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Abstract. In this paper a mathematical model generalizing Poisson–Nernst–

Planck system is considered. The generalized model presents electrokinetics of
species in a two-phase medium consisted of solid particles and a pore space.

The governing relations describe cross-diffusion of the charged species together

with the overall electrostatic potential. At the interface between the pore and
the solid phases nonlinear electro-chemical reactions are taken into account

provided by jumps of field variables. The main advantage of the generalized

model is that the total mass balance is kept within our setting. As the result of
the variational approach, well-posedness properties of a discontinuous solution

of the problem are demonstrated and supported by the energy and entropy

estimates.

1. Introduction. The paper studies mathematical aspects of a generalization of
the Poisson–Nernst–Planck (PNP) system with respect to coupling phenomena, the
total mass balance, positivity of species concentrations, as well as nonlinear interface
reactions and discontinuous field functions.

The PNP models arise in applications related to reaction–diffusion phenomena
in biology and electrochemistry, see, for instance, [10, 13, 24, 29]. In particular, we
are motivated by the application to an electrolyte solution in Lithium ion batteries,
see [2, 23]. Because of drawbacks of the classic PNP model, which, for example,
violates the mass balance and coupling phenomena, its improvement was suggested
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in [8, 9, 14]. The improvement is based on general thermodynamic principles, we
refer the interested reader to [6, 16, 25].

The main features of our approach are given below.
We examine the cross-diffusion of multiple charged species which is expressed by

mass concentrations and an overall electrostatic potential. In the Fick’s law, the
corresponding diffusion fluxes are formulated in terms of electro-chemical potentials
and assumed to be coupled through diffusivity matrices, whereas the coupling is
usually violated in the classic case.

The multi-component solution is considered in a two-phase domain composed
of two disjoint parts. One part is the solid phase consisted of particles, which are
included in a surrounding pore space. We perceive the differences between equations
in the solid and in the pore phases. In the solid phase, in other words inside the
particles, we set the Gauss’s flux law for the electrostatic potential and we define
usual electro-chemical potentials. In the pore phase, the electrostatic potential and
the mass concentrations are coupled within the Gauss’s flux law. The corresponding
quasi-Fermi electro-chemical potentials are derived from a Landau thermodynamic
potential (see (5)) and depend on the pressure parameter.

The pressure parameter is determined from the force balance. It is a consequence
of the Navier–Stokes equations with the flow velocity assumed to be zero. For
physical consistency, the mass concentrations should be within a Gibbs simplex
which implies that the total mass balance and positivity constraints hold. In its
turn, accounting for the pressure parameter and for the total mass balance (see
Theorem 2.1) avoids the main thermodynamic drawback of the classic model.

We aim to describe electro-chemical reactions at the phase interface. For this
purpose, the field variables should allow a jump, while the diffusion fluxes and the
electric current are assumed to be continuous in this paper. For the modeling of
discontinuous fluxes, see [11, 12]. The interface reactions lead to inhomogeneous
boundary conditions compared to the standard PNP models. Moreover, we show
that the boundary fluxes of species cannot be nontrivial constants or linear functions
but they should depend nonlinearly on the mass concentrations.

From a mathematical point of view, the existence theorems providing a weak
solvability to the PNP problem are based on the variational theory and are given
in [17, 26, 27], and in [4] in the stationary case. We refer to [1, 15, 28] for ho-
mogenization, and to [5, 14] for numerical methods suitable for reaction–diffusion
models.

In this paper we formulate the generalized PNP problem considering all special-
ties mentioned above. The main difficulty for its analysis is connected with the
strong nonlinearity of the governing PDEs as well as the nonlinearity of the bound-
ary conditions. To describe the two-phase medium, discontinuous solutions allowing
jumps through the phase interface are employed. We give a weak formulation of the
problem and describe properties of its solution: well-posedness, the total mass bal-
ance, the weak maximum principle, and dynamic stability in the sense of Lyapunov,
which are supported by the energy and entropy estimates.

In the well-posedness theorems, the matrices of diffusion are assumed to satisfy
the so-called weak assumption, see (16). It guarantees the total mass balance and
a local existence of the positive solution at least in a small time interval. To ensure
global non-negativity of the solution we suppose the stronger assumption, see (17),
implying that the diffusion fluxes are decoupled. By this, the nonlinear functions of
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interface reactions need to satisfy sufficient assumptions on the mass balance, the
growth, the continuity, and the positive production rate.

To prove existence of a weak solution, we derive a reduced formulation excluding
the constraints on the mass concentrations and apply the Schauder–Tikhonov fixed
point theorem as suggested in [19] based on the energy estimate and following [22].
Afterwards, the solution of the reduced problem is examined for properties of the
total mass balance and positivity. We show under which conditions the reduced
and the original formulations are equivalent. Under an additional assumption of
regularity of the function of the electrostatic potential and the function of boundary
fluxes, the solution is unique. In the last part we examine the entropy dissipation
and prove the entropy estimate following [7].

2. The generalized PNP problem. For convenience, we overlook physical vari-
ables and parameters appeared in the paper. For the given number of species n ∈ N
with n > 2, the following notations are used:
ρi (kg/m3) mass concentrations of charged species (positive), i = 1, . . . , n,
ρ = (ρ1, . . . , ρn) vector of mass concentrations,
C (kg/m3) total mass density (positive),
Ji (kg/(m2 · s)) diffusion fluxes, i = 1, . . . , n,
mi (kg/mol) molar mass of species (positive), i = 1, ..., n,
µi (J) electro–chemical potentials of species, i = 1, . . . , n,
µ = (µ1, . . . , µn) vector of electro–chemical potentials,
Dij (m2 ·mol/(J · s · kg)) diffusivity matrices in Rd×d, i, j = 1, . . . , n,
D (m2 ·mol/(J · s · kg)) summary diffusivity (spd–matrix in Rd×d),
ϕ (V ) electrostatic potential,
A (F · kg/(m ·mol)) electric permittivity (spd–matrix in Rd×d),
zi (C/mol) electric charges of species, i = 1, . . . , n,
kB ≈ 1.38e− 23 (J/K) Boltzmann constant,
NA ≈ 6.02e+ 23 (1/mol) Avogadro constant,
Θ (K) absolute temperature (positive),
p (Pa · kg/mol) pressure parameter (pressure multiplied by the molar mass con-

stant Mu = 10−3 kg/mol),
α (F · kg/(m2 ·mol)) capacitance density (positive),
βi (m3/kg) volume factors of species (positive), i = 1, . . . , n,
gi (kg/(m2 · s)) boundary fluxes of species, i = 1, . . . , n,
g (C · kg/(m2 ·mol)) electric flux through boundary.

To begin with, we describe geometry of the problem.
Let Ω be a bounded domain in Rd for d = {1, 2, 3} with the Lipschitz boundary

∂Ω. Motivated by a two-phase medium, we split the domain Ω in two non-trivial
disjoint parts ω and Q separated by an interface ∂ω. The domain ω called the solid
phase represents multiple disjoint particles surrounded by the pore space Q. The
thickness of the interface ∂ω is assumed to be small in comparison with the size of
particles and we do not take it into account. Let the interface ∂ω be a Lipschitz
continuous manifold with the unit normal vector denoted by ν = (ν1, . . . , νd). We
set ν pointed outward to each particle in ω, thus inward to the pore part Q. An
example domain Ω = Q ∪ ω ∪ ∂ω is illustrated in Fig. 1.

For each simply connected compact set in ω, which we call a particle, we dis-
tinguish the negative face ∂ω− as the boundary of ω, and the positive face ∂ω+ as
its opposite part corresponding to the boundary of the pore phase Q, see zoom in
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Figure 1. An example domain Ω = Q ∪ ω ∪ ∂ω with two phases
Q and ω, the boundary ∂Ω, and two faces ∂ω+ and ∂ω− of the
interface ∂ω shown in zoom.

Fig. 1. We determine the interface jump of a discontinuous function ϕ across ∂ω as
[[ϕ]] := ϕ|∂ω+ − ϕ|∂ω− , where ϕ|∂ω± denotes the corresponding traces of ϕ at ∂ω±,
such that (see [18, Section 1.4] for details)

ϕ|∂ω+ = lim
x∈Q, x→y, y∈∂ω

ϕ, ϕ|∂ω− = lim
x∈ω, x→y, y∈∂ω

ϕ, ϕ̂ := (ϕ|∂ω+ , ϕ|∂ω−).

The disjoint domain Q∪ω associates the two-phase medium under consideration.

2.1. Formulation of the problem. For a fixed final time T > 0, in the prescribed
time-space cylinder (t, x) ∈ (0, T )× (Q∪ω), the generalized Poisson–Nernst–Planck
system is stated for an unknown electrostatic potential ϕ(t, x) and the vector of
mass concentrations ρ(t, x) = (ρ1, . . . , ρn) of n > 2 species with given molar masses
mi and specific electric charges zi for i = 1, . . . , n.

The mass concentrations ρi and diffusion fluxes Ji for i = 1, . . . , n enter the
diffusion and constitutive laws, written on the both phases (0, T )×Q and (0, T )×ω
as follows:

the Fick’s law of diffusion:
∂ρi
∂t
− divJi = 0; (1a)

the constitutive law: Ji = mi

n∑
j=1

ρj∇µ>j Dij , (1b)

where Dij are given d-by-d matrices of diffusion for each indexes i, j = 1, . . . , n.
Here ∇ stands for the gradient vector of the length d, and the upper sign > swaps
between rows and columns.
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In the solid phase (0, T ) × ω, the electrostatic potential ϕ is represented by the
Gauss’s flux law with the help of a d-by-d matrix A of permittivity:

the Gauss’s flux law : −div(∇ϕ>A) = 0; (2a)

while the electro-chemical potentials µi appeared in the constitutive law (1b) are
given by the usual expressions (where i = 1 . . . , n):

electro-chemical potentials: µi = kBΘln(βiρi). (2b)

Here the Boltzmann constant kB , the temperature Θ, and volume factors of species
βi are positive physical parameters.

In the pore phase (0, T )×Q, equations for the electrostatic potential ϕ, electro-
chemical potentials µi, i = 1, . . . , n, and the pressure parameter p are coupled as
follows:

the Gauss’s flux law: − div(∇ϕ>A) =

n∑
k=1

zkρk; (3a)

the force balance: ∇p = −
( n∑
k=1

zkρk

)
∇ϕ; (3b)

quasi-Fermi electro-chemical potentials:

µi = kBΘln(βiρi) +
1

NA

( 1

C
p+ ziϕ

)
. (3c)

The form of (3c) will be argued from the Landau thermodynamic potential (5)
below.

The force balance (3b) came from the Navier–Stokes equations with the zero
flow velocity as shown in [8, 9]. The pressure parameter p from (3b) enters also the
quasi-Fermi electro-chemical potentials in the form of (3c). As the consequence,
further it will be possible to keep the total mass balance proved in Theorem 2.1 at
the end of this section. This generalization has an advantage over the classic PNP
equations.

By the reason of physical consistency we assume the balance of the total mass
and positivity for the mass concentrations, which form the so-called Gibbs simplex:

the total mass balance:

n∑
i=1

ρi = C; (4a)

the positivity: ρi > 0 for i = 1, . . . , n. (4b)

Physically, (4a) follows that ∂
∂t (
∑n
i=1 ρi) = 0 implying the total mass balance when

the flow velocity is zero.
The thermodynamic Landau grand potential of the system has the form (see [3]):

L(ρ, ϕ, p,µ) :=∫
ω

{ n∑
i=1

kBNAΘρi
(
ln(βiρi)− 1

)
− 1

2
∇ϕ>A∇ϕ−NA

n∑
i=1

µiρi

}
dx

+

∫
Q

{ n∑
i=1

[
kBNAΘρi

(
ln(βiρi)− 1

)
+ ziρiϕ

]
− 1

2
∇ϕ>A∇ϕ
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+ p
( 1

C

n∑
i=1

ρi − 1
)
− NA

n∑
i=1

µiρi

}
dx +

∫
∂ω

(
g[[ϕ]] − α

2
[[ϕ]]2

)
dSx. (5)

After variation over admissible variables ρ, ϕ and p this provides two sets of relations
in the solid phase ω and in the pore phase Q. The variation of L with respect to
ϕ: ∂L

∂ϕ = 0, after integration by parts, follows the Poisson equations (2a) and (3a)

supported by the inhomogeneous boundary conditions (10b) following later; the
variation with respect to ρi:

∂L
∂ρi

= 0 gives the expressions (2b) and (3c) for µi; and

the variation with respect to p: ∂L
∂p = 0 implies the total mass balance (4a) in Q.

The variables µi appear in L as Lagrange multipliers to the positivity constraint
(4b).

The proper function spaces of the field variables in relations (1)–(5) will be
provided further in (25).

Let α ∈ L∞(∂ω), α > 0, and let g ∈ L∞(0, T ;L2(∂ω)), gi(ρ̂, ϕ̂) ∈ L2((0, T )×∂ω)
be given Neumann data, where the notation ρ̂ := (ρ|∂ω+ ,ρ|∂ω−) implies the pair of
traces of the vector-function ρ at two faces ∂ω+ and ∂ω− of the interface ∂ω. For the
initial data ρini ∈ L2(Q)×L2(ω), the Dirichlet data ϕD ∈ L∞(0, T ;H1(Q)×H1(ω))
and ρDi ∈ H1(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)) for i = 1, . . . , n, the
system of equations (1)–(3) is equipped with the following initial and boundary
conditions.

The initial conditions in Q ∪ ω for the time derivative in (1a) are:

ρi = ρini for i = 1, . . . , n. (6)

The initial data are such that the conditions in the manner of (4) hold in Q ∪ ω,
namely:

the total mass balance:

n∑
i=1

ρini = C; (7a)

the positivity: ρini > 0 for i = 1, . . . , n. (7b)

At the external boundary (0, T ) × ∂Ω associated with a bath, we set the usual
Dirichlet conditions:

ρi = ρDi for i = 1, . . . , n; (8a)

ϕ = ϕD. (8b)

We suggest that the Dirichlet boundary data satisfy the following relations for each
index i = 1, . . . , n:

the total mass balance:

n∑
i=1

ρDi = C on (0, T )× ∂Ω; (9a)

the positivity: ρDi > 0 on (0, T )× ∂Ω; (9b)

and compatibility conditions: ρDi (0, ·) = ρini in Q ∪ ω. (9c)

At the interface (0, T )× ∂ω we allow a jump of the mass concentrations and the
electrostatic potential, while we assume that the diffusion fluxes and the electric
current are continuous and inhomogeneous such that:

[[Ji]]ν = 0, −Jiν = gi(ρ̂, ϕ̂) for i = 1, . . . , n; (10a)

[[(∇ϕ)>A]]ν = 0, −(∇ϕ)>Aν + α[[ϕ]] = g. (10b)

The minus sign in front of ν is due to the normal direction pointed inside Q.
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The first condition in (10b) implies the continuity of the electric current, while
the second condition describes the charge exchange between the two phases. We
emphasize that in (10a) functions gi(ρ̂, ϕ̂) depend nonlinearly on the variable ρ̂, see
an example in (13). Compared to the trivial case gi(ρ̂, ϕ̂) ≡ 0, specifying a non-zero
flux gi(ρ̂, ϕ̂) at any of the two interface faces implies, generally, a boundary reaction,
for example, a phase-boundary catalysis. More discussion of the interface conditions
(10) is available in [11, 12]. In particular, discontinuous fluxes are modeled in [11].

2.2. Properties of the problem. For the well-posedness analysis of the general-
ized PNP problem we formulate next the assumptions on the data.

We suggest that the nonlinear functions gi(ρ̂, ϕ̂) in (10a) satisfy the following
properties for every species i = 1, . . . , n:

the growth conditions with the uniform bounds γi1 > 0 and γi2 > 0 in (0, T ) :∫
∂ω

∣∣gi(ρ̂, ϕ̂)
∣∣2 dx 6 γi1 + γi2‖ϕ‖2H1(Q)×H1(ω); (11a)

the mass balance:

n∑
k=1

gk(ρ̂, ϕ̂) = 0 on (0, T )× ∂ω; (11b)

the positive production rate : gi(ρ̂, ϕ̂) ρ−i = 0 on (0, T )× ∂ω±; (11c)

and the Lipschitz continuity with a constant KL > 0 :∣∣gi(ρ̂, ϕ̂)− gi(r̂, ψ̂)
∣∣2 6 KL

∣∣ρ̂− r̂
∣∣2 on (0, T )× ∂ω (11d)

for all ρ and r = (r1, . . . , rn) satisfying

n∑
k=1

ρk =

n∑
k=1

rk = C on ∂ω±,

where r̂ = (r|∂ω+ , r|∂ω−). In (11c), the partition in the positive and the negative
parts is determined by

ρ+i := max{0, ρi}, ρ−i := −min{0, ρi} (12a)

such that ρi = ρ+i − ρ
−
i , ρ+i > 0, ρ−i > 0, ρ+i ρ

−
i = 0. (12b)

We note that a nontrivial constant gi cannot fulfill the zero product in (11c),
and a linear function gi(ρ̂) cannot be uniformly bounded as in (11a). To give an
illustrative example, the nonlinear functions

gi(ρ̂, ϕ̂) = hi

n∏
j=1

Gj
(
(ρ|∂ω+)+

)
Gj
(
(ρ|∂ω−)+

)
, (13)

where Gj(ρ) :=
ρj∑n
k=1 ρk

such that |Gj(ρ)| 6 1 and Gj(ρ
+)ρ−j = 0, fulfill all the

conditions (11) with γi2 = 0 and γi1 = |∂ω||hi|2 when the numbers hi ∈ R are chosen
such that

∑n
i=1 hi = 0. In particular,

g1(ρ̂, ϕ̂) = G1

(
(ρ|∂ω+)+

)
G1

(
(ρ|∂ω−)+

)
G2

(
(ρ|∂ω+)+

)
G2

(
(ρ|∂ω−)+

)
, (14)

g2(ρ̂, ϕ̂) = −g1(ρ̂, ϕ̂),

and gi(ρ̂, ϕ̂) = 0 for other i = 3, . . . , n, are suitable. We note that the sign of hi in
(13) defines the sign of the boundary flux Jiν according to the boundary condition
(10a). This means that every species can flow either only into or only outside of
the solid phase which is determined by the underlying electro-chemical reaction.

The electric permittivity matrix A and diffusitity matricesD andDij are required
to satisfy the following assumptions below.
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Let A ∈ Rd×d be a symmetric and positive definite matrix, i.e. there exist
positive numbers 0 < a 6 ā such that

a|ξ|2 6 ξ>Aξ 6 ā|ξ|2 for ξ ∈ Rd. (15)

The following properties of the diffusivity matrices are related to the respective
constraints (4a) and (4b) on the mass concentrations. We assume that

either the weak assumption:

n∑
i=1

miD
ij = D, j = 1, . . . , n, (16)

or the strong assumption: miD
ij = δijD, i, j = 1, . . . , n, (17)

holds, where δij is the Kronecker delta such that δij = 1 for i = j and zero otherwise.
Further we assume that the following strong ellipticity condition holds for miD

ij ∈
Rd×d, i.e. there exist positive numbers 0 < d 6 d̄ such that

d

n∑
i=1

|ξi|2 6
n∑

i,j=1

ξ>i miD
ij ξj 6 d̄

n∑
i=1

|ξi|2 for ξ1, . . . , ξn ∈ Rd; (18)

and D ∈ Rd×d in (16) and (17) is a symmetric and positive definite matrix implying
existence of 0 < d1 6 d̄1 which satisfy the following inequalities:

d1|ξ|2 6 ξ>D ξ 6 d̄1|ξ|2 for ξ ∈ Rd. (19)

We note that the assumption (16) follows straightforwardly from (17), and the
bounds in (18) and (19) coincide such that d1 = d and d̄1 = d̄ when (17) holds.

For example, for the diffusion matrices of the size d-by-d which are written
component-wisely as Dij = {Dij

kl}dk,l=1 and D = {Dkl}dk,l=1, the assumption (16)
can be satisfied, after renumeration, with the left quasi-stochastic matrices
{Dij

kl}ni,j=1 of the size n-by-n and non-negative entriesDij
kl > 0 such that

∑n
i=1miD

ij
kl

= Dkl > 0 for k, l = 1, . . . , d.
The weak assumption (16) is relevant to the balance of total mass described in

Theorem 2.1 below and to the entropy principle in Theorem 3.3 following later.

Theorem 2.1 (Balance of total mass). If the constraint (4a) and the assumption on
the initial data (7a) hold, then the total mass

∑n
i=1 ρi =

∑n
i=1 ρ

in
i = C is constant

over time, thus implies the conservation ∂
∂t (
∑n
i=1 ρi) = 0. Together with the weak

assumption on the diffusivity matrices (16) this is equivalent to the flux balance:∑n
i=1 Ji = 0.

Proof. From the flux balance
∑n
i=1 Ji = 0 and the diffusion equations (1a) it follows

that ∂
∂t (
∑n
i=1 ρi) = 0, hence

∑n
i=1 ρi =

∑n
i=1 ρ

in
i = C due to (7a).

Conversely, to show the flux balance, first, we substitute the electro-chemical
potentials µi from (2b) in the constitutive law (1b) in the solid phase, and we put
the quasi–Fermi electro-chemical potentials µi from (3c) in (1b) in the pore phase.
The gradient of the pressure parameter is taken from the force balance (3b). As the
result we get the following expressions for the diffusion fluxes Ji in the two phases,
respectively:

Ji =

n∑
j=1

kBΘ∇ρ>j miD
ij in (0, T )× ω, (20a)

Ji =

n∑
j=1

[
kBΘ∇ρj +

1

NA
ρj

(
zj −

1

C

n∑
k=1

zkρk

)
∇ϕ
]>
miD

ij in (0, T )×Q. (20b)
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Second, equations (20) for Ji are summed over i = 1, . . . , n. Due to the weak
assumption on the diffusivity matrices (16) and the total mass balance (4a) we
derive in the solid phase (0, T )× ω that

n∑
i=1

Ji =

n∑
j=1

kBΘ∇ρ>j
n∑
i=1

miD
ij = kBΘ

[
∇
( n∑
j=1

ρj

)]>
D = kBΘ(∇C)>D = 0,

and similarly we get in the pore phase (0, T )×Q:

n∑
i=1

Ji =

n∑
i,j=1

[
kBΘ∇ρj +

1

NA
ρj

(
zj −

1

C

n∑
k=1

zkρk

)
∇ϕ
]>
miD

ij =

[
kBΘ

n∑
j=1

∇ρj +
1

NA

( n∑
j=1

zjρj −
1

C

( n∑
j=1

ρj

) n∑
k=1

zkρk

)
∇ϕ
]>
D =

1

NA

( n∑
j=1

zjρj −
n∑
k=1

zkρk

)
∇ϕ>D = 0,

since
∑n
j=1∇ρj = ∇(

∑n
j=1 ρj) = ∇C = 0. The proof is completed.

Using the assumptions of this section, next we formulate well-posedness results.

3. Well-posedness analysis. Existence and uniqueness of the weak solution of
the PNP problem were proved rigorously in [20, 21]. Therefore, here we formulate
the main results omitting proofs.

We start with eliminating the entropy variables p and µ from the problem (1)–
(3).

In the solid phase, substituting the expression (20a) for the diffusion fluxes Ji
into the Fick’s law (1a) results in linear diffusion equations:

∂ρi
∂t
− div

( n∑
j=1

kBΘ∇ρ>j miD
ij
)

= 0 for i = 1, . . . , n. (21)

Multiplying equations (21) as well as the linear Poisson equation (2a) with test
functions ρ̄i and ϕ̄, and integrating the result by parts over (0, T ) × ω due to the
interface conditions (10), we derive the following variational equations in the solid
phase:∫ T

0

∫
ω

{∂ρi
∂t

ρ̄i +

n∑
j=1

kBΘ∇ρ>j miD
ij∇ρ̄i

}
dx dt = −

∫ T

0

∫
∂ω−

gi(ρ̂, ϕ̂)ρ̄i dSx dt, (22a)

∫
ω

∇ϕ>A∇ϕ̄ dx−
∫
∂ω−

α[[ϕ]]ϕ̄ dSx = −
∫
∂ω−

gϕ̄ dSx, (22b)

for all test functions ρ̄i ∈ H1(0, T ;L2(ω)) ∩ L2(0, T ;H1(ω)) and ϕ̄ ∈ H1(ω) for
i = 1, . . . , n.

In the pore phase, we substitute equations (20b) for the diffusion fluxes Ji into
the Fick’s law (1a) and obtain the following nonlinear diffusion equations:

∂ρi
∂t
− div

( n∑
j=1

[
kBΘ∇ρj +

ρj
NA

(
zj −

1

C

n∑
k=1

zkρk

)
∇ϕ
]>
miD

ij
)

= 0. (23)
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After multiplication of equations (23) as well as the quasi-linear Poisson equation
(3a) by proper test functions, integration by parts in the pore phase using the
interface conditions (10) results in the variational equations as follows:∫ T

0

∫
Q

{∂ρi
∂t

ρ̄i +

n∑
j=1

[
kBΘ∇ρj +

ρj
NA

(
zj −

1

C

n∑
k=1

zkρk

)
∇ϕ
]>
miD

ij∇ρ̄i
}
dx dt

=

∫ T

0

∫
∂ω+

gi(ρ̂, ϕ̂)ρ̄i dSx dt, (24a)∫
Q

(
∇ϕ>A∇ϕ̄−

n∑
k=1

zkρkϕ̄
)
dx+

∫
∂ω+

α[[ϕ]]ϕ̄ dSx =

∫
∂ω+

gϕ̄ dSx, (24b)

for all test functions ρ̄i ∈ H1(0, T ;L2(Q)) ∩ L2(0, T ;H1(Q)) and ϕ̄ ∈ H1(Q) such
that ρ̄i = 0 on (0, T ) × ∂Ω and ϕ̄ = 0 on ∂Ω, for i = 1, . . . , n. We note that
the boundary integrals over ∂ω+ in (24) have the opposite sign to the respective
integrals over ∂ω− in (22).

Summing up equations (22) and (24) over the both phases, we arrive at the weak
formulation of the problem in the two-phase domain: Find discontinuous functions
ρ1, . . . , ρn, and ϕ such that

ρi ∈ L∞(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)), (25a)

ϕ ∈ L∞(0, T ;H1(Q)×H1(ω)), (25b)

ρi∇ϕi ∈ L2((0, T )× (Q ∪ ω)) for i = 1, . . . , n, (25c)

which satisfy the Dirichlet boundary conditions (8), the initial conditions (6), the
total mass and positivity constraints (4), as well as fulfill the following variational
equations:∫ T

0

∫
Q∪ω

{∂ρi
∂t

ρ̄i +

n∑
j=1

[
kBΘ∇ρj + 1QΥj(ρ)∇ϕ

]>
miD

ij∇ρ̄i
}
dx dt

=

∫ T

0

∫
∂ω

gi(ρ̂, ϕ̂)[[ρ̄i]] dSx dt, (26a)∫
Q∪ω

(∇ϕ>A∇ϕ̄− 1QΥ(ρ)ϕ̄) dx+

∫
∂ω

α[[ϕ]][[ϕ̄]] dSx =

∫
∂ω

g[[ϕ̄]] dSx, (26b)

for all test functions ρ̄i ∈ H1(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)) and
ϕ̄ ∈ H1(Q) × H1(ω) such that ρ̄i = 0 on (0, T ) × ∂Ω and ϕ̄ = 0 on ∂Ω, for all
indexes i = 1, . . . , n.

Here in (26) we have used the notation 1Q for the indicator function of the
domain Q such that 1Q = 1 in Q and zero otherwise (that is 1Q = 0 in ω), and the
notations Υj and Υ for short:

Υj(ρ) :=
ρj
NA

(
zj −

1

C
Υ(ρ)

)
, Υ(ρ) :=

n∑
k=1

zkρk. (27)

The system (25)–(27) can be extended with identities (2b), (3b), and (3c) to
describe entropy variables: the pressure parameter p in Q and the electro-chemical
potentials µ1, . . . , µn in Q and ω. Indeed, after solving the variational equations
(26) for ρ and ϕ, the pressure parameter p in the pore space Q can be recovered
from the force balance (3b). Taking the divergence on both sides of (3b) leads to
the Poisson equation −∆p = div

(
Υ(ρ)∇ϕ

)
which can be treated by standard tools.
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Avoiding the constraints (4) in the system, we will simplify the problem for
analysis.

3.1. The reduced problem formulation. In the reduced formulation, the con-
straints on the mass concentrations will be omitted. For this purpose we rewrite in
(0, T )× (Q∪ω) the governing equations (21) and (23) for ρi, and (2a) and (3a) for
ϕ as follows (where i = 1, . . . , n):

∂ρi
∂t
− div

n∑
j=1

[
kBΘ∇ρj + 1QῩj(ρ

+)∇ϕ
]>
miD

ij = 0, (28a)

− div(∇ϕ>A) = 1QῩ(ρ+). (28b)

Here “+” stands for the positive part of the function as introduced in (12), thus
allowing an arbitrary sign of ρ in (28). The auxiliary expressions Ῡj and Ῡ are
introduced as follows:

Ῡj(ρ) :=
C

NA

ρj∑n
k=1 ρk

(
zj −

1

C
Ῡ(ρ)

)
, Ῡ(ρ) :=

C∑n
k=1 ρk

n∑
k=1

zkρk. (29)

The key issue is that, if the total mass balance (4a) holds for ρ, then Ῡj = Υj and
Ῡ = Υ in (27) and (29). However, Ῡj and Ῡ are uniformly bounded such that

|Ῡj(ρ)| 6 CZ

NA
, |Ῡ(ρ)| 6 CZ, where Z :=

n∑
k=1

|zk|, for all ρ,

compared to Υj and Υ.
According to equations (28) we set the weak formulation of the reduced problem

in the two-phase domain by analogy with (25) and (26) as follows: Find discontin-
uous functions ρ1, . . . , ρn and ϕ such that

ρi ∈ L∞(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)), (30a)

ϕ ∈ L∞(0, T ;H1(Q)×H1(ω)), (30b)

ρ+i ∇ϕi ∈ L
2((0, T )× (Q ∪ ω)) for i = 1, . . . , n, (30c)

satisfying the Dirichlet boundary conditions (8), the initial conditions (6), and the
following variational equations for i = 1, . . . , n:∫ T

0

∫
Q∪ω

{∂ρi
∂t

ρ̄i +

n∑
j=1

[
kBΘ∇ρj + 1QῩj(ρ

+)∇ϕ
]>
miD

ij∇ρ̄i
}
dx dt

=

∫ T

0

∫
∂ω

gi(ρ̂, ϕ̂)[[ρ̄i]] dSx dt, (31a)

∫
Q∪ω

(
∇ϕ>A∇ϕ̄− 1QῩ(ρ+)ϕ̄

)
dx+ α

∫
∂ω

[[ϕ]][[ϕ̄]] dSx =

∫
∂ω

g[[ϕ̄]] dSx, (31b)

for all test functions ρ̄i ∈ H1(0, T ;L2(Q)× L2(ω)) ∩ L2(0, T ;H1(Q)×H1(ω)) and
ϕ̄ ∈ H1(Q) × H1(ω) such that ρ̄i = 0 on (0, T ) × ∂Ω and ϕ̄ = 0 on ∂Ω, for
i = 1, . . . , n.

The following theorem is based on the proof given in [20, 21].
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Theorem 3.1 (Existence of a weak solution of the reduced problem). Let the
growth condition (11a), the continuity property (11d), and the assumptions (15)
and (18) on the coefficient matrices hold. Then there exists a weak solution (30)
of the reduced problem (31) under the boundary (8) and initial (6) conditions. The
solution satisfies the a-priori estimates

‖ϕ‖2L∞(0,T ;H1(Q)×H1(ω)) 6 Kϕ,

‖ρ‖2L∞(0,T ;L2(Q)×L2(ω))d + ‖ρ‖2L2(0,T ;H1(Q)×H1(ω))d 6 Kc + γcKϕ,

where Kϕ, γc and Kc are positive constants.

(Total mass balance.) Under additional assumptions of the mass balance of the
boundary fluxes (11b) and the weak assumption on the diffusivity matrices (16), the
total mass balance

∑n
i=1 ρi = C holds almost everywhere on (0, T )× (Q ∪ ω).

(Weak maximum principle.) Under additional assumptions of the positive pro-
duction rate at the boundary (11c) and the strong assumption on the diffusivity
matrices (17), the mass concentrations are positive such that ρi > 0 almost every-
where on Q ∪ ω for a sufficiently small final time T > 0. They are non-negative
such that ρi > 0 almost everywhere in (0, T )× (Q ∪ ω) for any time t ∈ (0, T ) and
all indexes i = 1, . . . , n.

Theorem 3.1 ensures conditions which are sufficient for fulfillment of the con-
straints (4) on the mass concentrations. In this case the reduced and the complete
formulations of the generalized PNP problem are guaranteed to be equivalent.

Indeed, we show that the complete formulation (26) follows the reduced formu-
lation (31). By the positivity and total mass balance (4) we have

ρi = ρ+i and

n∑
i=1

ρ+i = C for i = 1, . . . , n,

which provides according to the definitions of Υ in (27) and Ῡ in (29) that

Υ(ρ) =

n∑
k=1

zkρk =
C∑n
k=1 ρ

+
k

n∑
k=1

zkρ
+
k = Ῡ(ρ+). (32)

The replacement of this expression in the variational equation (26b) implies (31b).
Analogously, for Υj and Ῡj it holds:

Υj(ρ) =
ρj
NA

(
zj −

1

C
Υ(ρ)

)
=

C

NA

ρ+j∑n
k=1 ρ

+
k

(
zj −

1

C
Ῡ(ρ+)

)
= Ῡj(ρ

+). (33)

Consequently, replacing Υj(ρ) in (26a) by Ῡj(ρ
+) implies (31a).

In return, (31) follows (26). Indeed, according to the conclusion of Theorem 3.1,
if the conditions ρi > 0 and

∑n
i=1 ρi = C are satisfied, then the equalities (32)

and (33) hold again, thus proving the equivalence which results in the following
corollary.

Corollary 1 (Existence of a weak solution of the complete problem). Let the as-
sumptions (15) and (18) on the coefficient matrices and all the assumptions (11)
on the nonlinear boundary terms hold.

1) If the weak assumption on diffusivity matrices (16) holds, then there exists
a weak solution (25) of the problem (26) with the boundary (8) and initial
(6) conditions subject to the constraint (4a). The solution is assured positive
locally in a neighbourhood of t = 0 in R+.
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2) If additionally the strong assumption on diffusivity matrices (17) holds, then
this ensures that the solution is non-negative globally in (0, T ) × (Q ∪ ω) for
an arbitrary final time T > 0.

Uniqueness of the solution is guaranteed under specific assumptions as follows.

Theorem 3.2 (Uniqueness of the solution). Let the solution component ϕ of the
problem (26) be smooth such that

ϕ ∈ L∞((0, T )× (Q ∪ ω)), ∇ϕ ∈ L∞((0, T )× (Q ∪ ω))d, (34)

and let the nonlinear functions ρ̂i 7→ gi( · , ϕ̂) of boundary fluxes be injective for all
i = 1, . . . , n and satisfy the following assumption: there exists a number M > 0,
such that it holds the estimate∣∣∣∣∣
∫
∂ω

n∑
i=1

(
gi(ρ̂

(1), ϕ̂(1))− gi(ρ̂(2), ϕ̂(2))
)
[[ρ

(1)
i − ρ

(2)
i ]] dSx

∣∣∣∣∣
6M

∫
Q∪ω

n∑
i=1

(ρ
(1)
i − ρ

(2)
i )2 dx, (35)

for all ϕ(1), ϕ(2) and ρ(1) > 0, ρ(2) > 0, satisfying
∑n
i=1 ρ

(1)
i =

∑n
i=1 ρ

(2)
i = C. In

this case, the weak solution (25) of the problem (26) is assured to be unique.

For example, conditions (35) are satisfied for functions gi from (14) implying that
for m = 1, 2:

g1(ρ̂(m), ϕ̂(m)) =
1

C4
(ρ1

(m)|∂ω+)(ρ2
(m)|∂ω+)(ρ1

(m)|∂ω−)(ρ2
(m)|∂ω−),

g2(ρ̂(m), ϕ̂(m)) = −g1(ρ̂(m), ϕ̂(m)), gi(ρ̂
(m), ϕ̂(m)) = 0 for i = 3, . . . , n,

due to the total mass balance and the positivity (4), while
∑n
k=1 ρk = C and

Gj(ρ) = ρj/
∑n
k=1 ρk = ρj/C. In this case, after summation over i = 1, 2, and

using the coarea formula, the integral in the left-hand side of (35) can be estimated
as follows:∣∣∣∣∫

∂ω

2∑
i=1

(
gi(ρ̂

(1), ϕ̂(1))− gi(ρ̂(2), ϕ̂(2))
)
[[ρ̃i]] dSx

∣∣∣∣
6M

[∫
∂ω+

(ρ̃21 + ρ̃22) dSx +

∫
∂ω−

(ρ̃21 + ρ̃22) dSx

]
6M

∫
Q∪ω

(ρ̃21 + ρ̃22) dx,

where we denoted ρ̃i := ρ
(1)
i − ρ

(2)
i for i = 1, 2, and M = 2/C. This implies the

uniform estimate (35).
If gi is not injective with respect to ρi, then we can give an example of possible

non-uniqueness of the solution in the particles. Indeed, assuming gi ≡ 0, we have

that ρ
(2)
i = ρ

(1)
i +const in ω solves (22a) when ρ

(1)
i is a solution of this equation.

3.2. Entropy and its dissipation. In this section we examine the
entropy-production rate which describes a dynamic stability of the system in the
sense of Lyapunov with respect to the increasing time t→∞.

First, we rewrite the Landau grand potential L in (5) by avoiding a constant
value. Indeed, according to the total mass balance (4a) we have∫

Q∪ω

n∑
i=1

kBNAΘρi dx =

∫
Q∪ω

kBNAΘC dx = const.
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Therefore, for the mass concentrations ρ satisfying the total mass balance and

positivity (4), from (5) we define the entropy S = − ∂L
∂Θ

in the pore phase Q as

follows:

S : R+ → R, S(t) := −kBNA
n∑
i=1

∫
Q

ρi ln(βiρi) dx.

We note that this function is non-positive, since ξ ln ξ > ξ − 1 holds for all ξ > 0,
then

S = −kBNA
n∑
i=1

∫
Q

1

βi
βiρi ln(βiρi) dx

6 −kBNA
n∑
i=1

∫
Q

1

βi
(βiρi − 1) dx = −kBNA

∫
Q

n∑
i=1

(
ρi −

1

βi

)
dx = 0,

if we assume in the total mass balance (4a) the density C =
∑n
i=1 1/βi.

Second, we introduce the function of dissipation D expressing the
entropy-production rate. Based on the formula for S and using

∑n
i=1 ∂ρi/∂t =

∂C/∂t = 0 we define:

D : R+ → R, D(t) :=
dS

dt
= −kBNA

n∑
i=1

∫
Q

∂ρi
∂t

[
ln(βiρi) + 1

]
dx

= −kBNA
n∑
i=1

∫
Q

∂ρi
∂t

ln(βiρi) dx. (36)

According to the second law of thermodynamics the entropy-production rate should
be non-negative. With the help of the following assumptions:

scalar diffusivity matrices: miD
ij = dδijI, (37a)

scalar permittivity matrix: A = aI, (37b)

boundary charge neutrality:
∑n
i=1 ziρ

D
i = 0 on ∂Ω, (37c)

constant boundary concentrations: ρDi = 1/βi on ∂Ω, (37d)

where I stands for the d-by-d identity matrix, below we calculate the function of
dissipation D.

Theorem 3.3 (Entropy-production rate). Under the assumptions on data (37), for
the mass concentrations ρi satisfying the total mass balance and positivity (4), the
entropy dissipation in the pore phase Q defined in (36) can be expressed equivalently
as follows:

D = D1 +D2, where (38)

D1 :=
dkB
a

∫
Q

( n∑
i=1

ziρi

)2
dx+ 4dk2BNAΘ

n∑
i=1

∫
Q

|∇(
√
ρi)|2 dx,

D2 :=
dkB
a

∫
∂ω+

(g − α[[ϕ]])

n∑
i=1

ziρi dSx − kBNA
n∑
i=1

∫
∂ω+

gi(ρ̂, ϕ̂) ln

(
ρi
ρDi

)
dSx.

Here, D1 > 0, and the dissipation inequality D > 0 can be assured by D2 such
that D2 > −D1. In particular, the entropy principle holds for α, g, and gi(ρ̂, ϕ̂)
sufficiently small such that D1 +D2 > 0.
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Proof. For a fixed time t ∈ (0, T ), we choose the test function ρ̄i = ln(βiρi) in Q
and ρ̄i = 0 in ω and insert it in (26a), since ln(βiρ

D
i ) = ln 1 = 0 at the boundary

∂Ω due to the assumption (37d). As the result we get:∫
Q

∂ρi
∂t

ln(βiρi) dx+ d

∫
Q

[
kBΘ∇ρi + Υi(ρ)∇ϕ

]>∇ρi
ρi

dx

=

∫
∂ω+

gi(ρ̂, ϕ̂) ln(βiρi) dSx, (39)

where the assumption (37a) on the diffusivity matrices was used. Summing of (39)
over i = 1, . . . , n, inserting the expressions (27) for Υi and using the expression of
dS/dt from (36), if follows that

− 1

kBNA

dS

dt
+ dkBΘ

n∑
i=1

∫
Q

|∇ρi|2

ρi
dx+

d

NA

∫
Q

{
∇ϕ>∇

( n∑
i=1

ziρi

)
− 1

C

n∑
k=1

zkρk∇ϕ>
n∑
i=1

∇ρi
}
dx =

n∑
i=1

∫
∂ω+

gi(ρ̂, ϕ̂) ln(βiρi) dSx. (40)

The last term in the left-hand side of (40) is zero due to the following identity∑n
i=1∇ρi = ∇

(∑n
i=1 ρi

)
= ∇C = 0.

Now we substitute in (26b) the test function ϕ̄ = 0 in ω and ϕ̄ =
∑n
i=1 ziρi in

Q, which is zero at ∂Ω due to the charge neutrality (37c), and obtain the equality

a

∫
Q

∇ϕ>∇
( n∑
i=1

ziρi

)
dx−

∫
Q

( n∑
i=1

ziρi

)2
dx =

∫
∂ω+

(g − α[[ϕ]])
( n∑
i=1

ziρi

)
dSx, (41)

where the assumption (37b) on the permittivity matrix was used. Equation (41)
is multiplied by the constant factor −d/(aNA) and the result is added to equation
(40). After multiplication with the constant factor kBNA and using the identity

|∇ρi|2/ρi =
(
2|∇(

√
ρi)|
)2

we arrive at the formula (38).
Since D1 > 0 and D2 has no definite sign, either positive or small D2 suffices the

dissipation inequality D = D1 +D2 > 0.

We note that a similar to (38) expression can be guaranteed also for the entropy-
production rate in the solid phase under the charge neutrality assumption such that∑n
i=1 ziρi = 0 in ω.

Discussion. In physical applications, the generalized Poisson–Nernst–Planck sys-
tem describes electro-chemical phenomena at the micro level. In the future work
we will derive rigorously the averaged model when the size of solid pores is set to
be small within the homogenization procedure. The result of the current paper
provides the rigorous mathematical formulation supported by the uniform a-priori
estimates for the inhomogeneous problem.
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[26] T. Roub́ıček, Incompressible ionized non-Newtonean fluid mixtures, SIAM J. Math. Anal.,

39 (2007), 863–890.
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