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Abstract. A shape-topological control of singularly perturbed variational inequalities is
considered in the abstract framework for state-constrained optimization problems. Aiming
at asymptotic analysis, singular perturbation theory is applied to the geometry-dependent
objective function and results in a shape-topological derivative. This concept is illustrated
analytically in a one-dimensional example problem which is controlled by an inhomogeneity
posed in a domain with moving boundary.

1 Introduction

The paper aims at a shape-topological control of geometry-dependent variational inequalities.
We consider a class of objective functions J : G 7→ R which act on two geometric objects
Γ and ω. In particular, we look how a perturbation of the topology of ω will influence the
shape derivative of J(Γ, ω) with respect to Γ. Our example of a shape-topological control
problem will refer to ω as an inhomogeneity in the given domain, and to Γ as a moving
boundary of this domain.

From a mathematical viewpoint, the principal difficulty is that Γ and ω enter the objective
J through a state problem which is typically expressed by partial differential equations
(PDEs). Moreover, we generalize the state problem to a variational inequality subject to
unilateral constraints on Γ. Therefore, to get explicit formulae, we rely on asymptotic
modeling of small ω. We obtain a shape-topological derivative of the objective function, and
we prove its semi-analytic expression with the help of Green type functions.

For the classical methods of the shape optimization we refer to [1, 5, 22, 24], for the
topology optimization to [2, 3, 6, 16], and to [4, 7, 20] for the asymptotic theory. Our mo-
tivation comes from the crack problems in fracture mechanics, see e.g. [21], aimed either to
arrest or amplify a moving crack. The control is realized by posing a trial inhomogeneity
in a test medium. By this, we assume nonlinear crack models subject to contact condi-
tions resulting in variational inequalities, see [9, 14]. The asymptotic methods of regular
perturbations suitable for nonlinear crack problems are discussed in [8, 12, 15], and singular
perturbations of cracks in [10, 11]. In [17] we investigated a nonlinear crack with respect to
the shape-topological control by inhomogeneity in two dimensions.
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In the present work, in Section 2 we state a mathematical concept of a shape-topological
control for singularly perturbed variational inequalities, and we illustrate it with a one-
dimensional example problem in Section 3.

2 Concept of a shape-topological control

Our construction can be outlined in the context of shape-topological differentiability, see
[13, 18, 19], as follows.

For a Hilbert space H and its dual space H?, we deal with variational inequalities of the
following type:

find u0 − g ∈ K such that 〈Au0, v − u0〉 ≥ 0 for all v − g ∈ K, (2.1)

where g ∈ H is given, the admissible set K ⊂ H is convex and closed, and A : H 7→ H? is a
linear pseudo-monotone operator such that the assumption

uε ⇀ u0 weakly in H as ε↘ 0+ and lim inf
ε↘0+

〈Auε, u0 − uε〉 ≥ 0

implies that the following condition holds

〈Au0, v − u0〉 ≥ lim sup
ε↘0+

〈Auε, v − uε〉 for all v − g ∈ K.

For the theory of variational inequalities (2.1) with pseudo-monotone operators A and its
solvability see [23]. In particular, if A is strongly monotone operator such that

〈Av,v〉
‖v‖2 ≥ α > 0 for v ∈ H, v 6= 0 (2.2)

then the Lions–Stampacchia theorem provides the unique solution to (2.1).
We consider a singularly perturbed variational inequality: find uε − g ∈ K such that

〈Aεu
ε, v − uε〉 ≥ 0 for all v − g ∈ K, (2.3)

where the perturbation Aε = A + εFε of the operator A of (2.1) with a linear bounded
operator Fε : H 7→ H? is such that ε‖Fε‖ = O(ε) and Aε is a strongly monotone operator
uniformly in ε which means that

〈Aεv,v〉
‖v‖2 ≥ α > 0 for v ∈ H, v 6= 0 and ε ∈ (0, ε0). (2.4)

Our consequent consideration aims at shape-topological control by means of the state-
constrained optimization: find the geometry variables (ω,Γ) from a feasible set G such that

minimum
(ω,Γ)∈G

J(u(ω,Γ)) subject to Π(u(ω,Γ)) = min
v−g∈K

Π(v). (2.5)

In (2.5) the functional Π : H 7→ R such that

Π(v) := 〈1
2
Aεv, v〉



A shape-topological control of variational inequalities 43

associates the strain energy (SE) of the state problem. Since Π is coercive by (2.4), then
variational inequality (2.3) implies the first order necessary and sufficient optimality condi-
tion for the minimization of Π over v − g ∈ K. The parameter ε ∈ R+ entering (2.3) serves
for variation of the geometry, we will specify this setting in examples below.

The main difficulty of the state-constrained optimization is that the geometry variables
enter (2.5) in a fully implicit way. Therefore, the problem of finding its optimality condition
is open. Further we rely on asymptotic models as ε ↘ 0+ that needs expansion of the
solution uε of state problem (2.3) stated below.

Theorem 2.1. For the solutions u0 and uε of variational inequalities (2.1) and (2.3), the
following properties of a corrector q̃ε ∈ H

u0 + εq̃ε − g ∈ K, (2.6)
uε − εq̃ε − g ∈ K, (2.7)

〈Aεq̃
ε + Fεu

0 −Rε, v〉 = 0 for all v ∈ H, (2.8)

with a residual Rε ∈ H? such that

ε‖Rε‖ = O(f(ε)), (2.9)

imply the asymptotic representation in H as ε↘ 0+ of the form

‖uε − u0 − εq̃ε‖ = O(f(ε)). (2.10)

Proof. Indeed, plugging the test functions v = uε−εq̃ε in (2.1) due to (2.7) and v = u0 +εq̃ε

in (2.3) due to (2.6), after summation of the inequality

〈Aεu
ε − (Aε − εFε)u

0, uε − u0 − εq̃ε〉 ≤ 0

and equality (2.8) with v = uε − u0 − εq̃ε multiplied by −ε, that is

〈−εAεq̃
ε − εFεu

0 + εRε, u
ε − u0 − εq̃ε〉 = 0,

we get

〈Aε(u
ε − u0 − εq̃ε) + εRε, u

ε − u0 − εq̃ε〉 ≤ 0.

Applying here the Cauchy–Schwarz inequality together with (2.4) and (2.9) implies (2.10).

We emphasize that εq̃ε satisfying (2.10) is not unique but defined up to o(f(ε))-terms.
A typical example of the corrector q̃ε is q̃

(
x
ε

)
implying a boundary layer in homogenization

theory. Moreover, the asymptotic behavior f(ε) of the residual in (2.10) maybe different. In
the subsequent example f(ε) = ε3/2, see Theorem 3.1.

In the following section we illustrate our construction analytically for a one-dimensional
problem which obeys exact solution. In order to find a representative q̃ε, in Section 3.1 we
will realize sufficient conditions (2.6)–(2.9). As an alternative to the uniform asymptotic
expansion (2.10), in Section 3.2, developing variational technique based on Green functions,
we obtain a local asymptotic expansion in the near-field, and this expansion is unique.
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3 Example problem in an inhomogeneous domain

For two variable parameters ε, t ∈ R+, we start with the description of geometry.
We define a disconnected set joining two segments x ∈ (0, ε) ∪ (ε, r + t) such that 0 <

r0 < r < r1, r0− r < t < r1− r, and 0 < ε < ε0 < r0. One geometric parameter ε associates
the size of inhomogeneity ωε = (0, ε) in the domain, and the other geometric parameter t
defines the position of the moving boundary Γt = {x : x = r + t}.

The inhomogeneity is represented with the help of the characteristic function such that
χδ

(0,ε)(x) = δ for x < ε, otherwise χδ
(0,ε)(x) = 1 for x > ε, where δ ∈ R+ stands for a given

stiffness parameter. Its two limit cases correspond to the hole as δ ↘ 0+ and to the rigid
inclusion as δ ↗ +∞.

For a fixed g ∈ R, the space of functions is given by

Ht := {u ∈ H1(0, r + t) : u(0) = 0},

the admissible set is represented by the inequality constraint

Kt := {u ∈ Ht : u(r + t) + g ≥ 0},

hence v − g ∈ Kt implies v(r + t) ≥ 0 and v(0) = g, and variational inequality (2.3) takes
the specific form:

find u(ε,t) − g ∈ Kt such that∫ r+t

0

χδ
(0,ε)(u

(ε,t))′(v − u(ε,t))′ dx ≥ 0 for all v − g ∈ Kt.
(3.1)

Here and in what follows we mark the dependence of the solution on these two geometry
variables ε and t.

Variational inequality (3.1) implies the boundary value problem:

−(u(ε,t))′′(x) = 0 for x ∈ (0, ε) ∪ (ε, r + t), (3.2)
u(ε,t)(0) = g, (3.3)

u(ε,t)(ε+)− u(ε,t)(ε−) = 0, (u(ε,t))′(ε+)− δ · (u(ε,t))′(ε−) = 0, (3.4)
u(ε,t)(r + t) ≥ 0, (u(ε,t))′(r + t) ≥ 0, (3.5)

(u(ε,t))′(r + t) · u(ε,t)(r + t) = 0, (3.6)

where u(ε,t)(ε−) and u(ε,t)(ε+) are the limit values from below and above, respectively. It is
derived from (3.1) in the standard way by applying integration by parts for all v − g ∈ Kt

that

−
∫ r+t

0

χδ
(0,ε)(u

(ε,t))′′(v − u(ε,t)) dx+ (u(ε,t))′(r + t)
(
v(r + t)− u(ε,t)(r + t)

)
−
(
(u(ε,t))′(ε+)− δ (u(ε,t))′(ε−)

)
·
(
v(ε)− u(ε,t)(ε)

)
≥ 0.

We construct the solution to (3.2)–(3.6) explicitly. Indeed, for an arbitrary c(ε,t) ∈ R
relations (3.2)–(3.4) can be solved by{

u(ε,t)(x) = g +
c(ε,t)

δ
x, (u(ε,t))′ =

c(ε,t)

δ
, x ∈ (0, ε)

u(ε,t)(x) = g + c(ε,t)
(
x+ ε1−δ

δ

)
, (u(ε,t))′ = c(ε,t) , x ∈ (ε, r + t)
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implying the piecewise-linear continuous function

u(ε,t)(x) = g + c(ε,t)
(
x+ 1−δ

δ
min{ε, x}

)
. (3.7)

With (3.7) complementarity condition (3.6) takes the form

c(ε,t) ·
(
g + c(ε,t)(r + t+ 1−δ

δ
ε)
)

= 0.

Hence, due to (3.5), the nonnegative constant c(ε,t) can be found uniquely:

c(ε,t) = max
{
0,−g

(
r + t+ 1−δ

δ
ε
)−1}

. (3.8)

As ε↘ 0+, from (3.7) and (3.8) we have the reference state

u(0,t)(x) = g + c(0,t)x, (3.9)
c(0,t) = max

{
0,−g(r + t)−1

}
, (3.10)

which solves the reference variational inequality corresponding to (2.1):

find u(0,t) − g ∈ Kt such that∫ r+t

0

(u(0,t))′(v − u(0,t))′ dx ≥ 0 for all v − g ∈ Kt.
(3.11)

Alluding to the asymptotic expansion in Theorem 3.1 below, we need to consider a layer
near the interface point x = ε. It is obtained after mapping (0, ε) 7→ (0, 1), x 7→ εy by solving
the auxiliary transmission problem:

find w ∈ H1(R+) such that∫ ∞

0

χδ
(0,1)w

′(y)v′(y) dy = (1− δ)v(1) for all v ∈ H1(R+).
(3.12)

Using integration by parts, variational equation (3.12) implies the boundary value problem:

−w′′(y) = 0 for y ∈ (0, 1) ∪ (1,∞),

w(x) → 0 as x↗∞,

w(1+)− w(1−) = 0, w′(1+)− δ · w′(1−) = −(1− δ),

where w(1−) and w(1+) are the limiting values from below and above, respectively. The
unique solution of this problem is given by the piecewise linear continuous function

w(y) = 1−δ
δ

min{0, y − 1}. (3.13)

After stretching the coordinates y = x
ε

in (3.13), we get the boundary layer

εw(x
ε
) = 1−δ

δ
min{0, x− ε}, ‖εw(x

ε
)‖ = O(ε1/2) in H1(R+), (3.14)

where the square root asymptotic order is due to the seminorm estimate√∫ ∞

0

(
εw(x

ε
)′
)2
dx =

√∫ ε

0

(
1−δ

δ

)2
dx = O(

√
ε).

In this case we justify asymptotic formula (2.10) as follows.
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Theorem 3.1. The solutions u(ε,t) and u(0,t) of variational inequalities (3.1) and (3.11)
admit the following residual estimate as ε↘ 0+:

u(ε,t) = u(0,t) + εq̃(ε,t) + O(ε3/2) in H1(0, r + t) (3.15)

with the principal asymptotic term defined in Ht by

εq̃(ε,t)(x) := (u(0,t))′(0) ·
[
εw(x

ε
) + ε1−δ

δ
(1− x

r+t
)
]
. (3.16)

Proof. Indeed, for sufficiently small ε we have (r + t)(r + t+ 1−δ
δ
ε)−1 > 0, hence from (3.8)

it follows that

c(ε,t) =
(
1 + 1−δ

δ(r+t)
ε
)−1 ·max

{
0,−g(r + t)−1

}
,

and together with (3.10) this results in the expansion

c(ε,t) = c(0,t)

(
1− 1−δ

δ(r+t)
ε+ O(ε)2

)
. (3.17)

Substituting (3.17), (3.14), and (3.9) in (3.7) we get

u(ε,t)(x) = u(0,t)(x)− c(0,t)x+ c(0,t)

(
1− 1−δ

δ(r+t)
ε
)[
x+ 1−δ

δ
ε+ εw(x

ε
)
]
+ O(ε2)

and derive iteratively the following uniform estimates:

u(ε,t)(x) = u(0,t)(x) + O(ε1/2),

u(ε,t)(x) = u(0,t)(x) + (u(0,t))′(0) · εw(x
ε
) + O(ε),

u(ε,t)(x) = u(0,t)(x) + (u(0,t))′(0) ·
[
εw(x

ε
) + ε1−δ

δ
(1− x

r+t
)
]
+ O(ε3/2),

where we have used c(0,t) = (u(0,t))′(0). The latter equality enforces (3.15) with notation
(3.16), thus completing the proof.

We remark that εq̃(ε,t)(x) in Theorem 3.1 satisfies relations (2.6)–(2.9) in Theorem 2.1
with f(ε) = ε3/2, which can be checked straightforwardly.

3.1 Uniform asymptotic expansion in the problem

We discuss examples for various objectives J(u(ε,t)) subject to the optimal state u(ε,t). State-
constrained optimization problem (2.5) takes the specific form:

minimum
(ε,t)∈(0,ε0)×(r0−r,r1−r)

J(u(ε,t)) subject to Π(u(ε,t)) = min
v−g∈Kt

Π(v), (3.1)

and the strain energy (SE) functional Π : Ht 7→ R is

Π(v) := 1
2

∫ r+t

0

χδ
(0,ε)(v

′(x))2 dx. (3.2)

Variational inequality (3.1) implies the first order optimality condition for the constrained
minimization of Π over v − g ∈ Kt.
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It is important to comment that, for a fixed ε ∈ (0, ε0), variations of the parameter
t ∈ (r0 − r, r1 − r) describe regular perturbations of the moving boundary of the domain
(0, ε) ∪ (ε, r + t), thus shape variation. In contrast, the limiting procedure ε ↘ 0+ implies
diminishing of the inhomogeneity ωε = (0, ε), and, hence, the topology change from the
disconnected set to the 1-connected set (0, r + t).

First, we control the optimal value function JSE = Π of strain energy (3.2) with respect
to the topology change as ε ↘ 0+. Relying on small ε, we substitute the optimal state
u(ε,t) with its asymptotic model (3.15) and (3.16), thus calculating the approximation of the
optimal value function

Π(u(ε,t)) = Π
(
u(0,t) + c(0,t)

[
εw(x

ε
) + ε1−δ

δ
(1− x

r+t
)
]
+ O(ε3/2)

)
= 1

2

∫ r+t

0

χδ
(0,ε)

(
(u(0,t))′ + c(0,t)

[
εw′(x

ε
)− ε(1−δ)

δ(r+t)

])2
dx+ O(ε3/2)

=
c2
(0,t)

2

[∫ ε

0

δ
(
1− 2ε(1−δ)

δ(r+t)
+ 1−δ2

δ2

)
dx+

∫ r+t

ε

(
1− 2ε(1−δ)

δ(r+t)

)
dx
]

+ o(ε)

=
c2
(0,t)

2
(r + t− ε(1−δ)

δ
) + o(ε),

Π(u(0,t)) =
c2
(0,t)

2
(r + t),

(3.3)

due to (3.9), (3.14), and (3.2). From (3.3) it follows that the function (0, ε0) 7→ R, ε 7→
Π(u(ε,t)) is differentiable at ε = 0 with the topological derivative

d
dε

Π(u(ε,t))|ε=0 = −c2(0,t)
(1−δ)

2δ
= −Π(u(0,t)) 1−δ

δ(r+t)
. (3.4)

Secondly, we control the objective function JSERR = − d
dt

Π of the strain energy release
rate, which implies shape variation and associates a Griffith’s functional used in fracture
mechanics.

To calculate − d
dt

Π from (3.2), we apply the constitutive formula proven in [6]. Indeed,
let a cut-off function η be such that η(x) = 0 as x < ε and η(x) = 1 as x > ε + β,
with some β such that ε + β < r0. For small s ∈ (r0 − r − t, r1 − r − t), the translation
Φs : (0, r + t) 7→ (0, r + t+ s), z = x+ sη(x) yields the representation of Π(u(ε,t+s)) as

1
2

∫ r+t+s

0

χδ
(0,ε)

(
(u(ε,t+s))′z)

2 dz = 1
2

∫ r+t

0

χδ
(0,ε)

(
(u(ε,t+s)◦Φs)′x

1+sη′

)2
(1 + sη′) dx

= Π(u(ε,t+s) ◦ Φs)− s
2

∫ r+t

0

χδ
(0,ε)

(
(u(ε,t+s) ◦ Φs)

′)2η′ dx+ o(s).

Since u(ε,t+s) ◦ Φs − g ∈ Kt, we infer u(ε,t+s) ◦ Φs → u(ε,t) strongly in Ht as s → 0, and
conclude, see [6] for details, with the asymptotic expansion

Π(u(ε,t+s)) = Π(u(ε,t))− s
2

∫ r+t

0

χδ
(0,ε)

(
(u(ε,t))′

)2
η′ dx+ o(s). (3.5)

From (3.5) the explicit formula of the shape derivative follows directly:

JSERR(u(ε,t)) := − d
dt

Π(u(ε,t)) = 1
2

∫ r+t

0

χδ
(0,ε)

(
(u(ε,t))′

)2
η′ dx. (3.6)
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We observe that JSERR depends on u(ε,t), but not on εq̃(ε,t) in expansion (3.15). The latter
fact is in accordance with the assertion in [18, 19].

For the shape-topological control, now we insert (3.15) in (3.6), which implies the asymp-
totic model

JSERR

(
u(0,t) + c(0,t)

[
εw(x

ε
) + ε1−δ

δ
(1− x

r+t
)
]
+ O(ε3/2)

)
= 1

2

∫ r+t

0

χδ
(0,ε)

(
(u(0,t))′ + c(0,t)

[
εw′(x

ε
)− ε(1−δ)

δ(r+t)

])2
η′ dx+ O(ε3/2)

=
c2
(0,t)

2

∫ ε+β

ε

(
1− 2ε(1−δ)

δ(r+t)

)
η′ dx+ o(ε) =

c2
(0,t)

2

(
1− 2ε(1−δ)

δ(r+t)

)
+ o(ε)

= JSERR(u(0,t))− ε c2(0,t)
1−δ

δ(r+t)
+ o(ε),

JSERR(u(0,t)) =
c2
(0,t)

2
.

(3.7)

In particular, (3.7) follows formula for the shape-topological derivative

d
dε
JSERR(u(ε,t))|ε=0 = −c2(0,t)

1−δ
δ(r+t)

. (3.8)

Moreover, in view of definition (3.6), it implies the mixed second derivative − ∂2

∂ε ∂t
Π(u(ε,t))|ε=0

which is symmetric: ∂2

∂ε ∂t
Π(u(ε,t))|ε=0 = ∂2

∂t ∂ε
Π(u(ε,t))|ε=0. Thus, we have proved the following.

Theorem 3.2. For the solutions u(ε,t) and u(0,t) of variational inequalities (3.1) and (3.11),
there exists the shape-topological derivative

d
dε
JSERR(u(ε,t))|ε=0 = − ∂2

∂ε ∂t
Π(u(ε,t))|ε=0 = − ∂2

∂t ∂ε
Π(u(ε,t))|ε=0

= −c2(0,t)
1−δ

δ(r+t)
.

(3.9)

3.2 Local asymptotic expansion in the problem

We recall that Theorem 3.2 is derived based on the uniform asymptotic formula (3.15) which,
however, is not unique. Representation (3.15) which is uniform over domain matches the
near-field (the boundary layer near inhomogeneity) and the far-field (extendable to infinity)
asymptotic representations, which both are unique. This is the reason of our alternative
approach to the shape-topological control. Since in one dimension the far-field is trivial
(zero), here we employ only the near-field.

In the near-field of the moving boundary point x = r+t, any solution u(ε,t) of homogeneous
equation (3.2) can be written as a linear function

u(ε,t)(x) = u(ε,t)(r + t) + (u(ε,t))′(r + t) · [x− (r + t)] for x > ε. (3.1)

The factor in front of the principal term x− (r + t) in (3.1) is called stress intensity factor
(SIF) in crack mechanics. We associate it with the objective

JSIF(u(ε,t)) = (u(ε,t))′(r + t) =: c(ε,t), (3.2)

and we aim at proper formula for its calculation without knowledge of the analytic solution
(3.7) and (3.8) from Section 3.1.
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For this reason, we construct the Green function ζt (called the weight function in crack
mechanics) obeying the bounded singularity ζt(r + t) 6= 0 and ζ ′t(r + t) 6= 0 at the moving
boundary point x = r + t and solving the homogeneous problem:

−ζ ′′t (x) = 0 for x ∈ (0, r + t), (3.3)
ζt(0) = 0. (3.4)

All solutions of (3.3) and (3.4) are given by straight lines αx and defined up to arbitrary
factor α 6= 0. If we set the normalization condition

1 =

∫ r+t

0

(ζ ′t(x))
2 dx = ζ ′t(r + t) · ζt(r + t) (3.5)

due to (3.3) and (3.4), then the unique αx satisfying (3.5) is

ζt(x) = x√
r+t
. (3.6)

Using (3.2)–(3.4) and (3.3)-(3.4), the second Green formula yields

0 =

∫ r+t

0

[
(u(ε,t))′′ζt − u(ε,t)ζ ′′t

]
dx = −[[(u(ε,t))′(ε)]]ζt(ε) + gζ ′t(0)

+ (u(ε,t))′(r + t) · ζt(r + t)− u(ε,t)(r + t) · ζ ′t(r + t),

(3.7)

where [[(u(ε,t))′(ε)]] := (u(ε,t))′(ε+) − (u(ε,t))′(ε−) is the jump. Multiplying (3.7) either by
(u(ε,t))′(r+ t) or u(ε,t)(r+ t) and using complementarity conditions (3.5), (3.6), we derive the
representations

(u(ε,t))′(r + t) = max
{
0, ζ ′t(r + t)

(
[[(u(ε,t))′(ε)]]ζt(ε)− gζ ′t(0)

)}
, (3.8)

u(ε,t)(r + t) = max
{
0, 1

ζ′t(r+t)

(
−[[(u(ε,t))′(ε)]]ζt(ε) + gζ ′t(0)

)}
, (3.9)

where we have used normalization (3.5) to get (3.8). In comparison with the explicit formula
(3.8) of c(ε,t), expressions (3.8) and (3.9) are implicit ones. We plug in (3.8) expansion (3.15)
and infer the asymptotic model

c(ε,t) := (u(ε,t))′(r + t) = max
{
0, ζ ′t(r + t)

(
−gζ ′t(0)

+ (u(0,t))′(0)[[w′(1)]]ζt(ε) + ζt(ε)O(ε)
)}
.

(3.10)

Moreover, we apply to (3.10) the local representation ζt(x) = ζ ′t(0) x following from (3.3)
and (3.4), hence ζt(ε) = ζ ′t(0) ε. In this way we have proved the following.

Theorem 3.3. For the solutions u(ε,t) and u(0,t) of variational inequalities (3.1) and (3.11),
the following asymptotic representation of SIF holds:

JSIF(u(ε,t)) = c(ε,t) = max
{
0, ζ ′t(r + t)ζ ′t(0)

(
−g + ε(u(0,t))′(0)[[w′(1)]] + O(ε2)

)}
,

JSIF(u(0,t)) = c(0,t) = max
{
0,−gζ ′t(r + t)ζ ′t(0)

}
.

(3.11)
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We note that the max-function in (3.11) is, generally, nondifferentiable with respect
to ε when g = 0. Nevertheless, further we need the square of the max-function which is
differentiable with respect to its argument. Indeed, the square of (3.11) constitutes the
form:

c2(ε,t) = c2(0,t) + 2εc(0,t)(u
(0,t))′(0)[[w′(1)]]ζ ′t(r + t)ζ ′t(0) + O(ε2). (3.12)

As the corollary of Theorem 3.3 we restate the asymptotic result on shape-topological
control of JSERR and JSE from Section 3.1.

Inserting the exact solution (3.7) in (3.6), we get

JSERR(u(ε,t)) = − d
dt

Π(u(ε,t)) = 1
2
c2(ε,t). (3.13)

With the help of (3.12), from (3.13) we immediately obtain the shape-topological derivative
− ∂2

∂ε ∂t
Π(u(ε,t))|ε=0 as

d
dε
JSERR(u(ε,t))|ε=0 = c(0,t)(u

(0,t))′(0)[[w′(1)]]ζ ′t(r + t)ζ ′t(0). (3.14)

In order to validate (3.14), after substitution of the exact analytic expressions (3.9), (3.14),
and (3.6) of solutions u(0,t), w, and ζt, respectively, this results in d

dε
JSERR(u(ε,t))|ε=0 =

−c2(0,t)
1−δ

δ(r+t)
thus coinciding with expression (3.9) derived in Theorem 3.2.

Similarly, substituting (3.7) in Π(u(ε,t)) given in (3.2), straightforward calculation pro-
vides equivalent expression of SE-optimal value function

JSE(u(ε,t)) = Π(u(ε,t)) = 1
2
c2(ε,t)(r + t+ 1−δ

δ
ε)

=
[ c2

(0,t)

2
+ εc(0,t)(u

(0,t))′(0)[[w′(1)]]ζ ′t(r + t)ζ ′t(0) + O(ε2)
]
(r + t+ 1−δ

δ
ε)

=
c2
(0,t)

2

(
1− 2(1−δ)

δ(r+t)
+ O(ε2)

)
(r + t+ 1−δ

δ
ε) =

c2
(0,t)

2
(r + t− 1−δ

δ
ε) + O(ε2),

where we have used here the expansion (3.12) of SIF c2(ε,t). Thus, we arrive again at formula
(3.3).

4 Discussion

In [17] this technique of a shape-topological control is extended to the nonlinear problem
of crack–defect interaction in two dimensions, where no analytic solutions but only varia-
tional formulations are available. The semi-analytic expressions are proved for the shape-
topological derivatives of J2

SIF and JSERR.
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