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A SHAPE-TOPOLOGICAL CONTROL PROBLEM FOR NONLINEAR
CRACK-DEFECT INTERACTION: THE ANTIPLANE

VARIATIONAL MODEL∗

VICTOR A. KOVTUNENKO† AND GÜNTER LEUGERING‡

Abstract. We consider the shape-topological control of a singularly perturbed variational
inequality. The geometry-dependent state problem that we address in this paper concerns a hetero-
geneous medium with a micro-object (defect) and a macro-object (crack) modeled in two dimensions.
The corresponding nonlinear optimization problem subject to inequality constraints at the crack is
considered within a general variational framework. For the reason of asymptotic analysis, singular
perturbation theory is applied, resulting in the topological sensitivity of an objective function rep-
resenting the release rate of the strain energy. In the vicinity of the nonlinear crack, the antiplane
strain energy release rate is expressed by means of the mode-III stress intensity factor that is exam-
ined with respect to small defects such as microcracks, holes, and inclusions of varying stiffness. The
result of shape-topological control is useful either for arrests or rise of crack growth.
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1. Introduction. This paper focuses on shape-topological control of geometry-
dependent variational inequalities, which are motivated by application to nonlinear
cracking phenomena.

From a physical point of view, both cracks and defects appear in heterogeneous
media and composites in the context of fracture. We refer the reader to [32] for a phe-
nomenological approach to fracture with and without defects. Particular cases for the
linear model of a stress-free crack interacting with inhomogeneities and microdefects
were considered in [12, 31, 33]. In the present paper we investigate the sensitivity of
a nonlinear crack with respect to a small object (called defect) of arbitrary physical
and geometric nature.

While the classic model of a crack is assumed linear, the physical consistency
needs nonlinear modeling. Nonlinear crack models subject to nonpenetration (con-
tact) conditions have been developed in [9, 16, 21, 22, 23, 25] and other works. Re-
cently, nonlinear cracks were bridged with thin inclusions under nonideal contact; see
[15, 19, 20]. In the present paper we confine ourselves to the antiplane model simpli-
fication; for this case, inequality-type constraints at the plane crack are examined in
[17, 18]. The linear crack also is included in this model as a particular case.

From a mathematical point of view, a topology perturbation problem is considered
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by varying defects posed in a cracked domain. For shape and topology optimization
of cracks, we refer the reader to [3, 5, 10] and to [35] for shape perturbations in a
general context. As the size of the defect tends to zero, we have to employ singular
perturbation theory. The respective asymptotic methods were developed in [1, 14, 30],
mostly for linear partial differential equations (PDEs) stated in singularly perturbed
domains. Nevertheless, nonlinear boundary conditions are admissible to impose at
those boundaries, which are separated from the varying object, as described in [6, 11].

From the point of view of shape and topology optimization, we investigate a novel
setting of interaction problems between dilute geometric objects. In a broad scope, we
consider a new class of geometry-dependent objective functions J which are perturbed
by at least two interacting objects Γ and ω such that

J : {Γ} × {ω} 7→ R, J = J(Γ, ω).

In particular, we examine how a perturbation of one geometric object, say ω, will
affect a topology sensitivity, which here is the derivative of J with respect to another
geometric object Γ. In our particular setting of the interaction problem, the symbol Γ
refers to a crack and ω refers to an inhomogeneity (defect) in a heterogeneous medium.

The principal difficulty is that Γ and ω enter the objective J in a fully implicit
way through a solution of a state (PDE) geometry-dependent problem. Therefore, to
get an explicit formula, we rely on asymptotic modeling which concerns the smallness
of ω. Moreover, we generalize the state problem by allowing it to be a variational
inequality. In fact, the variational approach to the perturbation problem allows us to
incorporate nonlinear boundary conditions stated at the crack Γ.

The outline of the paper is as follows.
To gain insight into the mathematical problem, in section 2 we start with a general

concept of shape-topological control for singular perturbations of abstract variational
inequalities. In sections 3 and 4 this concept is specified for the nonlinear dipole
problem of crack-defect interaction in two dimensions (2d).

For the antiplane model introduced in section 3, and further in section 4, we
provide the topological sensitivity of an objective function expressing the strain energy
release rate JSERR by means of the mode-III stress intensity factor JSIF, which is of
primary importance in engineering. The first order asymptotic term determines the
so-called topological derivative of the objective function with respect to diminishing
defects such as holes and inclusions of varying stiffness. We prove its semi-analytic
expression by using a dipole representation of the crack tip—the defect center with
the help of a Green-type (weight) function. The respective dipole matrix is inherently
related to polarization and virtual mass matrices; see [34].

Within an equivalent ellipse concept (see, for example, [8, 33]), we further derive
explicit formulae of the dipole matrix for the particular cases of the ellipse-shaped
defects. Holes and rigid inclusions are accounted for here as the two limit cases of the
stiffness parameters δ ↘ +0 and δ ↗∞, respectively (see Appendix A).

The asymptotic result of shape-topological control is useful to force either shield-
ing or amplification of an incipient crack by posing trial inhomogeneities (defects) in
the test medium.

2. Shape-topological control. In the abstract context of shape-topological
differentiability (see, e.g., [28, 29]), our construction can be outlined as follows.

We deal with variational inequalities of the following type: Find u0 ∈ K such
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that

〈Au0 −G, v − u0〉 ≥ 0 for all v ∈ K,(1)

with a linear strongly monotone operator A : H 7→ H?, fixedG ∈ H?, and a polyhedric
cone K ⊂ H, which are defined in a Hilbert space H and its dual space H?. The
solution of variational inequality (1) implies a metric projection PK : H? 7→ K,
G 7→ u0. Its differentiability properties are useful in control theory; see [28, 29].

For control in the “right-hand side” (the inhomogeneity) of (1), one employs
regular perturbations of G with a small parameter ε > 0 in the direction of h ∈ H? as
follows: Find uε ∈ K such that

〈Auε − (G+ εh), v − uε〉 ≥ 0 for all v ∈ K.(2)

Then the directional differentiability of PK(G+ εh) from the right as ε = +0 implies
the linear asymptotic expansion

uε = u0 + εq + o(ε) in H as ε↘ +0,(3)

with q ∈ S(u0) uniquely determined on a proper convex cone S(u0), K ⊂ S(u0) ⊂ H,
and depending on u0 and h; see [28, 29] for details.

In contrast, our underlying problem implies singular perturbations and the control
of the operator A of (1); namely, find uε ∈ K such that

〈Aεuε −G, v − uε〉 ≥ 0 for all v ∈ K,(4)

where Aε = A + εFε, with a bounded linear operator Fε : H 7→ H? such that Aε is
strongly monotone and uniformly in ε, and ε‖Fε‖ = O(ε). In this case, we arrive at
the nonlinear representation in ε↘ +0,

uε = u0 + εq̃ε + O(f(ε)) in H, ε‖q̃ε‖ = O(ε).(5)

In (5) q̃ε depends on u0 and Fε. A typical example, q̃ε(x) = q̃
(
x
ε

)
, implies the existence

of a boundary layer, e.g., in homogenization theory. In contrast to the differential q
in (3), a representative εq̃ε is not uniquely defined by ε but depends also on o(f(ε))-
terms. Examples are slant derivatives. The asymptotic behavior f(ε) of the residual
in (5) may differ for concrete problems. Thus, in the subsequent analysis, f(ε) = ε2

in 2d.
In order to find the representative q̃ε in (5), we suggest sufficient conditions (6)–

(9) below.

Proposition 1. If the following relations hold:

u0 + εq̃ε ∈ K,(6)

uε − εq̃ε ∈ K,(7)

〈Aεq̃ε + Fεu
0 −Rε, v〉 = 0 for all v ∈ H,(8)

ε‖Rε‖ = O(f(ε)),(9)

then (5) holds for the solutions of variational inequalities (1) and (4).
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Proof. Indeed, plugging test functions v = uε − εq̃ε ∈ K in (1) due to (7) and
v = u0 + εq̃ε ∈ K in (4) due to (6), after summation

〈Aε(uε − u0) + εFεu
0, uε − u0 − εq̃ε〉 ≤ 0,

and substituting v = uε − u0 − εq̃ε in (8) multiplied by −ε, this yields

〈Aε(uε − u0 − εq̃ε) + εRε, u
ε − u0 − εq̃ε〉 ≤ 0.

Applying the Cauchy–Schwarz inequality here, together with (9), shows (5) and com-
pletes the proof.

We consider shape-topological control by means of mathematical programs with
equilibrium constraints (MPEC) as follows: Find optimal parameters p ∈ P from a
feasible set P such that

minimize
p∈P

J(u(ε,p)) subject to Π(u(ε,p)) = min
v∈Kp

Π(v).(10)

In (10) the functional Π : H 7→ R, Π(v) := 〈 12Aεv−G, v〉 represents the strain energy
(SE) of the state problem such that variational inequality (4) implies the first order
optimality condition for the minimization of Π(v) over Kp ⊂ H. The multiparameter
p may include the right-hand side G, geometric variables, and other data of the
problem. The optimal value function J in (10) is motivated by underlying physics,
which we will specify in examples below.

The main difficulty of the shape-topological control is that geometric parameters
are involved in MPEC in a fully implicit way. In this respect, relying on asymptotic
models under small variations ε of geometry is helpful to linearize the optimal value
function. See, e.g., the application of topological sensitivity to inverse scattering
problems in [26].

In order to expand (10) in ε ↘ +0, the uniform asymptotic expansion (5) is
useful; however, it is varied by f(ε). The variability of f(ε) is inherent here due to
nonuniqueness of a representative εq̃ε defined up to the o(f(ε))-terms. As an alter-
native, developing a variational technique related to Green functions and truncated
Fourier series, in section 4.2 we derive local asymptotic expansions in the near-field,
which are uniquely determined.

Since Proposition 1 gives only sufficient conditions for (5), in the following sec-
tions we suggest a method of topology perturbation to find the correction q̃ε for the
underlying variational inequality.

3. Nonlinear problem of crack-defect interaction in 2d. We start with
the two-dimensional geometry description.

3.1. Geometric configuration. For x = (x1, x2)> ∈ R2 we set the semi-infinite
straight crack Γ∞ = {x ∈ R2 : x1 < 0, x2 = 0}, with the unit normal vector n =
(0, 1)> at Γ∞. Let Ω ⊂ R2 be a bounded domain, with the Lipschitz boundary ∂Ω
and the normal vector n = (n1, n2)> at ∂Ω. We assume that the origin 0 ∈ Ω and
assign it to the tip of a finite crack Γ := Γ∞∩Ω. An example geometric configuration
is drawn in Figure 1.

Let x0 be an arbitrarily fixed point in the cracked domain Ω \ Γ. We associate
the poles 0 and x0 with two polar coordinate systems x = ρ(cos θ, sin θ)>, ρ > 0,
θ ∈ [−π, π], and x − x0 = ρ0(cos θ0, sin θ0)>, ρ0 > 0, θ0 ∈ (−π, π]. Here x0 =
r(cosφ, sinφ)> is given by r > 0 and φ ∈ (−π, π) as depicted in Figure 1(a). We
assign x0 to the center of a defect ωε(x

0) posed in Ω as illustrated in Figure 1(b).
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Fig. 1. Example geometric configuration.

More precisely, let a trial geometric object be given by the compact set ωε(x
0) =

{x ∈ R2 : x−x
0

ε ∈ ω} which is parametrized by an admissible triple of the shape ω ∈ Θ,
center x0 ∈ Ω\Γ, and size ε > 0. Let Bρ(x

0) denote the disk around x0 of radius ρ. For
admissible shapes Θ we choose a domain ω such that 0 ∈ ω ⊆ B1(0) and ρ = 1 is the
minimal radius among all bounding discs Bρ(0) ⊃ ω. Thus, the shapes are invariant
to translations and isotropic scaling, so that we express them with the equivalent
notation ω = ω1(0). Admissible geometric parameters (ω, ε, x0) ∈ Θ × R+ × (Ω \ Γ)
should satisfy the consistency condition ωε(x

0) ⊂ Bε(x0) ⊂ Ω \ Γ.
We note that the motivation of inclusion ω ⊆ B1(0) (but not ω ⊇ B1(0)) is to

separate the far-field R2 \B1(0) from the near-field B1(0) \ ω of the object ω.
In the following, we assume that the Hausdorff measure meas2(ω) > 0 and the

boundary ∂ωε(x
0) is Lipschitz continuous, and we assign n to the unit normal vector

at ∂ωε(x
0), which points outward toward ωε(x

0). In a particular situation, our con-
sideration admits also the degenerate case when ωε(x

0) shrinks to a one-dimensional
Lipschitz manifold of codimension one in R2, thus allowing for defects such as curvilin-
ear inclusions. The degenerate case will appear in more detail when shrinking ellipses
to line segments, as described in Appendix A.

3.2. Variational problem. In the reference configuration of the cracked do-
main Ω \Γ with the fixed inclusion ωε(x

0) we state a constrained minimization prob-
lem related to a PDE, which here is a model problem with the scalar Laplace operator.
Motivated by three-dimensional fracture problems with possible contact between crack
faces, as described in [17], in the antiplane framework of linear elasticity we look for
admissible displacements u(x) in Ω \ Γ which are restricted along the crack by the
inequality constraint

(11) [[u]] = u|Γ+ − u|Γ− ≥ 0 on Γ.

The positive Γ+
∞ (hence, its part Γ+ = Γ+

∞ ∩ Ω) and the negative Γ−∞ (hence, Γ− =
Γ−∞ ∩ Ω) crack faces are distinguished as the limit of points (x1, x2)> for x1 < 0 and
x2 → 0, when x2 > 0 and x2 < 0, respectively; see Figure 1.

Now we get a variational formulation of a state problem due to the unilateral
constraint (11).

Let the external boundary ∂Ω consist of two disjoint parts ΓN and ΓD. We
assume that the Dirichlet part has the positive measure meas1(ΓD) > 0; otherwise,
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we should exclude the nontrivial kernel (the rigid displacements) for coercivity of the
objective functional Π in (13) below. The set of admissible displacements contains
functions u from the Sobolev space

H(Ω \ Γ) = {u ∈ H1(Ω \ Γ) : u = 0 on ΓD}

such that (11) holds as follows:

K(Ω \ Γ) = {u ∈ H(Ω \ Γ) : [[u]] ≥ 0 on Γ}.

This is a convex cone in H(Ω \ Γ)—moreover, a polyhedric cone; see [28, 29]. We
note that the jump of the traces at Γ is well-defined in the Lions–Magenes space

[[u]] ∈ H1/2
00 (Γ); see [16, section 1.4].

Let µ > 0 be a fixed material parameter (the Lamé constant) in the homogeneous
reference domain Ω \Γ. We distinguish the inhomogeneity with the help of a variable
parameter δ > 0 such that the characteristic function is given by

(12) χδ
ωε(x0)

(x) := 1− (1− δ)1
ωε(x0)

=

{
1, x ∈ Ω \ ωε(x0),
δ, x ∈ ωε(x0).

In the following we use the notation µχδ
ωε(x0)

, which implies, due to (12), the material

parameter µ in the homogeneous domain Ω \ ωε(x0), and the material parameter µδ
in ωε(x

0) characterizing stiffness of the inhomogeneity. The parameter δ accounts
for the following three physical situations: inclusions of varying stiffness for finite
0 < δ <∞, holes for δ ↘ +0, and rigid inclusions for δ ↗ +∞.

For given boundary traction g ∈ L2(ΓN ), the SE of the heterogeneous medium is
described by the functional Π : H(Ω \ Γ) 7→ R,

Π(u; Γ, ωε(x
0)) :=

1

2

∫
Ω\Γ

µχδ
ωε(x0)

|∇u|2 dx−
∫

ΓN

gu dSx,(13)

which is quadratic and strongly coercive over H(Ω\Γ). Henceforth, the Babuška–Lax–
Milgram theorem guarantees the unique solvability of the constrained minimization
of Π over K(Ω \ Γ), which implies the variational formulation of the heterogeneous

problem as follows: Find u(ω,ε,x0,δ) ∈ K(Ω \ Γ) such that∫
Ω\Γ

µχδ
ωε(x0)

(∇u(ω,ε,x0,δ))>∇(v − u(ω,ε,x0,δ)) dx

≥
∫

ΓN

g(v − u(ω,ε,x0,δ)) dSx for all v ∈ K(Ω \ Γ).

(14)

The variational inequality (14) describes the weak solution of the following bound-
ary value problem:

(15a) −∆u(ω,ε,x0,δ) = 0 in Ω \ Γ,

(15b) u(ω,ε,x0,δ) = 0 on ΓD, µ∂u
(ω,ε,x0,δ)

∂n = g on ΓN ,[[
∂u(ω,ε,x0,δ)

∂n

]]
= 0, [[u(ω,ε,x0,δ)]] ≥ 0,

∂u(ω,ε,x0,δ)

∂n
≤ 0,

∂u(ω,ε,x0,δ)

∂n
[[u(ω,ε,x0,δ)]] = 0 on Γ,

(15c)
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∂u(ω,ε,x0,δ)

∂n

∣∣∣∣
∂ωε(x0)+

− δ ∂u
(ω,ε,x0,δ)

∂n

∣∣∣∣
∂ωε(x0)−

= 0,

[[u(ω,ε,x0,δ)]] = 0 on ∂ωε(x
0).

(15d)

In (15d) the jump across the defect boundary is defined as

(16) [[u]] = u|
∂ωε(x0)+

− u|
∂ωε(x0)−

on ∂ωε(x
0),

where + and − correspond to the chosen direction of the normal n, which points
outward toward ωε(x

0); see Figure 1(b).
We remark that the L2-regularity of the normal derivatives at the boundaries ΓN ,

Γ, and ∂ωε(x
0) is needed in order to have strong solutions in (15). The exact sense

of the boundary conditions (15c) can be given for the traction ∂u(ω,ε,x0,δ)

∂n in the dual

space of H
1/2
00 (Γ), which is denoted by H

1/2
00 (Γ)?, to (15b) for ∂u(ω,ε,x0,δ)

∂n in the dual

space of H
1/2
00 (ΓN ), and to (15d) for ∂u(ω,ε,x0,δ)

∂n |
∂ωε(x0)±

∈ H−1/2(∂ωε(x
0)). Moreover,

the solution u(ω,ε,x0,δ) is H2-smooth away from the crack tip, boundary of defect, and
possible irregular points of external boundary; for details see [16, section 2].

If ε ↘ +0, similarly to (14) there exists the unique solution of the homogeneous
problem as follows: Find u0 ∈ K(Ω \ Γ) such that for all v ∈ K(Ω \ Γ),∫

Ω\Γ
µ(∇u0)>∇(v − u0) dx ≥

∫
ΓN

g(v − u0) dSx,(17)

which implies the boundary value problem

(18a) −∆u0 = 0 in Ω \ Γ,

(18b) u0 = 0 on ΓD, µ
∂u0

∂n
= g on ΓN ,[[

∂u0

∂n

]]
= 0, [[u0]] ≥ 0,

∂u0

∂n
≤ 0,

∂u0

∂n
[[u0]] = 0 on Γ,(18c) [[

∂u0

∂n

]]
= 0, [[u0]] = 0 on ∂ωε(x

0).(18d)

We note that (18d) is written here for comparison with (15d), and it implies that the

solution u0 is C∞-smooth in Bε(x
0) ⊃ ωε(x0) compared to u(ω,ε,x0,δ).

Using Green’s formulae separately in (Ω\Γ)\ωε(x0) and in ωε(x
0), the variational

inequality (17) can be transformed into an equivalent variational inequality depending
on the parameter δ,∫

Ω\Γ
µχδ

ωε(x0)
(∇u0)>∇(v − u0) dx ≥

∫
ΓN

g(v − u0) dSx

− (1− δ)
∫
∂ωε(x0)

µ
∂u0

∂n
(v − u0) dSx for all v ∈ K(Ω \ Γ).

(19)

The left-hand side of (19) has the same operator as (14), and this fact will be used

in section 4 for asymptotic analysis of the solution u(ω,ε,x0,δ).
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4. Topology asymptotic analysis. To examine the heterogeneous state (14)
in comparison with the homogeneous state (17) in an explicit way, we rely on small
defects; thus, passing ε ↘ +0 leads to the first order asymptotic analysis. First, for
the solution of the state problem, we obtain a two-scale asymptotic expansion, which
is related to Green’s functions. For this reason we apply the singular perturbation
theory and endow it with variational arguments. Second, with its help, we provide a
topology sensitivity of the geometry-dependent objective functions representing the
mode-III stress intensity factor (SIF) and the strain energy release rate (SERR), which
are the primary physical characteristics of fracture.

4.1. Asymptotic analysis of the solution. We start with the inner asymp-
totic expansion of the solution u0 of the homogeneous variational inequality (17),
which is C∞-smooth in the ball BR(x0) of the radius R < min{r, dist(x0, ∂Ω)}. We
recall that r is the distance of the defect center x0 from the crack tip at the origin 0.
Due to (18a), we have the following representation (see, e.g., [14, section 3]):

u0(x) = u0(x0) +∇u0(x0)>(x− x0) + Ux0 (x) for x ∈ BR(x0),∫ π

−π
Ux0 dθ0 =

∫ π

−π
Ux0

x− x0

ρ0
dθ0 = 0, Ux0 = O

(
ρ2

0

)
, ∇Ux0 = O(ρ0).

(20)

From (20) we infer the expansion of the traction

∂u0

∂n
= ∇u0(x0)>n+

∂Ux0

∂n
,

∂Ux0

∂n
= O(ε) on ∂ωε(x

0),(21)

which will be used further for expansion of the right-hand side in (19).
Moreover, to compensate the O(1)-asymptotic term ∇u0(x0)>n in (21), we will

need to construct a boundary layer near ∂ωε(x
0). For this task, we stretch the coor-

dinates as y = x−x0

ε , which implies the diffeomorphic map ωε(x
0) 7→ ω1(0) ⊂ B1(0).

In the following, the stretched coordinates y = (y1, y2)> = |y|(cos θ0, sin θ0)> refer
always to the infinite domain. In the whole R2 we introduce the weighted Sobolev
space

H1
ν (R2) = {v : νv,∇v ∈ L2(R2)}, ν(y) =

1

|y| ln |y|
in R2 \B2(0),

with the weight ν ∈ L∞(R2) due to the weighted Poincaré inequality in exterior
domains; see [4]. In this space, excluding constant polynomials P0, we state the fol-
lowing auxiliary result, which is closely related to the generalized polarization tensors
considered in [2, section 3].

Lemma 1. There exists the unique solution of the following variational problem:

Find w ∈
(
H1
ν (R2) \ P0

)2
, w = (w1, w2)>(y), such that∫

R2

χδ
ω1(0)
∇w>i ∇v dy = (1− δ)

∫
∂ω1(0)

niv dSy for all v ∈ H1
ν (R2),(22)

for i = 1, 2, which satisfies the Laplace equation in R2 \ ∂ω1(0) and the following
transmission boundary conditions across ∂ω1(0):

∂w

∂n
|∂ω1(0)+ − δ ∂w

∂n
|∂ω1(0)− = −(1− δ)n, w|∂ω1(0)+ − w|∂ω1(0)− = 0.(23)



A NONLINEAR CRACK–DEFECT INTERACTION PROBLEM 1337

After rescaling, the far-field representation holds as follows:

w

(
x− x0

ε

)
=

ε

2π
A(ω,δ)

x− x0

ρ2
0

+W (x) for x ∈ R2 \Bε(x0),∫ π

−π
W dθ0 =

∫ π

−π
W
x− x0

ρ0
dθ0 = 0, W = O

((
ε

ρ0

)2)
, ∇W = O

(
ε2

ρ3
0

)
,

(24)

where the dipole matrix A(ω,δ) ∈ Sym(R2×2) has entries (i, j = 1, 2) as follows:

(A(ω,δ))ij = (1− δ)
{
δij meas2(ω1(0)) +

∫
∂ω1(0)

winj dSy

}
.(25)

Moreover, A(ω,δ) ∈ Spd(R2×2) if δ ∈ [0, 1) and meas2(ω1(0)) > 0.

Proof. The existence of a solution to (22) up to a free constant follows from the
results of [4]. Following [10, Lemma 3.2], below we prove the far-field pattern (25) in
representation (24).

For this reason, we split R2 into the far-field R2 \B1(0) and the near-field B1(0).
Since w from (22) solves the Laplace equation, in the far-field it exhibits the outer
asymptotic expansion

w(y) =
1

2π
A(ω,δ)

y

|y|2
+W (y) for y ∈ R2 \B1(0),∫ π

−π
W dθ0 =

∫ π

−π
W

y

|y|
dθ0 = 0, W = O

((
1

|y|

)2)
, ∇W = O

((
1

|y|

)3)
,

(26)

which implies (24) after rescaling y = x−x0

ε .
In the near-field, we apply the second Green’s formula for i, j = 1, 2,

0 =

∫
B1(0)

χδ
ω1(0)
{∆wiyj − wi∆yj} dy =

∫
∂B1(0)

{
∂wi
∂|y|

yj − wi
∂yj
∂|y|

}
dSy

−
∫
∂ω1(0)

{[
∂wi
∂n
|∂ω1(0)+ − δ ∂wi

∂n
|∂ω1(0)−

]
yj − (1− δ)wi

∂yj
∂n

}
dSy,

and substitute here the transmission conditions (23) to derive that

−
∫
∂B1(0)

{
∂wi
∂|y|

− wi
}
yj
|y|

dSy = (1− δ)
∫
∂ω1(0)

{
niyj + winj

}
dSy.(27)

We apply to (27) the divergence theorem∫
∂ω1(0)

niyj dSy =

∫
ω1(0)

yj,i dy = δij meas2(ω1(0))

and substitute (26) to calculate the integral over ∂B1(0) as

−
∫
∂B1(0)

{
∂wi
∂|y|

− wi
}
yj
|y|

dSy =
1

π

∫ π

−π
(A(ω,δ))ik

yk
|y|

yj
|y|

dθ0 = (A(ω,δ))ij ,

which implies (25).
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We now prove the symmetry and positive definiteness properties of A(ω,δ). In-
serting v = wj , j = 1, 2, into (22) we have∫

R2

χδ
ω1(0)
∇w>i ∇wj dy = (1− δ)

∫
∂ω1(0)

niwj dSy = (1− δ)
∫
∂ω1(0)

njwi dSy,

and hence the symmetry (A(ω,δ))ij = (A(ω,δ))ji for i, j = 1, 2 in (25). For arbitrary
z ∈ R2, from (22) we have

0 ≤
∫
R2

χδ
ω1(0)
|∇(z1w1 + z2w2)|2 dy = (1− δ)

2∑
i,j=1

∫
∂ω1(0)

wizinjzj dSy.

Henceforth, multiplying (25) with zizj and summing the result over i, j = 1, 2, it
follows that

2∑
i,j=1

(A(ω,δ))ijzizj = (1− δ)
{
|z|2 meas2(ω1(0)) +

2∑
i,j=1

∫
∂ω1(0)

wizinjzj dSy

}
≥ (1− δ)|z|2 meas2(ω1(0)) > 0

if 1− δ > 0 and meas2(ω1(0)) > 0. This completes the proof.

It is important to comment on the transmission conditions (23) in relation to the
stiffness parameter δ > 0. On the one hand, for δ ↘ +0 implying that ω1(0) is a hole,
conditions (23) split into

w− = w+ on ∂ω1(0)−,
∂w

∂n

+

= −n on ∂ω1(0)+,(28)

where the indexes ± mark the traces of the functions in (28) at ∂ω1(0)±, respectively.
Henceforth, to find A(ω,δ) in (25) instead of (22), it suffices to solve the exterior

problem under the Neumann condition (28) as follows: Find w ∈
(
H1
ν (R2\ω1(0))\P0

)2
such that for i = 1, 2,∫

R2\ω1(0)

∇w>i ∇v dy = −
∫
∂ω1(0)

niv dSy for all v ∈ H1
ν (R2 \ ω1(0)).

In this case, A(ω,δ) is called the virtual mass or the added mass matrix according to
[34].

On the other hand, for δ ↗ +∞ implying that ω1(0) is a rigid inclusion, conditions
(23) read as

∂w

∂n

−
= −n on ∂ω1(0)−, w+ = w− on ∂ω1(0)+.(29)

In this case, (22) is split into the interior Neumann problem in ω1(0), and the exterior
Dirichlet problem in R2\ω1(0). The respective A(ω,δ) is called the polarization matrix
in [34].

Thus, we have the following.

Corollary 1. The auxiliary problem (22) under the transmission boundary con-
ditions (23) describes the general case of inclusions of varying stiffness, and it accounts
for holes (hard obstacles in acoustics) under the Neumann condition (28) as well as
rigid inclusions (soft obstacles in acoustics) under the Dirichlet condition (29) as the
limit cases of the stiffness parameters δ ↘ +0 and δ ↗ +∞, respectively.
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With the help of the boundary layer w constructed in Lemma 1, we can represent
the first order asymptotic term in the expansion of the perturbed solution u(ω,ε,x0,δ)

as ε↘ +0 given in the following theorem.

Theorem 1. The solution u(ω,ε,x0,δ) ∈ K(Ω \ Γ) of the heterogeneous problem
(14), the solution u0 of the homogeneous problem (17), and the rescaled solution

wε(x) := w(x−x
0

ε ) of (22) admit the uniform asymptotic representation for x ∈ Ω \ Γ
as follows:

u(ω,ε,x0,δ)(x) = u0(x) + ε∇u0(x0)>wε(x)ηΓD
(x) +Q(x),(30)

where ηΓD
is a smooth cut-off function which is equal to one except in a neighborhood

of the Dirichlet boundary ΓD on which η
ΓD

= 0. The residual Q ∈ H(Ω \ Γ) and wε

exhibit the following asymptotic behavior as ε↘ +0:

‖Q‖
H1(Ω\Γ)

= O(ε2), wε = O(ε) far away from ωε(x
0).(31)

Proof. Since [[wε]] = 0 on Γ∞, we can substitute v = u0 + ε∇u0(x0)>wεη
ΓD
∈

K(Ω \Γ) in (14) and v = u(ω,ε,x0,δ)− ε∇u0(x0)>wεη
ΓD
∈ K(Ω \Γ) in (19) as the test

functions, which yields two inequalities. Summing them together and dividing by µ,
we get ∫

Ω\Γ
χδ
ωε(x0)

∇(u(ω,ε,x0,δ) − u0)>∇Qdx ≤ (1− δ)
∫
∂ωε(x0)

∂u0

∂n
QdSx,(32)

where Q := u(ω,ε,x0,δ) − u0(x)− ε∇u0(x0)>wεη
ΓD
∈ H(Ω \ Γ) is defined according to

(30).

After rescaling y = x−x0

ε , with the help of the Green’s formula in Ω \ Γ, from
(22) we obtain the following variational equation written in the bounded domain for

wεi (x) := wi(
x−x0

ε ), i = 1, 2:∫
Ω\Γ

χδ
ωε(x0)

(∇wεi )>∇v dx =
1− δ
ε

∫
∂ωε(x0)

niv dSx

+

∫
ΓN

∂wεi
∂n

v dSx −
∫

Γ

∂wεi
∂n

[[v]] dSx for all v ∈ H(Ω \ Γ).

(33)

Now, inserting v = Q into (33) after multiplication by the vector ε∇u0(x0) and
subtracting it from (32) results in the following residual estimate:∫

Ω\Γ
χδ
ωε(x0)

|∇Q|2 dx ≤ (1− δ)
∫
∂ωε(x0)

(
∂u0

∂n
−∇u0(x0)>n

)
QdSx

− ε
∫

ΓN

∂

∂n

(
∇u0(x0)>wε

)
QdSx + ε

∫
Γ

∂

∂n

(
∇u0(x0)>wε

)
[[Q]] dSx

+ ε

∫
supp(1−η

ΓD
)

χδ
ωε(x0)

∇
(
∇u0(x0)>wε(1− η

ΓD
)
)>∇Qdx.

Here we apply the expansion (21) at ∂ωε(x
0) which implies that ‖∇Q‖

L2(Ω\Γ)
= O(ε2)

and hence the first estimate in (31). The pointwise estimate wε = O(ε) holds far away
from ωε(x

0) due to (24). The proof is complete.

In the following sections we apply Theorem 1 for the topology sensitivity of the
objective functions which depend on both the crack Γ and the defect ωε(x

0).
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4.2. Topology sensitivity of the SIF-function. We start with the notation
of the stress intensity factor (SIF). At the crack tip 0, where the stress is concentrated,
from (15a) and (15c) we infer the inner asymptotic expansion (compare to (20)) for
x ∈ BR(0) \ Γ with R = min{r, dist(0, ∂Ω)} as follows:

u(ω,ε,x0,δ)(x) = u(ω,ε,x0,δ)(0) +
1

µ

√
2

π
c
(ω,ε,x0,δ)
Γ

√
ρ sin

θ

2
+ U(x),∫ π

−π
U dθ =

∫ π

−π
U

(
cos

θ

2
, sin

θ

2

)>
dθ = 0, U = O(ρ), ∇U = O(1).

(34)

In the fracture literature, the factor c
(ω,ε,x0,δ)
Γ in (34) is called SIF; here it is due

to the mode-III crack in the antiplane setting of the spatial fracture problem. The
SIF characterizes the main singularity at the crack tip. Moreover, the inequality
conditions (15c) require necessarily that

c
(ω,ε,x0,δ)
Γ ≥ 0.(35)

For the justification of (34) and (35) we refer the reader to [17, 18], where the
homogeneous nonlinear model with rectilinear crack (18) was considered. Indeed,
this asymptotic result is stated by the method of separation of variables locally in
the neighborhood BR(0) \ Γ away from the inhomogeneity ωε(x

0). Here, the govern-
ing equations (15a) and (15c) for u0 coincide with (18a) and (18c) for the solution

u(ω,ε,x0,δ) of the inhomogeneous problem. Therefore, the inner asymptotic expansions
(34) of u(ω,ε,x0,δ) and (48) of u0 are similar and differ only by constant parameters
implying the SIF. For a respective mechanical confirmation, see [27].

Below we sketch a Saint–Venant estimate proving the bound of ∇U in (34). Since
∆U = 0, U is a harmonic function which is infinitely differentiable in BR(0) \ Γ, and
integrating by parts we derive the following for t ∈ (0, R):

I(t) :=

∫
Bt(0)\Γ

|∇U |2 dx =

∫
∂Bt(0)

∂U

∂ρ
U dSx −

∫
Bt(0)∩Γ

∂U

∂n
[[U ]] dSx

≤
∫ π

−π

∂U

∂ρ
U tdθ ≤

∫ π

−π

(
t

2

(
∂U

∂ρ

)2

+
1

2t
U2

)
tdθ ≤

∫ π

−π

(
t

2

(
∂U

∂ρ

)2

+
1

2t

(
∂U

∂θ

)2)
tdθ

=
t

2

∫
∂Bt(0)

|∇U |2 dSx =
t

2

d

dt
I(t).

Consequently, here we have used conditions (15c), justifying that at Bt(0) ∩ Γ,

0 =
∂u(ω,ε,x0,δ)

∂n
[[u(ω,ε,x0,δ)]] =

∂U

∂n

(
2

µ

√
2

π
c
(ω,ε,x0,δ)
Γ

√
ρ+ [[U ]]

)
≤ ∂U

∂n
[[U ]]

due to (34) and (35), Young’s and Wirtinger’s inequalities, and the co-area formula.
Integrating this differential inequality results in the estimate I(t) ≤ ( tR )2I(R), which
implies I(t) = O(t2) and follows ∇U = O(1) in (34).

From a mathematical viewpoint, the factor in (34) can be determined in the dual
space of H(Ω \ Γ) through the so-called weight function, which we introduce next.
While the existence of a weight function is well known for the linear crack problem
(e.g., in [30, Chapter 6]), here we modify it for the underlying nonlinear problem. In
fact, the modified weight function ζ provides formula (43) representing the SIF.
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Let η(ρ) be a smooth cut-off function supported in the disk B2R(0) ⊂ Ω, η ≡ 1
in BR(0), and R > r, where r > 0 always stands for the distance to the defect. With
the help of the cut-off function, in Ω we extend the tangential vector τ from the crack
Γ by the vector

V (x) := τ η(ρ), τ = (1, 0)>,(36)

which is used further for the shape sensitivity in (54) following the velocity method
commonly adopted in shape optimization [35]. Using the notation of matrices for

D(V ) := div(V ) Id− ∂V

∂x
− ∂V

∂x

>
∈ Sym(R2×2),(37)

where Id means the identity matrix, the coincidence set

Ξ := {x ∈ Γ : [[u0]] = 0},

and the “square-root” function S(x) :=
√

2
π

√
ρ sin θ

2 , we formulate the auxiliary vari-

ational problem as follows: Find ξ ∈ H(Ω \ Γ) such that

[[ξ]] = [[V >∇S]] on Ξ,

∫
Ω\Γ
∇ξ>∇v dx = −

∫
Ω\Γ
∇S>D(V )∇v dx

for all v ∈ H(Ω \ Γ) with [[v]] = 0 on Ξ,

(38)

where V >∇S = − 1√
2π

1√
ρ sin θ

2η is the directional derivative of S with respect to V ,

and [[V >∇S]] = −
√

2
πρη.

Remark 1. Due to the inhomogeneous condition stated at Ξ in (38), to provide

[[ξ]] ∈ H
1/2
00 (Γ) we assume that the coincidence set Ξ where [[u0]] = 0 is separated

from the crack tip, i.e., 0 6∈ Ξ. For example, this assumption is guaranteed for the
SIF c0Γ > 0 (see the definition of c0Γ in (48)) when the crack is open in the vicinity.
Otherwise, if the crack is closed such that [[u0]] ≡ 0 in a neighborhood [−C, 0]×{0} ⊂ Γ
of the crack tip (0, 0), then the crack problem can be restated for the crack tip (−C, 0).

In order to get the strong formulation, we use the following identities in the
right-hand side of (38):

div
(
∇S>D(V )

)
= div(V )∆S −∆V >∇S

− 2
(
∇V >1 ∇S,1 +∇V >2 ∇S,2

)
= −∆(V >∇S),

where we have applied ∆S = 0 in Ω \ Γ, and

(
∇S>D(V )

)
n = 0 = − ∂

∂n
(V >∇S) on Γ±

due to V2 = 0, ∂V
∂n = 0, and ∂S

∂n = 0, recalling that ∂
∂n = − 1

ρ
∂
∂θ at Γ±, as θ = ±π.

Henceforth, after integration of (38) by parts, the unique solution of (38) satisfies the
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mixed Dirichlet–Neumann problem as follows:

(39a) −∆ξ = −∆
(
V >∇S

)
in Ω \ Γ,

(39b) ξ = 0 on ΓD,
∂ξ

∂n
= 0 on ΓN ,

[[ξ]] = [[V >∇S]],

[[
∂ξ

∂n

]]
=

[[
∂

∂n

(
V >∇S

)]]
= 0 on Ξ,

∂ξ

∂n
=

∂

∂n

(
V >∇S

)
= 0 on (Γ \ Ξ)±.

(39c)

From (38) and (39) we define the weight function (here t > 0 small)

ζ := ξ − V >∇S ∈ L2(Ω \ Γ) ∩H1
(
(Ω \ Γ) \Bt(0)

)
,(40)

which is a nontrivial singular solution of the homogeneous problem

(41a) −∆ζ = 0 in Ω \ Γ,

(41b) ζ = 0 on ΓD,
∂ζ

∂n
= 0 on ΓN ,

[[ζ]] =

[[
∂ζ

∂n

]]
= 0 on Ξ,

∂ζ

∂n
= 0 on (Γ \ Ξ)±.(41c)

For comparison, for the linear crack problem the coincidence set Ξ = ∅ and the mixed
Dirichlet–Neumann problem (41) turns into the homogeneous Neumann problem for
the weight function ζ. From (40) it follows that

ζ(x) =
1√
2π

1√
ρ sin

θ

2
+ ξ(x) for x ∈ BR(0) \ {0},(42)

which is useful in the following.

Lemma 2. For 0 6∈ Ξ providing solvability of problem (38), the SIF c
(ω,ε,x0,δ)
Γ from

(34) and (35) can be determined by the following integral formula:

c
(ω,ε,x0,δ)
Γ = max

{
0,

∫
ΓN

gζ dSx − µ
∫
∂ωε(x0)

[[
∂u(ω,ε,x0,δ)

∂n

]]
ζ dSx

+ µ

∫
Ξ

∂ζ

∂n
[[u(ω,ε,x0,δ)]] dSx − µ

∫
Γ\Ξ

∂u(ω,ε,x0,δ)

∂n
[[ζ]] dSx

}
,

(43)

with the weight function ζ defined in (38) and (40) together with the properties (41)
and (42).



A NONLINEAR CRACK–DEFECT INTERACTION PROBLEM 1343

Proof. Using the second Green’s formula in (Ω \ Γ) \Bt(0) with small t ∈ (0, t0),
from (15) and (39) we derive that

0 =

∫
(Ω\Γ)\Bt(0)

{∆ζu(ω,ε,x0,δ) − ζ∆u(ω,ε,x0,δ)} dx = − 1

µ

∫
ΓN

gζ dSx

+

∫
∂ωε(x0)

[[
∂u(ω,ε,x0,δ)

∂n

]]
ζ dSx −

∫
∂Bt(0)

{
∂ζ

∂ρ
u(ω,ε,x0,δ) − ζ ∂u

(ω,ε,x0,δ)

∂ρ

}
dSx

−
∫

Γ\Bt(0)

{
∂ζ

∂n
[[u(ω,ε,x0,δ)]]− [[ζ]]

∂u(ω,ε,x0,δ)

∂n

}
dSx.

In the latter integral over Γ \ Bt(0), the first summand vanishes at (Γ \ Ξ) \ Bt(0),
and the second summand is zero at Ξ \Bt(0) due to (41c).

For fixed ε and t↘ +0, since the coincidence set is detached from the crack tip,
there exists C > 0 such that BC(0) ∩ Ξ = ∅, and then the integral over Ξ \ Bt(0) is
uniformly bounded as follows:

∫
Ξ\Bt(0)

∂ζ

∂n
[[u(ω,ε,x0,δ)]] dSx =

∫
Ξ\BC(0)

∂ζ

∂n
[[u(ω,ε,x0,δ)]] dSx = O(1) as t↘ +0.

This integral is well-defined because the solution ζ of the mixed Dirichlet–Neumann
problem (38) exhibits the square-root singularity (see, e.g., [30] and references therein),
and hence ∂ζ

∂n has the one-over-square-root singularity which is integrable, and

[[u(ω,ε,x0,δ)]] is H3/2-smooth in Ξ \ BC(0). The H2-regularity of the solution to the
nonlinear crack problem up to the crack faces, except the crack vicinity, is proved rig-
orously, e.g., in [7] with the shift technique. Similarly, the integral over (Γ\Ξ)\Bt(0)
is uniformly bounded:

∫
(Γ\Ξ)\Bt(0)

∂u(ω,ε,x0,δ)

∂n
[[ζ]] dSx =

∫
(Γ\Ξ)\Bt0 (0)

∂u(ω,ε,x0,δ)

∂n
[[ζ]] dSx

+

∫ t0

t

1

ρ

∂U

∂θ

(√
2

πρ
+ [[ξ]]

)
dρ = O(1) as t↘ +0

due to the representations (34) and (42), and 1
ρ
∂U
∂θ = O(1) according to (34).
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The former integral over ∂Bt(0) can be calculated by plugging the representations
(34) and (42) here,

−
∫
∂Bt(0)

{
∂ζ

∂ρ
u(ω,ε,x0,δ) − ζ ∂u

(ω,ε,x0,δ)

∂ρ

}
dSx =

c
(ω,ε,x0,δ)
Γ

µπ

∫ π

−π
sin2

(
θ

2

)
dθ

− t
∫ π

−π

{
∂ξ

∂ρ

(
u(ω,ε,x0,δ)(0) +

c
(ω,ε,x0,δ)
Γ

µ

√
2t

π
sin

θ

2
+ U

)
− ξ
(
c
(ω,ε,x0,δ)
Γ

µ
√

2πt
sin

θ

2
+
∂U

∂ρ

)}
dθ =

1

µ
c
(ω,ε,x0,δ)
Γ + O(

√
t),

which holds true due to ξ = O(1) and ∂ξ
∂ρ = O( 1√

t
) (similarly to (34)), using dSx = tdθ

and (34) for U(ρ, θ) as ρ = t and θ ∈ (−π, π). Therefore, passing t ↘ +0 and
accounting for (35), we have proven formula (43).

Next, using Theorem 1 we expand the right-hand side of (43) in ε ↘ +0 and
derive the main result of this section.

Theorem 2. For 0 6∈ Ξ, the SIF c
(ω,ε,x0,δ)
Γ of the heterogeneous problem (14)

given in (43) admits the following asymptotic representation:

c
(ω,ε,x0,δ)
Γ = max

{
0,

∫
ΓN

gζ dSx − ε2µ∇u0(x0)>A(ω,δ)∇ζ(x0)

+ µ

∫
Ξ

∂ζ

∂n
[[u(ω,ε,x0,δ)]] dSx − µ

∫
Γ\Ξ

∂u(ω,ε,x0,δ)

∂n [[ζ]] dSx + Res

}
,

Res = O(ε3),

(44)

where A(ω,δ) is the dipole matrix and ∇ζ(x0)= 1
2
√

2π
r−3/2(− sin 3φ

2 , cos 3φ
2 )>+ O(r−1/2)

at the defect center x0 = r(cosφ, sinφ)>.

Proof. To expand the integral over ∂ωε(x
0) in the right-hand side of (43) as

ε↘ +0, here we substitute the expansion (30) of the solution u(ω,ε,x0,δ) which implies

∫
∂ωε(x0)

[[
∂u(ω,ε,x0,δ)

∂n

]]
ζ dSx = ε∇u0(x0)>

∫
∂ωε(x0)

[[
∂wε

∂n

]]
ζ dSx + O(ε3).(45)

Below, we apply to the right-hand side of (45) the expansion (24) of the boundary
layer wε and the inner asymptotic expansion of ζ, which is a C∞-function in the near-
field of x0, written similarly to (20) as

ζ(x) = ζ(x0) +∇ζ(x0)>(x− x0) + Z(x) for x ∈ BR(x0),∫ π

−π
Z dθ0 =

∫ π

−π
Z
x− x0

ρ0
dθ0 = 0, Z = O

(
ρ2

0

)
, ∇Z = O(ρ0).

(46)

Next, inserting (24) and (46) into the second Green’s formula in Bε(x
0), we get∫

∂ωε(x0)

{[[
∂wε

∂n

]]
ζ + (1− δ)wε ∂ζ

∂n

}
dSx =

∫
∂Bε(x0)

{
∂ζ

∂ρ0
wε − ζ ∂w

ε

∂ρ0

}
dSx
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and estimate its terms as follows. The divergence theorem provides∫
∂ωε(x0)

wε
∂ζ

∂n
dSx =

∫
∂ωε(x0)

n>∇ζ(x0) dSx + O(ε2)

=

∫
ωε(x0)

(∇wε)>∇ζ(x0) dx+ O(ε2) = O(ε2),

and we calculate analytically the integral over ∂Bε(x
0) as∫

∂Bε(x0)

{
∂ζ

∂ρ0
wε − ζ ∂w

ε

∂ρ0

}
dSx =

ε

π

∫ π

−π
∇ζ(x0)>

x− x0

ρ0
A(ω,δ)

x− x0

ρ0
dθ0 + O(ε2)

= εA(ω,δ)∇ζ(x0) + O(ε2).

Therefore, we obtain the asymptotic expansion∫
∂ωε(x0)

[[
∂wε

∂n

]]
ζ dSx = εA(ω,δ)∇ζ(x0) + O(ε2).(47)

Inserting (45) and (47) into (43) and using (35) yields (44). Finally, the value of
∇ζ(x0) can be estimated analytically from (42), while ξ has the O(ρ1/2)-singularity
similar to (34), and hence ∇ξ(x0) = O(r−1/2). This completes the proof.

As the corollary of Lemma 2 and Theorem 2, we find the SIF of the solution
u0 ∈ K(Ω \ Γ) of the homogeneous problem (17), which is the limit case of the
heterogeneous problem as ε ↘ +0. Namely, similar to (34) and (35) we have the
inner asymptotic expansion

u0(x) = u0(0) +
1

µ

√
2

π
c0Γ
√
ρ sin

θ

2
+ U0(x) for x ∈ BR(0) \ Γ,∫ π

−π
U0 dθ =

∫ π

−π
U0

(
cos

θ

2
, sin

θ

2

)
dθ = 0, U0 = O(ρ), ∇U0 = O(1),

(48)

with the reference SIF c0Γ ≥ 0 determined by the formula

c0Γ = max

{
0,

∫
ΓN

gζ dSx

}
,(49)

where we have used the complementarity conditions ∂ζ
∂n [[u0]] = ∂u0

∂n [[ζ]] = 0 at Γ due to

(41c) and (18c) which provides ∂u0

∂n = 0 at Γ \ Ξ.
In the following we derive an interpretation of Theorem 2 from the point of view

of shape-topological control.
We parametrize the crack growth by means of the position of the crack tip along

the fixed path x2 = 0 as

Γ∞(t) := {x ∈ R2 : x1 < t, x2 = 0}, Γ(t) := Γ∞(t) ∩ Ω,

such that Γ = Γ(0) in this notation. Formula (43) defines the optimal value function
depending on both Γ(t) and ωε(x

0),

JSIF : R×Θ× R+ × (Ω \ Γ)× R+ 7→ R+,

(t, ω, ε, x0, δ) 7→ JSIF(Γ(t), ωε(x
0)) := c

(ω,ε,x0,δ)
Γ(t) ,

(50)
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which satisfies the consistency condition ωε(x
0) ⊂ Bε(x

0) ⊂ Ω \ Γ(t). From the
physical point of view, the purpose of (50) is to control the SIF of the crack Γ(t) by
means of the defect ωε(x

0). The homogeneous reference state implies

JSIF(Γ(t), ∅) = c0Γ(t).(51)

For fixed Γ(0) = Γ, formula (44) proves the topology sensitivity of JSIF from (50) and
(51) with respect to diminishing the defect ωε(x

0) as ε↘ +0.
In the following section we introduce another geometry-dependent objective func-

tion inherently related to fracture, namely, the strain energy release rate (SERR). We
show its first order topology sensitivity analysis using the result of Theorem 2. The
first order asymptotic term provides us with the respective topological derivative; see
[13] for a generalized concept of topological derivatives suitable for fracture due to
cracks.

4.3. Topological derivative of the SERR-function. The widely used Grif-
fith criterion of fracture declares that a crack starts to grow when its SERR attains
a critical value (the material parameter of fracture resistance). Therefore, decreas-
ing the SERR would arrest the incipient crack growth, while, conversely, increasing
the SERR will affect its rise. This gives us practical motivation for the topological
derivative of the SERR objective function, which we construct below.

After substitution of the solution u(ω,ε,x0,δ) of the heterogeneous problem (14),
the reduced energy functional (13) implies

Π(Γ(t), ωε(x
0))

=
1

2

∫
Ω\Γ(t)

µχδ
ωε(x0)

|∇u(ω,ε,x0,δ)|2 dx−
∫

ΓN

gu(ω,ε,x0,δ) dSx.
(52)

The derivative of Π in (52) with respect to t, taken with the minus sign, is called the
SERR and defines the optimal value function similar to (50) as

JSERR : R×Θ× R+ × (Ω \ Γ)× R+ 7→ R+,

(t, ω, ε, x0, δ) 7→ JSERR(Γ(t), ωε(x
0)) := − d

dt
Π(Γ(t), ωε(x

0)).
(53)

It admits the equivalent representations (see [13, 16, 21, 22, 24] for details)

JSERR = −1

2

∫
Ω\Γ(t)

µχδ
ωε(x0)

(∇u(ω,ε,x0,δ))>D(V )∇u(ω,ε,x0,δ) dx

= lim
R↘+0

IR, where IR := µ

∫
∂BR((t,0))

{
1

2

(
V >

x

ρ

)
|∇u(ω,ε,x0,δ))|2

− (V >∇u(ω,ε,x0,δ))

(
x>

ρ
∇u(ω,ε,x0,δ)

)}
dSx.

(54)

The key issue is that from (54) we derive the following expression:

JSERR(Γ(t), ωε(x
0)) =

1

2µ

(
c
(ω,ε,x0,δ)
Γ(t)

)2 ≥ 0.(55)

Indeed, from the local asymptotic expansion (34) written at the crack tip (t, 0), it
follows that

∇u(ω,ε,x0,δ) =
1

µ
√

2πR
c
(ω,ε,x0,δ)
Γ(t)

(
− sin

θ

2
, cos

θ

2

)>
+∇U on ∂BR((t, 0)).
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Plugging this expression into the invariant integral IR in (54), due to |∇U | = O(1),

V = (1, 0)>, and x>

ρ = (cos θ, sin θ)> at ∂BR((t, 0)), we calculate

IR = µ

∫ π

−π

{
1

2
cos θ

1

2πRµ2
(c

(ω,ε,x0,δ)
Γ(t) )2 + sin2

(
θ

2

)
1

2πRµ2
(c

(ω,ε,x0,δ)
Γ(t) )2

+ O

(
|∇U |√
R

)}
Rdθ =

1

2µ

(
c
(ω,ε,x0,δ)
Γ(t)

)2

+ O(
√
R).

Passing R↘ +0 follows (55). Now, the substitution of expansion (44) in (55) proves
directly the asymptotic model of SERR as ε↘ +0 given next.

Theorem 3. For 0 6∈ Ξ, the SERR at the tip of the crack Γ = Γ(0) admits the
following asymptotic representation when diminishing the defect ωε(x

0):

JSERR(Γ, ωε(x
0)) =

1

2µ

(
c0Γ
)2 − ε2c0Γ∇u0(x0)>A(ω,δ)∇ζ(x0)

+ c0Γ

∫
Ξ\Ξε

∂ζ

∂n
[[u(ω,ε,x0,δ) − u0]] dSx − c0Γ

∫
Ξε\Ξ

∂(u(ω,ε,x0,δ) − u0)

∂n
[[ζ]] dSx + Res,

Res = O(ε3) and Res ≥ 0 if c0Γ = 0,

(56)

where the perturbed coincidence set is determined by

Ξε := {x ∈ Γ : [[u(ω,ε,x0,δ)]] = 0}.

The reference JSERR(Γ, ∅) = 1
2µ (c0Γ)2 implies SERR for the homogeneous state u0

without defect, A(ω,δ) is the dipole matrix, and the gradient

∇ζ(x0) =
1

2
√

2π
r−3/2

(
− sin

3φ

2
, cos

3φ

2

)>
+ O(r−1/2)

at the defect center x0 = r(cosφ, sinφ)>.
Moreover, if the coincidence sets are continuous such that meas1(Ξε \ Ξ) ↘ +0

and meas1(Ξ \ Ξε)↘ +0 as ε↘ +0, then the first asymptotic term in (56) provides
the topological derivative

lim
ε↘+0

JSERR(Γ,ωε(x
0))−JSERR(Γ,∅)
ε2 = −c0Γ∇u0(x0)>A(ω,δ)∇ζ(x0).(57)

Proof. To derive (56) we square (44) and (49). Then we use, first, that∫
Ξ

∂ζ

∂n
[[u(ω,ε,x0,δ)]] dSx =

∫
Ξ\Ξε

∂ζ
∂n [[u(ω,ε,x0,δ)]] dSx

=

∫
Ξ\Ξε

∂ζ

∂n
[[u(ω,ε,x0,δ) − u0]] dSx

(58)

holds due to [[u(ω,ε,x0,δ)]] = 0 at Ξε and [[u0]] = 0 at Ξ. Second, the equality∫
Γ\Ξ

∂u(ω,ε,x0,δ)

∂n
[[ζ]] dSx =

∫
Ξε\Ξ

∂u(ω,ε,x0,δ)

∂n
[[ζ]] dSx

=

∫
Ξε\Ξ

∂(u(ω,ε,x0,δ) − u0)

∂n
[[ζ]] dSx

(59)
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holds due to ∂u(ω,ε,x0,δ)

∂n = 0 at Γ \ Ξε and ∂u0

∂n = 0 at Γ \ Ξ according to the comple-

mentarity conditions (15c) and (18c) and using the identity (Γ\Ξ)\ (Γ\Ξε) = Ξε \Ξ.
To justify (57), it needs to pass (58) and (59) divided by ε2 to the limit as

ε ↘ +0. For this task we employ the assumption that 0 6∈ Ξ and the assumption of
continuity of the coincidence sets; hence 0 6∈ Ξε for sufficiently small ε. Otherwise,

0 ∈ Ξε implies c
(ω,ε,x0,δ)
Γ = 0 which contradicts the convergence c

(ω,ε,x0,δ)
Γ → c0Γ 6= 0

as ε↘ +0 following from (34) and (48) due to Theorem 1. This implies that the sets
Ξ \ Ξε as well as Ξε \ Ξ are detached from the crack tip. Henceforth, the functions

[[u(ω,ε,x0,δ)−u0]] ∈ H3/2(Ξ\Ξε) and ∂(u(ω,ε,x0,δ)−u0)
∂n , [[ζ]] ∈ L2(Ξε \Ξ) are smooth here,

and the following asymptotic estimates hold:

∫
Ξ\Ξε

∂ζ

∂n
[[u(ω,ε,x0,δ) − u0]] dSx =

∫
Ξ\Ξε

(
∂(ζ − ζε)

∂n
+
∂ζε

∂n

)
[[u(ω,ε,x0,δ) − u0]] dSx

≤ ‖∂(ζ − ζε)
∂n

‖H1/2(Γ)?

∥∥[[u(ω,ε,x0,δ) − u0]]
∥∥
H1/2(Ξ\Ξε)

+

∥∥∥∥∂ζε∂n ‖L2(Ξ\Ξε)

∥∥∥∥[[u(ω,ε,x0,δ) − u0]]
∥∥
L2(Ξ\Ξε) = o(ε2),

where ζε is a smooth approximation of ζ such that ‖∂(ζ−ζε)
∂n ‖H1/2(Γ)? = o(1) and

‖∂ζ
ε

∂n ‖L2(Ξ\Ξε) = o(1) as ε↘ +0, and

∫
Ξε\Ξ

∂(u(ω,ε,x0,δ) − u0)

∂n
[[ζ]] dSx ≤

∥∥∥∥∂(u(ω,ε,x0,δ) − u0)

∂n

∥∥∥∥
L2(Ξε\Ξ)

‖[[ζ]]‖L2(Ξε\Ξ) = o(ε2)

provided by Theorem 1 and the assumption of the convergence meas1(Ξε \ Ξ)↘ +0
and meas1(Ξ \ Ξε) ↘ +0 as ε ↘ +0. This proves the limit in (57) and the assertion
of the theorem.

5. Discussion. In the context of fracture, from Theorem 3 we can discuss the
following.

The Griffith fracture criterion suggests that the crack Γ starts to grow
when JSERR = Gc attains the fracture resistance threshold Gc > 0. For incipient
growth of the nonlinear crack subject to inequality c0Γ > 0, its arrest necessitates
the negative topological derivative to decrease JSERR, which needs positive sign of
∇u0(x0)>A(ω,δ)∇ζ(x0) in (56).

The sign and value of the topological derivative depend in a semi-analytic implicit
way on the solution u0, trial center x0, shape ω, and stiffness δ of the defect. The latter
two parameters enter the topological derivative through the dipole matrix A(ω,δ). In
Appendix A we present explicit values of the dipole matrix for the specific cases of the
ellipse-shaped holes and inclusions. This describes also the degenerate case of cracks
and thin rigid inclusions called anticracks.

Appendix A. Ellipse and crack shaped defects. Let the shape ω of a defect
be ellipsoidal. Namely, we consider the ellipse ω enclosed in the ball B1(0), which
has the major a = 1 and the minor b ∈ (0, 1] semi-axes, where the major axis has an
angle of α ∈ [0, 2π) with the x1-axis counted in the counterclockwise direction.
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With the rotation matrix Q(α), the dipole matrix for the elliptic defect has the
form (see [8, 33])

A(ω,δ) = Q(α)A(ω′,δ)Q(α)>, Q(α) :=

(
cosα − sinα
sinα cosα

)
,(60a)

A(ω′,δ) = π(1 + b)

(
(1−δ)b
1+δb 0

0 (1−δ)b
δ+b

)
.(60b)

Further, we consider the limit cases of (60b) when the stiffness parameters δ ↘ +0 and
δ ↗ +∞, which correspond to the ellipse-shaped holes and rigid inclusions according
to Corollary 1.

On the one hand, for the elliptic hole ω, passing δ ↘ +0 in (60b) we obtain the
virtual mass, or added mass matrix,

A(ω′,δ) = π(1 + b)

(
b 0
0 1

)
,(61)

which is positive definite. In particular, for the straight crack ω as b↘ +0, (61) turns
into the singular matrix

A(ω′,δ) = π

(
0 0
0 1

)
.(62)

On the other hand, for the rigid ellipse ω, passing δ ↗ +∞ in (60b) we obtain
the polarization matrix

A(ω′,δ) = π(1 + b)

(
−1 0
0 −b

)
,(63)

which is negative definite. In particular, for the rigid segment ω as b↘ +0, (63) turns
into the singular matrix

A(ω′,δ) = π

(
−1 0
0 0

)
.(64)
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