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Abstract

A nonlinear crack problem subject to a non-penetration inequality is considered within the
framework of the limiting small strain approach, which does not suffer from the inconsistency
of infinite strain at the crack tip. Based on the concept of a generalized solution, sufficient
conditions proving the well-posedness of the problem are established and analyzed.
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1. Introduction

Within the general theory of elastic bodies wherein
the Cauchy–Green tensor can be a nonlinear function of
the Cauchy stress (such as titanium alloys, which can re-
spond nonlinearly even when the strains are “small”), a
new subclass of models where the norm of the strain
is limited apriori to a small value was previously in-
troduced in [1, 2]. By applying the limiting small strain
constitutive relations to fracture mechanics, the strains
in the cracked body have been shown to be uniformly
bounded, overcoming the drawback of strain blow-up at
the crack tip inherent in the classical linearized theory
of the fracture of brittle materials [3, 4].
In order to avoid the other drawback of the linearized

theory, namely, the possibility of penetration between
the crack faces, nonlinear crack problems subject to non-
penetration conditions have been previously established
within the framework of the variational theory [5–7]. The
principal challenge here is finding singular solutions at
the crack tip [8,9] and obtaining a formula for the energy
release rate [10–12], which is relevant to brittle as well as
quasi-brittle materials fracturing [13]. Numerical meth-
ods suitable for this class of nonlinear crack problems
were developed in [14].
The principal difficulty in analyzing the limiting small

strain model concerns the fact that the stresses live
only in the non-reflexive L1-space, which must be prop-
erly regularized. Various approaches to overcoming this
mathematical difficulty have therefore been previously
suggested [15,16].
In a previous study [17], the nonlinear elasticity prob-

lem with limiting small strain was solved for cracks with
contacting faces using penalization and elliptic regular-

ization techniques. In the present paper, we extend this
approach further in terms of a generalization of nonlin-
ear functions, which are admissible for describing con-
stitutive relations that exhibit limiting small strain be-
havior. Sufficient conditions are given in a general form
and supported by concrete examples.

2. Problem formulation

In spatial dimensions d = 2 or 3, we consider a
domain Ω in Rd with boundary ∂Ω and an outward-
pointing normal n = (n1, . . . , nd). Let ∂Ω be a (d − 1)-
dimensional Lipschitz manifold comprising two mutually
disjoint parts ΓN and ΓD, such that ΓD is non-empty.
We define the crack Γc ⊂ Ω as an oriented manifold

such that its infinite extension splits Ω into two do-
mains with Lipschitz boundaries. The positive face Γ+

c

and the negative face Γ−
c of the crack are distinguished

by choosing an inward-pointing normal n = (n1, . . . , nd)
to Γc. We denote the jump across the crack by [[ · ]] :=
· |Γ+

c
− · |Γ−

c
, and the cracked domain by Ωc := Ω \ Γc.

For a given body force f(x) = (f1, . . . , fd), a boundary
traction g(x) = (g1, . . . , gd), and a symmetric d-by-d ten-
sor F = {Fij}di,j=1 describing the constitutive response,
we look for a displacement vector u(x) = (u1, . . . , ud),
symmetric d-by-d strain ε(x) = {εij}di,j=1 and stress

σ(x) = {σij}di,j=1 tensors, which satisfy the following
system for i, j = 1, . . . , d:

−
d∑

j=1

∂

∂xj
σij = fi in Ωc, (1)

εij = Fij(σ) in Ωc, (2)

εij = εij(u) :=
1

2

(
∂

∂xj
ui +

∂

∂xi
uj

)
in Ωc, (3)
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u = 0 on ΓD, (4)

σn = g on ΓN , (5)

[[σn]] = 0 on Γc, (6)

σn − (σn · n)n = 0 on Γ±
c , (7)

[[un]] ≥ 0, σn · n ≤ 0, (σn · n)[[un]] = 0 on Γ±
c , (8)

where the normal displacement un := u · n is given by
the inner product u · n =

∑d
i=1 uini, and the boundary

traction σn := {
∑d

j=1 σijnj}di=1.
In this system, (1) is the equilibrium equation, (2)

is the implicit constitutive equation, and (3) represents
the linearized strain. These equations are endowed with
the homogeneous Dirichlet condition (4), the Neumann-
type condition (5), and conditions (6)–(8) at the crack.
The boundary traction σn is continuous across the crack
according to (6) and has zero tangential component by
(7). The non-penetration inequality [[un]] ≥ 0 enforces
the complementarity conditions (8) involving the normal

stress σn ·n =
∑d

i,j=1 σijnjni, see [5] for further details.
We consider a nonlinear tensor-valued function for (2)

F : Sym(Rd×d) 7→ Sym(Rd×d), F(0) = 0, (9)

over symmetric d-by-d tensors Sym(Rd×d), whose value
implies the Cauchy–Green strain tensor corresponding
to the Cauchy stress tensor given as the argument.
The inner product on Sym(Rd×d) assigns σ : ε =∑d

i,j=1 σijεij and is associated with the matrix norm

∥σ∥ =
√
σ : σ. Our aim is to specify a class of functions

F in (9), which exhibit limiting small strain behavior
and guarantee solvability of the problem (1)–(8).
In this study, we use the following properties of

F to prove the existence theorem. Let constants
M1,M2,M4 > 0, and M3 ≥ 0 exist such that

∥F(σ)∥ ≤ M1, (10)

0 ≤
(
F(σ1)−F(σ2)

)
: (σ1 − σ2) ≤ M2∥σ1 − σ2∥2,

(11)

−M3 +M4

d∑
i,j=1

|σij | ≤ F(σ) : σ (12)

for all σ, σ1, σ2 ∈ Sym(Rd×d). The uniform bound in (10)
together with (2) leads to ∥ε∥ ≤ M1 implying limiting
small strain for small M1. The bounds in (11) describe
the monotone and Lipschitz continuous properties of F .
After integration over Ωc, property (12) provides σ with
the following lower bound in the L1-norm:

M4

∫
Ωc

d∑
i,j=1

|σij | dx ≤ M3|Ω|+
∫
Ωc

F(σ) : σ dx (13)

when
∫
Ωc

F(σ) : σ dx is uniformly bounded.

Many of constitutive models discussed in [1] lead to
the response function F from (9) described by

F(σ) = Ψ1

(
tr(σ), ∥σ∥

)
I +Ψ2

(
tr(σ), ∥σ∥

)
σ,

Ψ1(0, 0) = 0,
(14)

where the trace tr(σ) :=
∑d

i=1 σii, and I stands for the

unit d-by-d tensor.
To endow F given in (14) with the mathematical

structure of a monotone function (the lower bound in
(11)), depending on the two variables tr(σ) and ∥σ∥, we
first consider the following decomposition (see [2]):

F(σ) = Ψ1(tr(σ))I +Ψ2(∥σ∥)σ, (15)

given the functions

Ψ1 : R 7→ R, Ψ1(0) = 0, Ψ2 : R+ 7→ R. (16)

Theorem 1 Let Ψ1 and Ψ2 in (16) be continuous al-
most everywhere differentiable functions, and let the con-
stants a1, a2, b1, b2, b4 > 0 and a3, b3 ≥ 0 exist such that

|Ψ1(y)| ≤ a1, (17)

0 ≤ Ψ′
1(y) ≤ a2, (18)

− a3 ≤ yΨ1(y) (19)

hold a.e. y ∈ R, and

y|Ψ2(y)| ≤ b1, (20)

y
∣∣Ψ′

2(y)
∣∣+Ψ2(y) ≤ b2, (21)

− b3 + b4y ≤ y2Ψ2(y) (22)

hold a.e. y ∈ R+. Moreover, suppose that

either Ψ′
2(y) ≥ 0, Ψ2(y) ≥ 0, (23)

or Ψ′
2(y) < 0,

(
yΨ2(y)

)′ ≥ 0, (23’)

hold in subintervals of R+. Then, for the function F
defined in (15), the properties (10)–(12) are true with

M1 = a1
√
d+ b1, M2 = a2d+ b2,

M3 = a3 + b3, M4 =
b4
d
.

(24)

Proof For F defined by (15), the upper bound (10)
follows from (17) and (20), and the lower bound (12)

from (19) and (22), due to
∑d

i,j=1 |σij | ≤ d∥σ∥.
To prove (11), for σ1, σ2 ∈ Sym(Rd×d), we use the

representation(
F(σ1)−F(σ2)

)
: (σ1 − σ2)

=

∫ 1

0

d

dt
F
(
tσ1 + (1− t)σ2

)
: (σ1 − σ2) dt

=

∫ 1

0

{
Ψ′

1

(
tr(tσ1 + (1− t)σ2)

)
tr2(σ1 − σ2)

+ Ψ′
2

(
∥tσ1 + (1− t)σ2∥

)
·
(
(tσ1 + (1− t)σ2) : (σ1 − σ2)

)2
∥tσ1 + (1− t)σ2∥

+Ψ2

(
∥tσ1 + (1− t)σ2∥

)
∥σ1 − σ2∥2

}
dt.

For each of the cases Ψ′
2 ≥ 0 in (23) and Ψ′

2 < 0 in
(23’), applying the Cauchy–Schwarz inequality to the
inner product and using (18), (21), and |tr(σ)| ≤

√
d∥σ∥,

the estimates (11) follow with the bounds given in (24).
The proof is complete.

(QED)
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For example, we can take the following function as Ψ1

(see [2])

Ψ1(y) = α
{
1− exp

( −λy

(1 + γ|y|r)1/r
)}

(25)

where α, λ, γ, r > 0. As a matter of fact, (17)–(19) are
satisfied by

a1 = α

(
exp

(
λ

γ1/r

)
− 1

)
, a2 = αλ exp

(
λ

γ1/r

)
,

a3 = 0.

On the other hand, a possible function for Ψ2 is [16,17]

Ψ2(y) = β
1

(1 + κys)1/s
, β, κ, s > 0. (26)

The conditions (20)–(22) and (23’) hold with

b1 =
β

κ1/s
, b2 = 2β, b3 =

b4
κ1/s

, b4 =
β

csκ1/s
,

where cs = 21/s−1 for s ∈ (0, 1) and cs = 1 for s ≥ 1.
Now, following [16], we consider the decomposition

F̃(σ) = Ψ̃1(tr(σ))I +Ψ2(∥σ∗∥)σ∗ (27)

employing the deviatoric stress tensor σ∗ := σ− tr(σ)
d I ∈

Sym(Rd×d) with tr(σ∗) = 0.

Theorem 2 Let Ψ̃1 and Ψ2 satisfy the assumptions of
Theorem 1, and let the constant a4 > 0 exist such that

−a3 + a4|y| ≤ yΨ̃1(y) (19’)

holds a.e. y ∈ R. Then for F̃ defined as (27), the prop-
erties (10)–(12) hold with M1,M2,M3 given by (24) and

M4 = min{a4,
b4
d
}. (24’)

Proof The proof follows in a manner similar to that
of Theorem 1 with the aid of the estimates

∥σ∗∥ ≤ ∥σ∥,
d∑

i,j=1

|σij | ≤ |tr(σ)|+ d∥σ∗∥,

and the equality(
F̃(σ1)− F̃(σ2)

)
: (σ1 − σ2)

=

∫ 1

0

{
Ψ̃′

1

(
tr(tσ1 + (1− t)σ2)

)
tr2(σ1 − σ2)

+ Ψ′
2

(
∥(tσ1 + (1− t)σ2)∗∥

)((tσ1+(1−t)σ2)∗:(σ1−σ2)∗
)2

∥(tσ1+(1−t)σ2)∗∥

+Ψ2

(
∥(tσ1 + (1− t)σ2)∗∥

)
∥(σ1 − σ2)∗∥2

}
dt

which holds by the virtue of the fact that (σ1)∗ : σ2 =
(σ1)∗ : (σ2)∗.

(QED)

If we modify the function Ψ1 from (25) such that

Ψ̃1(y) = α
y

(1 + γ|y|r)1/r
, α, γ, r > 0, (28)

it satisfies the conditions (17), (18), and (19’) with

a1 = α
γ1/r , a2 = α, a3 = a4

γ1/r , a4 = α
crγ1/r ,

where cr = 21/r−1 for r ∈ (0, 1) and cr = 1 for r ≥ 1.

In this particular case, on taking the limit κ ↘ 0+ in
(26) and γ ↘ 0+ in (28), from (27) we arrive at the limit
function

F̃(σ) = αtr(σ)I + βσ∗ =

(
α− β

d

)
tr(σ)I + βσ,

which coincides with the constitutive equation for lin-
earized elasticity when α = (1 − 2ν)/(3E) and β =
(1 + ν)/E for dimension d = 3.

3. Well-posedness theorem

Let f ∈ L2(Ωc;Rd) and g ∈ L2(ΓN ;Rd). According
to the Dirichlet boundary condition (4) and the non-
penetration conditions (8), we can introduce the cone of
admissible displacements in the domain Ωc as follows:

K :=
{
u ∈ H1(Ωc;Rd) :

u = 0 on ΓD, [[un]] ≥ 0 on Γc

}
. (29)

By multiplying the equilibrium equation (1) by u −
u (for a test function u) and integrating the result
by parts over Ωc and by the virtue of the boundary
conditions (5)–(8), we get the following weak formu-
lation of the problem: For p, p′ ∈ (1,∞) such that
1/p + 1/p′ = 1, find the displacement u ∈ K, the
strain ε(u) ∈ L∞(Ωc; Sym(Rd×d)), and the stress σ ∈
Lp(Ωc; Sym(Rd×d)) that satisfy the variational inequal-
ity ∫

Ωc

σ : ε(u− u) dx

≥
∫
Ωc

f · (u− u) dx+

∫
ΓN

g · (u− u) dSx (30)

for all u ∈ K such that ε(u) ∈ Lp′
(Ωc; Sym(Rd×d)), and

fulfill the constitutive equation (2), namely

ε(u) = F(σ) in Ωc. (31)

The tensor function F is defined by (9), and the lin-
earized strains ε(u), ε(u) are determined by the formula
(3).
The solvability of (30) and (31) cannot be argued from

standard existence theorems because the apriori esti-
mate of the stress following from (13) is provided in
non-reflexive L1-space. Therefore, we now introduce a
concept of a generalized solution.
By multiplying (31) by σ − σ (for a test function σ)

and after integrating the result over Ωc, we have∫
Ωc

F(σ) : (σ − σ) dx =

∫
Ωc

(σ − σ) : ε(u) dx. (32)

Due to the cone property of K, the variational inequality
(30) is equivalent to the following two inequalities:∫

Ωc

σ : ε(u) dx ≤
∫
Ωc

f · u dx+

∫
ΓN

g · u dSx, (33)∫
Ωc

σ : ε(u) dx ≥
∫
Ωc

f · u dx+

∫
ΓN

g · u dSx. (34)

Adding (32) to (33) and using (11), we deduce the fol-
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lowing variational inequality∫
Ωc

F(σ) : (σ − σ) dx−
∫
Ωc

σ : ε(u) dx

≥ −
∫
Ωc

f · u dx−
∫
ΓN

g · u dSx, (35)

which is advantageous since the terms F(σ) : σ in (32)
and σ : ε(u) in (33) are problematic to justify within the
weak formulation. Therefore, we can utilize the compact
embedding L1(Ωc) ↪→ M1(Ωc) in the space of bounded
measures, which is the dual space of the space Cc(Ωc) of
continuous functions with compact support in Ωc.
Based on (34) and (35), we introduce the following

conept of the generalized solution: Find the displacement
u ∈ K, the strain ε(u) ∈ L2(Ωc; Sym(Rd×d)), and the
stress σ ∈ M1(Ωc; Sym(Rd×d)) satisfying the inequali-
ties

⟨σ : ε(u)⟩Ωc ≥
∫
Ωc

f · u dx+

∫
ΓN

g · u dSx, (36)

⟨(σ − σ) : F(σ)⟩Ωc +

∫
Ωc

σ : ε(u) dx

≤
∫
Ωc

f · u dx+

∫
ΓN

g · u dSx (37)

for all u ∈ K such that ε(u) ∈ Cc(Ωc; Sym(Rd×d))
and σ ∈ Cc(Ωc; Sym(Rd×d)). The brackets ⟨ · : · ⟩Ωc

in (36) and (37) imply a duality pairing between
M1(Ωc; Sym(Rd×d)) and Cc(Ωc; Sym(Rd×d)).
By constructing an elliptic regularization of (30) and

(31) and penalizing K as follows [17], for fixed δ > 0,
there exist a displacement uδ ∈ H1(Ωc;Rd) such that
uδ = 0 at ΓD, a strain ε(uδ) ∈ L2(Ωc; Sym(Rd×d)), and
a stress σδ ∈ L2(Ωc; Sym(Rd×d)), which satisfy the equa-
tions∫

Ωc

(δε(uδ) + σδ) : ε(u) dx+
1

δ

∫
Γc

min
{
0, [[uδ

n]]
}
[[un]] dSx

=

∫
Ωc

f · u dx+

∫
ΓN

g · u dSx, (38)

δσδ + F(σδ) = ε(uδ) in Ωc, (39)

for all u ∈ H1(Ωc;Rd) such that u = 0 at ΓD. As δ tends
to zero, we can derive the existence theorem below.

Theorem 3 (i) Let the tensor function F in (9) sat-
isfy the assumptions (10)–(12). The generalized solu-
tion (u, ε(u), σ) of the variational problem (36) and
(37) exists as an accumulation point of the solution
(uδ, ε(uδ), σδ) of (38) and (39) as δ ↘ 0+.
(ii) If the stress component is regular such that σ ∈

Lp(Ωc; Sym(Rd×d)) with p ∈ (1,∞), then the triple
(u, ε(u), σ) satisfies the weak formulation given by (30)
and (31).

The proof of Theorem 3 follows the proof given in [17]
based on the properties (10)–(12) for the specific case
F(σ) = Ψ2(∥σ∥)σ.
For further development, we note that the assumption

of monotonicity (11) might be relaxed to an assumption
of pseudo-monotonicity, following [18].
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