The generalized Poisson–Nernst–Planck system with nonlinear interface conditions

Anna V. Zubkova

Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria anna.zubkova@uni-graz.at

1 Overwiew

Our modeling deals with the following topics:

- Discontinuous solution in a two-phase medium
- Nonlinear reactions at the phase interface
- Taking pressure into account (as a consequence of the Navier–Stokes equations)
- Volume balance and positivity of concentrations

It leads well-posedness analysis with respect to the following issues:

- Generalized formulation coupled with dual entropy variables and constraints
- Existence theorem based on the reduced formulation without constraints
- A priori energy and entropy estimates
- Weak maximum principle
- Uniqueness in a special case
- Lyapunov stability

This system is motivated by applications to modeling of electro–kinetic phenomena in bio- and electro–chemistry. Our specific interest concerns modeling of lithium ion batteries.

2 Formulation of the problem

2.1 Geometry

The two-phase domain $\Omega = Q \cup \omega \cup \partial \omega$ in \mathbb{R}^d consists of two disjoint parts, which are Q pore phase and ω solid phase with the interface $\partial \omega$. We introduce the notation of a jump over the interface: $\|\cdot\| = \cdot|_{\partial \omega^+} - \cdot|_{\partial \omega^-}$.

2.2 The generalized Poisson-Nernst-Planck system

For charge species $i=1,\ldots,n$ in $(0,T)\times(Q\cup\omega)$ we state the following governing equations:

(1a) the Fick's law of diffusion:
$$\frac{\partial c_i}{\partial t} - \text{div} J_i = 0$$

(1b) with diffusion fluxes:
$$J_i = \sum_{j=1}^n c_j (\nabla \mu_j)^\top m_i D^{ij};$$

quasi-Fermi electro-chemical potentials:

(1c)
$$\mu_i = k_B \Theta \ln(\beta_i c_i) + \mathbf{1}_Q \frac{1}{N_A} \left(\frac{1}{C} p + z_i \varphi\right);$$

(1d) the force balance in pore
$$Q$$
: $\nabla p = -\left(\sum_{k=1}^{n} z_k c_k\right) \nabla \varphi$;

(1e) the Gauss's flux law:
$$-\operatorname{div}((\nabla \varphi)^{\top} A) = \mathbf{1}_Q \sum_{k=1}^n z_k c_k$$
.

Here the following notations were used: c_i are concentrations of charged species with the charge numbers z_i , respectively, and the summary concentration C, J_i are diffusion fluxes, D^{ij} are diffusivity matrices in $\mathbb{R}^{d\times d}$, φ is the electrostatic potential, μ_i are quasi–Fermi (electrochemical) potentials, A is the electric permittivity, spd–matrix in $\mathbb{R}^{d\times d}$, p is pressure, g_i are boundary fluxes of species, g is the electric flux through boundary, $\mathbf{1}_Q$ is the indicator function of the domain Q, $i, j = 1, \ldots, n$.

The system (1) is supplemented by the following boundary and initial conditions.

(2) Dirichlet conditions: $c_i = c_i^D$, i = 1, ..., n, and $\varphi = \varphi^D$ on $(0, T) \times \partial \Omega$. Interface conditions:

(3a)
$$[J_i]\nu = 0, \quad -J_i\nu = g_i(\hat{\mathbf{c}}, \hat{\varphi}) \quad \text{on } (0, T) \times \partial \omega;$$

(3b)
$$[\![(\nabla \varphi)^\top A]\!] \nu = 0, \quad -(\nabla \varphi)^\top A \nu + \alpha [\![\varphi]\!] = g \quad \text{on } (0, T) \times \partial \omega,$$

where $g_i(\hat{\mathbf{c}}, \hat{\varphi})$ can depend nonlinearly on $(\hat{\mathbf{c}}, \hat{\varphi}) = (\mathbf{c}|_{\partial \omega^+}, \mathbf{c}|_{\partial \omega^-}, \varphi|_{\partial \omega^+}, \varphi|_{\partial \omega^-})$.

(4) Initial conditions:
$$c_i = c_i^{in}$$
 on $Q \cup \omega$.

For physical consistency, field variables should satisfy the thermodynamic properties:

(5a) Positivity of concentrations:
$$c_i > 0$$
, $i = 1, ..., n$, in $(0, T) \times (Q \cup \omega)$;

(5b) Volume balance:
$$\sum_{i=1}^{n} c_i = C \text{ in } (0,T) \times (Q \cup \omega);$$

(5c) Flux balance:
$$\sum_{i=1}^{n} J_i = 0 \text{ in } (0,T) \times (Q \cup \omega).$$

The property (5c) follows from volume balance (5b) and diffusivity property (9). The initial data \mathbf{c}^{in} and the boundary data \mathbf{c}^{D} satisfy positivity and the volume balance in the manner of (5a) and (5b) as well as the compatibility condition $c_i^D(0,\cdot) = c_i^{in}$ in $Q \cup \omega$ for $i = 1, \ldots, n$.

MURPHYS-HSFS 2016 3

2.3 Assumptions

Nonlinear boundary data satisfy the following assumptions:

Growth conditions with $\gamma_1^i \ge 0$ and $\gamma_2^i \ge 0$ for $i = 1, \dots, n$:

(6)
$$\int_{\partial \omega} |g_i(\hat{\mathbf{c}}, \hat{\varphi})|^2 dS_x \leqslant \gamma_1^i + \gamma_2^i ||\varphi||_{L^2(0, T; H^1(Q) \times H^1(\omega))}^2;$$

(7) Mass balance:
$$\sum_{i=1}^{n} g_i(\hat{\mathbf{c}}, \hat{\varphi}) = 0$$
 on $(0, T) \times \partial \omega$;

(8) Positive production rate:
$$g_i(\hat{\mathbf{c}}, \hat{\varphi}) \llbracket c_i^- \rrbracket = 0$$
 on $(0, T) \times \partial \omega$, $i = 1, \ldots, n$,

where $c_i^+ := \max\{0, c_i\}, c_i^- := -\min\{0, c_i\}$ for i = 1, ..., n.

We assume that the coefficient matrices A, $m_i D^{ij}$, and D are symmetric and positive definite (spd). The diffusivity matrices $m_i D^{ij}$ satisfy

(9) either the weak assumption:
$$\sum_{i=1}^{n} m_i D^{ij} = D, \quad j = 1, \dots, n;$$

(10) or the strong assumption:
$$m_i D^{ij} = \delta_{ij} D, \quad i, j = 1, \dots, n.$$

2.4 Weak formulation of the problem

Find discontinuous functions c_1, \ldots, c_n , and φ such that $c_i \in L^{\infty}(0, T; L^2(Q) \times L^2(\omega)) \cap L^2(0, T; H^1(Q) \times H^1(\omega))$, $\varphi \in L^{\infty}(0, T; H^1(Q) \times H^1(\omega))$, $c_i \nabla \varphi_i \in L^2((0, T) \times (Q \cup \omega))$ for $i = 1, \ldots, n$, which satisfy the Dirichlet boundary conditions, the initial conditions, the volume balance and positivity, as well as fulfill the following variational equations:

(11a)
$$\int_{0}^{T} \int_{Q \cup \omega} \left\{ \frac{\partial c_{i}}{\partial t} \bar{c}_{i} + \sum_{j=1}^{n} \left[k_{B} \Theta \nabla c_{j} + \mathbf{1}_{Q} \Upsilon_{j}(\mathbf{c}) \nabla \varphi \right]^{\top} m_{i} D^{ij} \nabla \bar{c}_{i} \right\} dx dt$$

$$= \int_{0}^{T} \int_{\partial \omega} g_{i}(\hat{\mathbf{c}}, \hat{\varphi}) \llbracket \bar{c}_{i} \rrbracket dS_{x} dt,$$

(11b)
$$\int_{Q \cup \omega} (\nabla \varphi^{\top} A \nabla \bar{\varphi} - \mathbf{1}_{Q} \Upsilon(\mathbf{c}) \bar{\varphi}) dx + \int_{\partial \omega} \alpha \llbracket \varphi \rrbracket \llbracket \bar{\varphi} \rrbracket dS_{x} = \int_{\partial \omega} g \llbracket \bar{\varphi} \rrbracket dS_{x},$$

for all test functions $\bar{c}_i \in H^1(0,T;L^2(Q) \times L^2(\omega)) \cap L^2(0,T;H^1(Q) \times H^1(\omega))$ and $\bar{\varphi} \in H^1(Q) \times H^1(\omega)$ such that $\bar{c}_i = 0$ on $(0,T) \times \partial \Omega$ and $\bar{\varphi} = 0$ on $\partial \Omega$, where $\Upsilon_j(\mathbf{c}) := \frac{1}{N_A} c_j \left(z_j - \frac{1}{C} \Upsilon(\mathbf{c}) \right)$ and $\Upsilon(\mathbf{c}) := \sum_{k=1}^n z_k c_k$.

3 Well-posedness analysis

The reduced formulation appears after excluding μ_i and p and reducing the constraints (5a)–(5b), where nonlinear terms $\Upsilon(\mathbf{c})$ and $\Upsilon_j(\mathbf{c})$ are replaced by $\Gamma(\mathbf{c}^+) := C \frac{\sum_{k=1}^n z_k c_k^+}{\sum_{k=1}^n c_k^+}$

and
$$\Gamma_j(\mathbf{c}^+) := \frac{C}{N_A} \frac{c_j^+}{\sum_{k=1}^n c_k^+} \left(z_j - \frac{\sum_{k=1}^n z_k c_k^+}{\sum_{k=1}^n c_k^+}\right)$$
. The terms $\Gamma_j(\mathbf{c}^+)$ are uniformly bounded:

 $0 \leqslant \Gamma(c_j^+) \leqslant \frac{CZ}{N_A}$, where $Z = \sum_{i=1}^n |z_i|$, which allows to use the Schauder-Tikhonov fixed

point theorem. If constraints (5a) and (5b) hold, then $\Gamma_j(\mathbf{c}^+) = \Upsilon_j(\mathbf{c})$ and $\Gamma(\mathbf{c}^+) = \Upsilon(\mathbf{c})$ and the original and the reduced formulations coincide.

Theorem 1 (Existence of a weak solution of the reduced problem) Let the growth conditions for reactions on the boundary (6) hold and let the coefficient matrices A and $m_i D^{ij}$ be spd-matrices. Then there exists a weak solution of the reduced problem.

Lemma 2 (Volume balance) Under assumptions on the boundary (7) and the weak assumption of the diffusivity matrices (9) the volume constraint $\sum_{i=1}^{n} c_i = C$ is satisfied a.e. on $(0,T) \times (Q \cup \omega)$.

Lemma 3 (Weak maximum principle) Under assumptions on the data (8) and (10) we have the positive solution $c_i \ge 0$ a.e. on $(0,T) \times (Q \cup \omega)$ for $i = 1, \ldots, n$.

Lemma 4 (Equivalence of formulations) Under assumptions made in Lemmas 2 and 3 the complete and the reduced problems are equivalent.

Theorem 5 (Well–posedness of generalized Poisson–Nernst–Planck system) *Let assumptions* (6)–(8) *on the nonlinear boundary terms hold.*

- (1) If the weak assumption on diffusivity matrices holds, then there exists a weak solution of the problem. By continuity, $\mathbf{c} > 0$ locally for small t > 0.
- (2) If additionally the strong assumption on diffusivity matrices holds, then $\mathbf{c} \geqslant 0$ globally for T > 0.

A weak solution satisfies the a priori estimates

(12)
$$||\varphi||_{L^{\infty}(0,T;H^{1}(Q)\times H^{1}(\omega))}^{2} \leqslant K_{\varphi},$$

(13)
$$||c||_{L^{\infty}(0,T;L^{2}(Q)\times L^{2}(\omega))}^{2} + ||c||_{L^{2}(0,T;H^{1}(Q)\times H^{1}(\omega))}^{2} \leqslant K_{c} + \gamma_{c}K_{\varphi}.$$

Under additional assumption on the regularity of the electrostatic potential φ as well as injectivity and continuity of the nonlinear boundary fluxes $g_i(\hat{\mathbf{c}}, \hat{\varphi})$, a weak solution of the generalized PNP problem is unique.

We define the entropy and the function of dissipation as follows:

$$S(t) := -k_B N_A \sum_{i=1}^n \int_{Q \cup \omega} c_i \ln(\beta_i c_i) \, dx \text{ and } \mathcal{D}(t) := -\frac{dS}{dt} = k_B N_A \sum_{i=1}^n \int_{Q \cup \omega} \frac{\partial c_i}{\partial t} \ln(\beta_i c_i) \, dx.$$

The dissipation inequality $\mathcal{D} \geq 0$ can be assured under additional assumptions $m_i D^{ij} = \underline{d}\delta_{ij}I$, $A = \underline{a}I$, $\sum_{i=1}^n z_i c_i^D = 0$ and $c_i^D = 1/\beta_i$ on $\partial\Omega$ and with a special choice of the boundary functions g and $g_i(\hat{\mathbf{c}}, \hat{\varphi})$.

References

- [1] W. Dreyer, C. Guhlke and R. Müller, Modeling of electrochemical double layers in thermodynamic non-equilibrium, Phys. Chem. Chem. Phys. 17 (2015), 27176–27194.
- [2] J. Fuhrmann, Comparison and numerical treatment of generalized Nernst-Planck Models, Comput. Phys. Commun. 196 (2015), 166–178.
- [3] T. Roubíček, Incompressible ionized non-Newtonean fluid mixtures, SIAM J. Math. Anal. 39 (2007), 863–890.
- [4] K. Fellner, V. Kovtunenko, A discontinuous Poisson–Boltzmann equation with interfacial transfer: homogenisation and residual error estimate, Appl. Anal. DOI: 10.1080/00036811.2015.1105962.