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1 Overwiew

Our modeling deals with the following topics:

• Discontinuous solution in a two-phase medium
• Nonlinear reactions at the phase interface
• Taking pressure into account (as a consequence of the Navier–Stokes equations)
• Volume balance and positivity of concentrations

It leads well-posedness analysis with respect to the following issues:

• Generalized formulation coupled with dual entropy variables and constraints
• Existence theorem based on the reduced formulation without constraints
• A priori energy and entropy estimates
• Weak maximum principle
• Uniqueness in a special case
• Lyapunov stability

This system is motivated by applications to modeling of electro–kinetic phenomena
in bio- and electro–chemistry. Our specific interest concerns modeling of lithium ion
batteries.

2 Formulation of the problem

2.1 Geometry

The two-phase domain Ω = Q ∪ ω ∪ ∂ω in Rd consists of two disjoint parts, which are
Q pore phase and ω solid phase with the interface ∂ω. We introduce the notation of a
jump over the interface: [[ · ]] = · |∂ω+ − · |∂ω− .

-

Q

+

Research Perspectives CRM Barcelona, Summer 2016, vol. 10, in Trends in Mathematics

Springer-Birkhäuser, Basel
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2 The generalized Poisson–Nernst–Planck system with nonlinear interface conditions

2.2 The generalized Poisson–Nernst–Planck system

For charge species i = 1, . . . , n in (0, T ) × (Q ∪ ω) we state the following governing
equations:

the Fick’s law of diffusion:
∂ci
∂t
− divJi = 0(1a)

with diffusion fluxes: Ji =
n∑

j=1

cj(∇µj)>miD
ij ;(1b)

quasi–Fermi electro-chemical potentials:

µi = kBΘln(βici) + 1Q
1

NA

( 1

C
p+ ziϕ

)
;(1c)

the force balance in pore Q : ∇p = −
( n∑
k=1

zkck

)
∇ϕ;(1d)

the Gauss’s flux law: − div((∇ϕ)>A) = 1Q

n∑
k=1

zkck.(1e)

Here the following notations were used: ci are concentrations of charged species with
the charge numbers zi, respectively, and the summary concentration C, Ji are diffusion
fluxes, Dij are diffusivity matrices in Rd×d, ϕ is the electrostatic potential, µi are quasi–
Fermi (electrochemical) potentials, A is the electric permittivity, spd–matrix in Rd×d, p
is pressure, gi are boundary fluxes of species, g is the electric flux through boundary, 1Q
is the indicator function of the domain Q, i, j = 1, . . . , n.

The system (1) is supplemented by the following boundary and initial conditions.

(2) Dirichlet conditions: ci = cDi , i = 1, . . . , n, and ϕ = ϕD on (0, T )× ∂Ω.

Interface conditions:

(3a) [[Ji]]ν = 0, −Jiν = gi(ĉ, ϕ̂) on (0, T )× ∂ω;

(3b) [[(∇ϕ)>A]]ν = 0, −(∇ϕ)>Aν + α[[ϕ]] = g on (0, T )× ∂ω,

where gi(ĉ, ϕ̂) can depend nonlinearly on (ĉ, ϕ̂) = (c|∂ω+ , c|∂ω− , ϕ|∂ω+ , ϕ|∂ω−).

(4) Initial conditions: ci = cini on Q ∪ ω.

For physical consistency, field variables should satisfy the thermodynamic properties:

Positivity of concentrations: ci > 0, i = 1, . . . , n, in (0, T )× (Q ∪ ω);(5a)

Volume balance:

n∑
i=1

ci = C in (0, T )× (Q ∪ ω);(5b)

Flux balance:

n∑
i=1

Ji = 0 in (0, T )× (Q ∪ ω).(5c)

The property (5c) follows from volume balance (5b) and diffusivity property (9). The
initial data cin and the boundary data cD satisfy positivity and the volume balance in
the manner of (5a) and (5b) as well as the compatibility condition cDi (0, ·) = cini in Q∪ω
for i = 1, . . . , n.
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2.3 Assumptions

Nonlinear boundary data satisfy the following assumptions:

Growth conditions with γi1 > 0 and γi2 > 0 for i = 1, . . . , n :∫
∂ω
|gi(ĉ, ϕ̂)|2 dSx 6 γi1 + γi2||ϕ||2L2(0,T ;H1(Q)×H1(ω));(6)

Mass balance:
n∑

i=1

gi(ĉ, ϕ̂) = 0 on (0, T )× ∂ω;(7)

Positive production rate: gi(ĉ, ϕ̂)[[c−i ]] = 0 on (0, T )× ∂ω, i = 1, . . . , n,(8)

where c+i := max{0, ci}, c−i := −min{0, ci} for i = 1, . . . , n.
We assume that the coefficient matrices A, miD

ij , and D are symmetric and positive
definite (spd). The diffusivity matrices miD

ij satisfy

either the weak assumption:

n∑
i=1

miD
ij = D, j = 1, . . . , n;(9)

or the strong assumption: miD
ij = δijD, i, j = 1, . . . , n.(10)

2.4 Weak formulation of the problem

Find discontinuous functions c1, . . . , cn, and ϕ such that ci ∈ L∞(0, T ;L2(Q)×L2(ω))∩
L2(0, T ;H1(Q) ×H1(ω)), ϕ ∈ L∞(0, T ;H1(Q) ×H1(ω)), ci∇ϕi ∈ L2((0, T ) × (Q ∪ ω))
for i = 1, . . . , n, which satisfy the Dirichlet boundary conditions, the initial conditions,
the volume balance and positivity, as well as fulfill the following variational equations:

(11a)

∫ T

0

∫
Q∪ω

{∂ci
∂t
c̄i +

n∑
j=1

[
kBΘ∇cj + 1QΥj(c)∇ϕ

]>
miD

ij∇c̄i
}
dx dt

=

∫ T

0

∫
∂ω
gi(ĉ, ϕ̂)[[c̄i]] dSx dt,

(11b)

∫
Q∪ω

(∇ϕ>A∇ϕ̄− 1QΥ(c)ϕ̄) dx+

∫
∂ω
α[[ϕ]][[ϕ̄]] dSx =

∫
∂ω
g[[ϕ̄]] dSx,

for all test functions c̄i ∈ H1(0, T ;L2(Q) × L2(ω)) ∩ L2(0, T ;H1(Q) ×H1(ω)) and ϕ̄ ∈
H1(Q) × H1(ω) such that c̄i = 0 on (0, T ) × ∂Ω and ϕ̄ = 0 on ∂Ω, where Υj(c) :=

1

NA
cj

(
zj −

1

C
Υ(c)

)
and Υ(c) :=

∑n
k=1 zkck.

3 Well-posedness analysis

The reduced formulation appears after excluding µi and p and reducing the constraints

(5a)–(5b), where nonlinear terms Υ(c) and Υj(c) are replaced by Γ(c+) := C

∑n
k=1 zkc

+
k∑n

k=1 c
+
k

and Γj(c
+) :=

C

NA

c+j∑n
k=1 c

+
k

(
zj−

∑n
k=1 zkc

+
k∑n

k=1 c
+
k

)
. The terms Γj(c

+) are uniformly bounded:
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0 6 Γ(c+j ) 6
CZ

NA
, where Z =

n∑
i=1

|zi|, which allows to use the Schauder–Tikhonov fixed

point theorem. If constraints (5a) and (5b) hold, then Γj(c
+) = Υj(c) and Γ(c+) = Υ(c)

and the original and the reduced formulations coincide.

Theorem 1 (Existence of a weak solution of the reduced problem) Let the growth condi-
tions for reactions on the boundary (6) hold and let the coefficient matrices A and miD

ij

be spd-matrices. Then there exists a weak solution of the reduced problem.

Lemma 2 (Volume balance) Under assumptions on the boundary (7) and the weak
assumption of the diffusivity matrices (9) the volume constraint

∑n
i=1 ci = C is satisfied

a.e. on (0, T )× (Q ∪ ω).

Lemma 3 (Weak maximum principle) Under assumptions on the data (8) and (10) we
have the positive solution ci > 0 a.e. on (0, T )× (Q ∪ ω) for i = 1, . . . , n.

Lemma 4 (Equivalence of formulations) Under assumptions made in Lemmas 2 and 3
the complete and the reduced problems are equivalent.

Theorem 5 (Well–posedness of generalized Poisson–Nernst–Planck system) Let assump-
tions (6)–(8) on the nonlinear boundary terms hold.

(1) If the weak assumption on diffusivity matrices holds, then there exists a weak
solution of the problem. By continuity, c > 0 locally for small t > 0.

(2) If additionally the strong assumption on diffusivity matrices holds, then c > 0
globally for T > 0.

A weak solution satisfies the a priori estimates

(12) ||ϕ||2L∞(0,T ;H1(Q)×H1(ω)) 6 Kϕ,

(13) ||c||2L∞(0,T ;L2(Q)×L2(ω)) + ||c||2L2(0,T ;H1(Q)×H1(ω)) 6 Kc + γcKϕ.

Under additional assumption on the regularity of the electrostatic potential ϕ as well
as injectivity and continuity of the nonlinear boundary fluxes gi(ĉ, ϕ̂), a weak solution
of the generalized PNP problem is unique.

We define the entropy and the function of dissipation as follows:

S(t) := −kBNA

n∑
i=1

∫
Q∪ω

ci ln(βici) dx andD(t) := −dS
dt

= kBNA

n∑
i=1

∫
Q∪ω

∂ci
∂t

ln(βici) dx.

The dissipation inequality D > 0 can be assured under additional assumptions miD
ij =

dδijI, A = aI,
∑n

i=1 zic
D
i = 0 and cDi = 1/βi on ∂Ω and with a special choice of the

boundary functions g and gi(ĉ, ϕ̂).
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