩ΓN
,

1
2

∫
Γo

(
θ · ∇

[
(u− z)2]+ (u− z)2divΓoθ

)
ds =

1
2
(u− z)2θt|∂Γo . (5.11)

Then the claim follows by combining (5.9) and (5.11).

Based on Theorem 5.1, to get a descent direction for J , it suffices to set

θt = −JgvK on Γ ∩ ΓN , θt = −
1
2
(u− z)2 on ∂Γo,

θ · n = −J∇u · ∇vK on Γ, θ = −
(
∇u∂v

∂n
+∇v ∂u

∂n

)
on ΓD, (5.12)
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such that according to (5.10) we have

d

dt
J(ut,Γt)θ|t=0 = −JgvK2|

Γ∩ΓN
− 1

4
(u− z)4|∂Γo −

∫
Γ

J∇u · ∇vK2ds

−
∫

ΓD

∣∣∣∣∇u∂v∂n +∇v ∂u
∂n

∣∣∣∣2 ds < 0.

This justifies to use θ as a descent direction. In formula (5.12) the orthogonality
of Γ to the boundary of Ω with π

2 -angle is used according to the specific config-
uration (3.1), otherwise we have to prescribe θ · n = 0 on the intersection of the
closure of Γ with the boundary of Ω. It worth noting that our analysis states the
descent property of the following iterative scheme (6.1) in any spatial dimension.
Its convergence as a gradient algorithm is validated by numerical tests in 2D, while
3D implementation is the subject of future work.

6 Identification Algorithm

The algorithm is based on a gradient step procedure, carried out in a main cycle
where the current breaking line Γi is updated by adding the velocity field θ(Γi), so
that

Γ
i+1 = Γ

i + τθ(Γi). (6.1)

This is described in Algorithm 1.

Algorithm 1. (Identification of breaking line)
1: Inputs: M,Mz, ng, ngz,Kmax.
2: Generate a not uniform mesh MT for the true fractured domain ΩT , giving

the observation datum (see (6.2)) by distmesh2d.
3: Initialize Γ = Γ0 and Ω0 = Ω\Γ0

4: while Stopping criterion is not fulfilled do
5: generate mesh Mi for the current broken domain Ωi = Ω \ Γi by

distmesh2d.
6: Compute ui solving state equation (3.2) with Γ = Γi and Ωi = Ω \ Γi.
7: Interpolate MT with Mi on Γo.
8: Compute vi solving (4.2) with Γ = Γi and Ωi = Ω \ Γi.
9: Compute θ(Γi) by Algorithm 2 and solving (5.10) with Γ = Γi, u = ui

and v = vi.
10: for k=1 do Rescale θ(Γi) by 0.5/max(|θ(Γ1)|).
11: end for
12: Let Γi+1 = Γi + τθ(Γi).
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13: end while
end

We generate a non-uniform mesh with discretization number ng and the dis-
cretization M of the breaking line Γ with the MATLAB 2D Mesh generator us-
ing distance functions distmesh2d(ng,M), and distmesh2d(ngz, Mz) for meshing
of the true fractured domain. The corresponding mesh-sizes are h = 1/ng and
hz = 1/ngz.

In the numerical experiments, ng = 20, ngz = 40, the number m + 1 ≥ 2 of
the points x0, x1, . . . , xm is set for M and Mz in Step 1, the time step τ > 0 in
Step 12 will be discussed later on. The starting breaking line Γ0 is the segment
{(x1, 0) : x1 ∈ [0, 2]}. To solve the problem (6.2), (3.2), (4.2) we use linear
finite elements. We follow precisely the implementation described in [4], section
3, paragraph 3.1.1, 3.1.2. The Dirichlet boundary condition is posed by assigning
the function values at Dirichlet boundary nodes. The solutions of the boundary
value problems are computed independently in the upper domain Ω+ and in the
lower domain Ω−.

The observation datum z coincides with the value on the observation part Γo for
the solution of the problem in Ω \ ΓT :

∆z = 0 in Ω
+
T ∪Ω

−
T ,

z = 0 on ΓD,

∇z · n = g on ΓN ,

∇z · n = 0 on Γ
±
T ,

(6.2)

where ΓT is the true breaking line, and g is as above.
The velocity is computed and updated by Algorithm 1 for a fixed number of

iterations Kmax. It is determined through formula (5.12), which depends on the
gradients of the state u and adjoint v. We next describe their computation. The
precise construction of the velocity θ(Γi) in Step 12 will be explained later on for
every numerical test. Let E be the element of the piece-wise linear triangulation
with vertices given by x1 = (x1

1, x
1
2), x

2 = (x2
1, x

2
2), x

3 = (x3
1, x

3
2), and

u(x) =
3∑
i=1

uiφi(x),

where {φi}3
i=1 are the basis function of the triangulation. Then the gradient

∇u(x) =

(
b

c

)
, x ∈ E, (6.3)
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where u(xi) =: ui and

b =

det

 1 x2
1 x1

2

u1 u2 u3

1 x3
1 x3

2


det

 1 x1
2 x1

2

1 x2
1 x2

1

1 x3
1 x3

2


, c =

det

 1 x1
1 x1

2

1 x2
1 x2

2

u1 u2 u3


det

 1 x1
1 x1

2

1 x2
1 x2

1

1 x3
1 x3

2


.

For its proof we refer to [11], paragraph 4. In particular formula (6.3) is used in
Algorithm 2.

Algorithm 2. (Gradient of breaking line)
1: Inputs: u, v,M,M, z, where M = (M+,M−) is the current mesh in Ω+,Ω−.
2: for y ∈M do
3: Find the correspondent points (x+y , x

−
y ) ∈ (M+,M−) that are nearest

to y by the `1 distance. Let X−y = {x−y }y∈M , X+
y = {x+y }y∈M .

4: end for
5: for x−y ∈ X−y do
6: On the mesh M−, find the points z−y,l, z

−
y,r ∈M−∩Γ, that are nearest to

x−y , denoting respectively the one on the left and the one of the right to x−y .
7: Find the elements E−y,l, E

−
y,r such that x−y , z

−
y,l ∈ E−y,l and x−y , z

−
y,r ∈

E−y,r.
8: end for
9: for x+y ∈ X+

y do
10: Repeat the same as in the previous cycle on the mesh M+.
11: end for
12: for y ∈M do
13: Compute ∇u(y),∇v(y) in E±y,l, E

±
y,r by formula (6.3).

14: end for
end

We note that, in Step 6, "left" and "right" can be distinguished by the x1-
coordinate, because of Definition (3.1). If z−y,l (as well z−y,r) and y belong to Γ,
then they constitute two vertexes of precisely one element in M−, the same for
the superscript +. The computation of the gradient in Step 13 will be explained in
detail for each experiment.
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Finally we remark that in our geometric configuration the observation Γo and
the Dirichlet part ΓD of the boundary are fixed. Therefore formula (5.10) reads

d

dt
J(ut,Γt)θ|t=0 = JgvKθt|Γ∩ΓN

+

∫
Γ

J∇u · ∇vK(θ · n)ds. (6.4)

7 Numerical experiments

We carried out three numerical experiments to exploit the performance of our
scheme in diverse situations, for different true breaking lines ΓT , admissible ve-
locities θ and traction forces g.

In all the three experiments the observation part of the boundary is fixed to
Γo = Γ

+
N ∪ Γ

−
N so that Γ̄ ∩ Γo = ∅. We recall the notation x0, . . . , xm for the

piece-wise linear discretization M of Γ, where the velocity is computed.

7.1 Example 1

As a first experiment we consider the following particular case of traction force g
such that the third condition in (3.2) explicitly reads

∇u · n = −1 on Γ
−
N , ∇u · n = 1 on Γ

+
N , ∇u · n = 0 on Γ

0
N . (7.1)

We set the corresponding velocity field as

θ · n = −J∇u · ∇vK, θt = 0 on Γ. (7.2)

Then (6.4) turns into

d

dt
J(ut,Γt)θ|t=0 = −

∫
Γ

J∇u · ∇vK2ds < 0. (7.3)

The velocity in Step 13 is updated according to (7.2) by the following element
wise formula

θi(Γ) = (θ−i − θ
+
i ) i = 0, . . . ,m, (7.4)

where on each finite interval (xi−1, xi), i = 1, . . . ,m we set the piece-wise con-
stant mean

θ±i−1 = θ±i =
1
2

[
(∇u · ∇v)|E±

xi−1,r
+ (∇u · ∇v)|E±

xi,l

]
, (7.5)

and the gradients of u and v are computed by Algorithm 2. The approximation
(7.5) of (7.2) is exact when the meshes M± coincide with M on Γ±. Then we
update the breaking line by a continuous piece-wise linear curve obtained from the



Inverse problem of breaking line identification 15

mean value at xi, i = 1, . . . ,m − 1, where differences between θ±i on (xi−1, xi)
and θ±i on (xi, xi−1) happen.

First we remark that by the third equality of (7.1) we have

0 = g = ∇u · n = ∇u · (1, 0) = ∂u

∂x1
on Γ

0
N (7.6)

and by the fourth of (3.2) we have

0 = ∇u · n± = ∇u · (0,±1) =
∂u

∂x2
on Γ

±.

By the previous statement and the first of (7.2) we get the velocity at the right tip

θ · n = 0 on Γ̄ ∩ ΓN . (7.7)

Therefore, in this configuration, the tip of a breaking line initialization Γ0 cannot
be moved by iterations of θ along the Neumann boundary.

The first experiment was carried out for the piece-wise linear ΓT shown in Fig.
1 (a), defined as ΓT = [0, 0.25; 0.5, 0.25; 1.5, 0; 2, 0]. The experiment was carried
out with m = 25 points in the discretization of M, and time step τ = 2h. In Fig 1
(b) the true solution is shown, i.e. z the solution to (6.2) for ΓT as in Fig. 1 (a). In
Fig. 2 the current breaking line Γi is represented corresponding to the initialization
Γ0 and selected iterations i = 0, 4, 10, 15. The corresponding solution ui and the
adjoint vi recovered by Algorithm 1 are shown in Fig. 3 and Fig. 4, respectively.
In Fig. 1 (b) we note that the solution z is symmetric with respect to the initial
breaking line Γ0; on the contrary the adjoint vi shows an asymmetric behaviour,
due to the influence of the observation datum z in the Neumann boundary condi-
tion on Γo (see (4.2)). In Fig. 1, Fig. 3, and Fig. 4 we see also that the Dirichlet
and Neumann boundary conditions (plotted in cyan and yellow) are attained, as
expected.

In Fig. 5, Fig. 6, Fig. 7, and Fig. 8, we show the first and second component
of the gradient of ui (vi, respectively). In Fig. 5 and Fig. 7 we note again that
the Neumann boundary conditions (plotted in cyan and yellow) are attained on Γo,
as expected. Moreover, the first component of the gradient of ui and vi is zero,
according to (7.6).

In Fig. 9 we show the normalized graphic of θ on the current breaking line
represented in Fig. 2. The violet and blue coloured elements are the elements
where the velocity is computed in the upper and lower domains, according to (7.5).
Note that in Γi ∩ ΓN the velocity is always zero, according to (7.7).

The iterations results are gathered in Fig. 10. From Fig. 10 (a) we can see that
the true breaking line is recovered quite well. Moreover in plot 10 (b) we show
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the `2-distance Err between the recovered breaking line and the true one, and, in
plot (c), the values of the objective functional J in (3.3) along the iterates. While
Err decreases with small oscillations (local minima), J decreases monotonically
to zero, as expected, and their values reached after Kmax = 20 iterations are
Errmin = 0.02, and Jmin = 0.01, respectively.

We mention that the same kind of results were obtained for other ΓT tested, and
the right tip Γi ∩ΓN has not moved during the iterations. Otherwise, if Γi ∩ΓN 6=
(2, 0), then the velocity in (7.2) cannot follow it, as expressed in (7.7). A remedy
of this situation is to account for g 6= 0 at Γi ∩ ΓN , according to (7.6).

In the following experiments, we focus on the case in which the right tip on the
Neumann boundary will be moved during the iterations. Since by (7.7) we cannot
expect to be able to recover a breaking line with a moving right tip, as explained
before, we change the traction force g.

(a) (b)

Figure 1. First experiment. (a): true breaking line ΓT ; (b): true solution z.

Figure 2. First experiment. Elements in the current fracture Γi where the velocity is
computed, for i = 0, 4, 10, 15 (from left to right).
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(a) (b) (c) (d)

Figure 3. First experiment. Solution ui, i = 0, 4, 10, 15 (from left to right).

(a) (b) (c) (d)

Figure 4. First experiment. Adjoint vi, i = 0, 4, 10, 15 (from left to right).

Figure 5. First experiment. Gradient of ui, first component, in: Ω0, Ω4, Ω10, Ω15

(from left to right).

7.2 Example 2

As a second experiment we consider the line segment ΓT = [0, 0.5; 2,−0.5] and
M consisting of two end points (that is, m = 1) and the traction force g so that

∇u · n = 0 on Γ
−
N , ∇u · n = 0 on Γ

+
N , ∇u · n = 1 on Γ

0
N .
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Figure 6. First experiment. Gradient of ui, second component, in: Ω0, Ω4, Ω10, Ω15

(from left to right).

Figure 7. First experiment. Gradient of vi, first component, in: Ω0, Ω4, Ω10, Ω15

(from left to right).

Figure 8. First experiment. Gradient of vi, second component, in: Ω0, Ω4, Ω10, Ω15

(from left to right).

Figure 9. First experiment. Velocity θi, for i = 0, 4, 10, 15 (from left to right).
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(a) (b) (c)

Figure 10. First experiment. From left to right: (a) true breaking line (red line),
approximated breaking line (blue dotted line), final recovered breaking line (violet
line). (b) `2-distance error between the true breaking line and the recovered one.
Errmin is its minimal value. (c) Value of the functional J in (3.3) along the iterates.
Jmin is its minimal value.

Since g does not vanish on Γ0
N , the first term in (6.4) should be negative. Therefore,

the velocity in (7.2) is refined according to

θ · n = −J∇u · ∇vK, θt = 0 on Γ, θt = −wJgvK on Γ ∩ ΓN , (7.8)

where the influence of the value θt at the right tip was weighted by a factor w > 0.
The purpose of this experiment was to determine numerically the weight w at
Γ ∩ ΓN .

Then, the velocity in Step 13 of Algorithm 2 on intervals (xi−1, xi), i = 1, . . . ,m
is updated by (7.8), where now θ is defined element-wise as

θi(Γ) = θ−i − θ
+
i for i = 0, . . . ,m− 1,

θm(Γ) =
1
2
[θ−m − θ+m + w(v−(xm)− v+(xm))], (7.9)

where θ±i are defined in (7.5).
Diverse values of w were tested. In Fig. 11 we report the best result that we got

in the case of w = 1/
√
h. As we can see from Fig. 11 (a), the breaking line is

recovered almost perfectly with an Errmin of the order of 10−4 after Kmax = 50
iterations with time step τ = 7h.

Note that differently from the first experiment, both the left and right tips ΓT

are moved during the iteration. However, the geometry of ΓT shown in Fig. 11 is
straight, defined by only two points. This is mainly due to the observed fact that
the local basis in which the velocity is searched did not perform well to recover
shape, since the right tip was moving along ΓN . To improve this situation we
carried out a third experiment where we used a global basis for the velocity as
described in the next subsection.
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(a) (b) (c)

Figure 11. Second experiment. From left to right: (a) true breaking line (red line),
approximated breaking line (blue dotted line), final recovered breaking line (violet
line). (b) `2-distance error between the true breaking line and the recovered one.
Errmin is its minimal value. (c) Value of the functional J in (3.3) along the iterates.
Jmin is its minimal value.

7.3 Example 3

In the third experiment, differently from the first and second one, we use a global
trigonometric basis and choose for the normal velocity at Γ the ansatz

θ · n =
2m∑
k=0

ckLk(x),

with unknown coefficients ck, k = 0, . . . , 2m, and the trigonometric basis

Lk(x) = cos(kx), k = 0, . . . ,m, Lk(x) = sin(kx), k = m+ 1, . . . , 2m.
(7.10)

We insert the ansatz in the shape derivative and consider

d

dt
J(ut,Γt)θ|t=0 =

∫
Γ

(θ · n)J∇u · ∇vKds

=

2m∑
k=0

ck

{
m∑
i=1

J∇u · ∇vK|(xi−1,xi)Ik,i

}
, (7.11)

where we denote for k = 0, . . . , 2m and i = 1, . . . ,m the entries

Ik,i :=
∫ xi

xi−1
Lk(x)ds.

We set for k = 0, . . . , 2m

ck = −
m∑
i=1

J∇u · ∇vK|(xi−1,xi)Ik,i, (7.12)
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and the mean value interpolation according to (7.5) and (7.8):

J∇u · ∇vK|(xi−1,xi) = wJgvK|
Γ∩ΓN

δ[xi−1,xi]∩ΓN

+
1
2

[
(∇u · ∇v)|E+

xi−1,r
− (∇u · ∇v)|E−

xi−1,r
+ (∇u · ∇v)|E+

xi,l
− (∇u · ∇v)|E−

xi,l

]
,

(7.13)

with the indicator function δ[xi−1,xi]∩ΓN
= 1 for i = m and zero otherwise. From

(7.11) and (7.12) we get a descent direction since

d

dt
J(ut,Γt)θ|t=0 = −

m∑
i=1

c2
i < 0.

In order to compute the gradients in (7.13), we use Algorithm 2.
The first test was carried out for the piece-wise linear ΓT showed in Fig. 12 (a),

defined as ΓT = [0, 0.25; 0.5, 0.25; 1.5,−0.25; 2,−0.25], and the corresponding
solution z depicted in plot (b). We remark that in this case the cosine basis is
sufficient for the geometry tested. In Algorithm 1 we update Γi+1 in Step 12 with

θ(Γi) =
m∑
k=0

ckLk(x).

In Fig. 13 and 14, we see the evolution of the breaking line and the velocity,
respectively, at the selected steps i = 4, 7, 9, 11. Note that the left and right tips are
almost perfectly identified within the first 7 iterations. Subsequently the velocity
decreases almost to zero in the right tip, corresponding to very small changes in the
breaking line identification. In Fig. 14 we see how the velocity changes its shape
during the iterations. As in Fig. 2, each group of 4 coloured elements corresponds
to one of the m = 4 points in which the velocity is computed. The violet and
yellow are the elements in the upper domain, the blue and green are the ones in the
lower domain. In Fig. 15 we report the result we got for m = 4, τ = 4h. As we
can see from Fig. 15 (a), both tips of the breaking line are perfectly recovered (as
expected) in just 12 iterations. Moreover, the shape of the breaking line is better
recovered, compared to the result we get with the same ΓT , but with a local basis
for the velocity (as used in the previous two experiments). The Errmin is of the
order of 10−2 and both the Err and the value of the functional J are decreasing
with the iterations, see Figure 16.

As second test case, we consider ΓT = [0, 0; 0.5, 0; 1, 0; 1.5,−0.25; 2 − 0.25],
with moving right tip and fixed left one, where the left tip at the Dirichlet boundary
is not moved during the iteration. In this case, to recover the breaking line, we used
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(a) (b)

Figure 12. Third experiment. (a): true breaking line ΓT ; (b): true solution z.
.

Figure 13. Third experiment. Elements in the current fracture Γi where the velocity
is computed, for i = 4, 7, 9, 11 (from left to right).

.

Figure 14. Third experiment. Velocity θi, for i = 4, 7, 9, 11 (from left to right).
.

the sine and cosine trigonometric basis defined in (7.10). As we can see from Fig.
16 the breaking line is very well recovered within 150 iterations.
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(a) (b) (c)

Figure 15. Third experiment, second test case. From left to right: (a) true breaking
line (red line), approximated breaking line (blue dotted line), final recovered break-
ing line (violet line). (b) `2-distance error between the true breaking line and the
recovered one. Errmin is its minimal value. (c) Value of the functional J in (3.3)
along the iterates. Jmin is its minimal value.

.

(a) (b) (c)

Figure 16. Third experiment. From left to right: (a) true breaking line (red line),
approximated breaking line (blue dotted line), final recovered breaking line (violet
line). (b) `2-distance error between the true breaking line and the recovered one.
Errmin is its minimal value. (c) Value of the functional J in (3.3) along the iterates.
Jmin is its minimal value.

.
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