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1 Overwiew

Our modeling deals with the following topics:

Discontinuous solution in a two-phase medium

Nonlinear reactions at the phase interface

Taking pressure into account (as a consequence of the Navier—Stokes equations)
Volume balance and positivity of concentrations

It leads well-posedness analysis with respect to the following issues:

Generalized formulation coupled with dual entropy variables and constraints
Existence theorem based on the reduced formulation without constraints

A priori energy and entropy estimates

Weak maximum principle

Uniqueness in a special case

Lyapunov stability

This system is motivated by applications to modeling of electro—kinetic phenomena
in bio- and electro—chemistry. Our specific interest concerns modeling of lithium ion
batteries.

2 Formulation of the problem

2.1 Geometry

The two-phase domain Q = Q Uw U dw in R? consists of two disjoint parts, which are
Q@ pore phase and w solid phase with the interface dw. We introduce the notation of a
jump over the interface: [-] = - |gu+ — - |ow—-
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2 The generalized Poisson—Nernst—Planck system with nonlinear interface conditions

2.2 The generalized Poisson—Nernst—Planck system

For charge species ¢ = 1,...,n in (0,7) x (Q U w) we state the following governing
equations:
dc:
(1a) the Fick’s law of diffusion: a—ctl —div/J; =0
n
(1b) with diffusion fluxes: J; = Z ¢;j(Vj) "'m;D";
j=1
quasi—Fermi electro-chemical potentials:
1 /1
(1) pi = kpO(Bic;) + 1QN7A (51) + ZN?);

(1d) the force balance in pore Q : Vp=— (Z zkck) Ve,
k=1

(le) the Gauss’s flux law:  — div((Ve)' 4) = 1¢ Z 2k C.-
k=1

Here the following notations were used: ¢; are concentrations of charged species with
the charge numbers z;, respectively, and the summary concentration C', J; are diffusion
fluxes, D% are diffusivity matrices in R**?, » is the electrostatic potential, p; are quasi-
Fermi (electrochemical) potentials, A is the electric permittivity, spd-matrix in R4*?, p
is pressure, g; are boundary fluxes of species, g is the electric flux through boundary, 1¢
is the indicator function of the domain @, 7,7 =1,...,n.

The system (1) is supplemented by the following boundary and initial conditions.
(2) Dirichlet conditions: ¢ =c¢”, i=1,...,n, and @ =¢” on (0,T) x Q.

Interface conditions:

(3a) [Jilv =0, —Jiv=gi(e,$) on (0,T) x Ow;

(3b) [(Vo) Al =0, — (Vo) Av+afe] =g on (0,T) x dw,
where g;(¢, ) can depend nonlinearly on (€, ) = (¢|gu+; €|ow—» Plowrs Plaw-)-
(4) Initial conditions: ci=c" on QUuw.
For physical consistency, field variables should satisfy the thermodynamic properties:

(5a) Positivity of concentrations: ¢; >0, i=1,...,n, in (0,7) x (Q Uw);

(5Db) Volume balance: Zci =C in(0,7) x (QUuw);
i=1

(5¢) Flux balance: Z Ji=0 in (0,7) x (QUuw).
i=1

The property (5c) follows from volume balance (5b) and diffusivity property (9). The
initial data ¢ and the boundary data c? satisfy positivity and the volume balance in
the manner of (5a) and (5b) as well as the compatibility condition ¢”(0,-) = ¢ in QUw
fori=1,...,n.
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2.3 Assumptions
Nonlinear boundary data satisfy the following assumptions:

Growth conditions with ’yi > 0 and ’yé >0fore=1,...,n:

(6) /a 19:(&,@)[* dSe <M + 1101720111 (@) x A ()
(7) Mass balance: Zgi(é,gé) =0 on (0,7) x Ow;
i=1

(8)  Positive production rate: g;(¢,P)[c; ] =0 on (0,T) x Ow, i=1,...,n,

where c;' = max{0, ¢}, ¢; := —min{0,¢} fori=1,... n.

We assume that the coefficient matrices A, m; D% and D are symmetric and positive
definite (spd). The diffusivity matrices m; D" satisfy

n

(9) either the weak assumption: Z m;DY =D, j=1,...,n;
i=1

(10) or the strong assumption: m; DY = 0i;D, i,j=1,...,n.

2.4 Weak formulation of the problem

Find discontinuous functions cy, ..., c,, and ¢ such that ¢; € L>(0,T; L?(Q) x L*(w)) N
L2(0,T3 HY(Q) x H (), ¢ € L=(0,T; HY(Q) x H'(w)), c;¥; € L2(0,T) x (Q Uw))
for ¢ = 1,...,n, which satisfy the Dirichlet boundary conditions, the initial conditions,
the volume balance and positivity, as well as fulfill the following variational equations:

T de; n T o
(11a) /o/QUw{actCi +j§::1[k36vcj +1Q7;(c) V| miDVe | du dt

_ /0 T/&U 9:(&, )[e:] S, dt,

algllg] s, = / gl] ds..

ow

(11b) /Q ] (Vo  AVG — 1Y (c)@) dx + /

Ow

for all test functions ¢; € H(0,7T; L*(Q) x L?(w)) N L*(0,T; H'(Q) x H'(w)) and ¢ €
HY(Q) x HY(w) such that & = 0 on (0,7) x 92 and » = 0 on 99, where T,(c) :=

1 1 .
N—ch (zj - 6T(C)) and Y(c) := > ) zkck.

3 Well-posedness analysis

The reduced formulation appears after excluding u; and p and reducing the constraints
b1 POy

> k=1 C:

) . The terms I';(c™) are uniformly bounded:

(5a)—(5b), where nonlinear terms Y (c) and Y;(c) are replaced by I'(c™) := C

+ n +
C G, Thaad
J

and T'j(ct) := —
’ Nayli_icf Sho1ch
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Z n
) < C—, where Z = Z |zi|, which allows to use the Schauder—Tikhonov fixed

i=1
point theorem. If constraints (5a) and (5b) hold, then I'j(ct) = T,(c) and T'(c™) = T(c)
and the original and the reduced formulations coincide.

Theorem 1 (Existence of a weak solution of the reduced problem) Let the growth condi-
tions for reactions on the boundary (6) hold and let the coefficient matrices A and m; D"
be spd-matrices. Then there exists a weak solution of the reduced problem.

Lemma 2 (Volume balance) Under assumptions on the boundary (7) and the weak
assumption of the diffusivity matrices (9) the volume constraint y ;| ¢; = C' is satisfied
a.e. on (0,T) x (QUw).

Lemma 3 (Weak maximum principle) Under assumptions on the data (8) and (10) we
have the positive solution ¢; > 0 a.e. on (0,T) x (QUuw) fori=1,...,n

Lemma 4 (Equivalence of formulations) Under assumptions made in Lemmas 2 and 3
the complete and the reduced problems are equivalent.

Theorem 5 (Well-posedness of generalized Poisson—Nernst—Planck system) Let assump-
tions (6)—(8) on the nonlinear boundary terms hold.

(1) If the weak assumption on diffusivity matrices holds, then there exists a weak
solution of the problem. By continuity, ¢ > 0 locally for small t > 0.

(2) If additionally the strong assumption on diffusivity matrices holds, then ¢ > 0
globally for T > 0.

A weak solution satisfies the a priori estimates

(12) H‘PH%oo(o,T;Hl(Q)le(w)) < Ko,

(13) llellFoo 0,102 (@)x 22wy T €lT20,m 1 (@) x 11 (0)) < K+ e K

Under additional assumption on the regularity of the electrostatic potential ¢ as well
as injectivity and continuity of the nonlinear boundary fluxes g;(¢€, ¢), a weak solution
of the generalized PNP problem is unique.

We define the entropy and the function of dissipation as follows:

S(t) = —kBNAZ/ ciln(Bic;) dr and D(t) := —— = kBNAZ/ L In(Bic;) dw
QUw

The dissipation mequahty D >0 can be assured under addltlonal assumptions m; D% =
do;l, A =al, Y, zz = 0 and c = 1/B; on 90 and with a special choice of the
boundary functions g and gi(€, ).
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