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Abstract: This paper establishes the shape derivative of geometry-dependent objective functions
for use in constrained variational problems. Using a Lagrangian approach, our differentiablity
result is based on the theorem of Delfour–Zolésio on directional derivatives with respect to
a parameter of shape perturbation. As the key issue of the paper, we analyze the bijection under the
kinematic transport of geometries that is needed for function spaces and feasible sets involved in
variational problems. Our abstract theoretical result is applied to the Brinkman flow problem under
incompressibility and mixed Dirichlet–Neumann boundary conditions, and provides an analytic
formula of the shape derivative based on the velocity method.
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1. Introduction

Within an abstract theoretical framework, this paper is devoted to the shape differentiablity of
geometry-dependent objective functions as they are considered in constrained variational problems.

Constraints arise in a variety of applications. The constraint operator (see (3)) may become:
the trace operator under contact conditions [1–3], the jump operator for cracks and anticracks [4–6],
the gradient operator in plasticity [7], the divergence operator under incompressibility conditions [8–10],
a state-constraint in mathematical programs with equilibrium constraints [11,12], and the like.
The constraint problems are related to parameter identification problems (see the theory in
References [13–15] and application to biological systems in Reference [16]), to inverse problems
by the mean of observation data used in mathematical physics [17,18] and in acoustics [19–21],
to overdetermined and free-boundary problems [22,23]. As an application, in the current paper
we focus on the incompressible Brinkman flow problem under a divergence-free condition (see the
related modeling of porous medium in References [24,25], well-posedness analysis in Reference [26],
and fluid–porous coupling with numerics in References [27,28]).

For a general theory of (nonlinear) optimization in infinite dimensions we refer to References [7,29–32]
for methods of shape optimization and, in particular, shape derivatives. Specifically in fracture
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mechanics, the shape derivative of energy functionals with respect to a crack extension is called
the energy release rate and is of primary importance to engineers as a fracture criterion [33].
In References [4,7], a nonlinear theory of cracks subject to contact conditions and their shape
derivatives was developed. Shape perturbation needs a bijective property for function spaces and
feasible sets, which, however, fails for curvilinear cracks being in contact. To overcome this obstacle,
References [5,6] suggest a Γ-type convergence, and References [34,35] propose the use of primal-dual
Lagrangian reformulation of the crack problems. In incompressible fluid dynamics, to treat the
divergence-free condition, divergence-preserving Piola transformation was employed in Reference [10],
but lacking a mathematical foundation. The Lagrangian approach to shape optimization was developed
further for abstract quadratic objective functions, and the direct proof of shape differentiability was
given in Reference [36]. In Reference [9], we applied the primal-dual technique to the Stokes problem
under a divergence-free constraint.

In the current work, we extend the Lagrangian approach to abstract geometry-dependent objective
functions based on the theorem of Delfour–Zolésio. Thus, we provide the directional derivative with
respect to a parameter of shape perturbation in a general setting. We stress that, while bijection
fails for the primal cone (a feasible set of primal variables), we obtained the shape derivative in
virtue of the bijection property of the dual cone (a feasible set of dual variables). In Section 2,
we set a geometry-dependent constrained optimization problem in abstract form, and its shape
derivative is derived in Section 3. We applied our theory to a Brinkman flow problem subject to the
divergence-free condition in Section 4 and provide an analytic formula of the shape derivative based
on the velocity method.

2. Geometry-Dependent CO Problem

For real parameter t ∈ I := (t0, t1) with t0 < t1, we introduce geometry by a kinematic flow

t 7→ Ωt ⊂ Rd, d ∈ N. (1)

For every t ∈ I, let V(Ωt) and H(Ωt) be Hausdorff topological spaces with dual spaces V?(Ωt)

and H?(Ωt). Using the order relation for measurable functions in H(Ωt), we specify a feasible set
provided by the inequality constraint:

K(Ωt) := {w ∈ V(Ωt)| G(Ωt)w ≥ 0} (2)

which is a convex closed cone determined by a linear continuous constraint operator

w 7→ G(Ωt)w : V(Ωt) 7→ H(Ωt). (3)

Extension of Function (3) to a nonlinear operator can be found in Reference [23]. For a
geometry-dependent objective given by a continuous and generally nonlinear function

w 7→ F (w; Ωt) : V(Ωt) 7→ R, (4)

we consider the constrained optimization (CO) problem: find ut ∈ K(Ωt) such that

F (ut; Ωt) = inf
w∈K(Ωt)

F (w; Ωt) =: f (t), (5)

where optimal value (OV) function f : I 7→ R. The corresponding solution set implies:

Ft := {u ∈ K(Ωt)| F (u; Ωt) = f (t)} (6)

and may be empty, with exactly one (called a singleton) or more elements.
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Proposition 1. (i) Solution set Ft (6) for CO problem (5) is nonempty under the assumption:

(F1) there exists a minimizing sequence uk ∈ K(Ωt), such that F (uk; Ωt) → f (t) as k → ∞ and
an accumulation point ut ∈ K(Ωt) yielding the convergence

uk ⇀ ut weakly in V(Ωt) as k→ ∞ (7)

and the lower estimate:
lim inf

k→∞
F (uk; Ωt) ≥ F (ut; Ωt). (8)

(ii) If the next assumption holds:

(F2) objective function ut 7→ F ( · ; Ωt) is Gâteaux-differentiable, that is, the following limit exists:

lim
s→0

F (ut+sw;Ωt)−F (ut ;Ωt)
s := 〈∂uF (ut; Ωt), w〉Ωt , w ∈ V(Ωt) (9)

with ∂uF (ut; Ωt) ∈ V?(Ωt) and duality pairing 〈 · , · 〉Ωt between V?(Ωt) and V(Ωt),

then, a first-order optimality condition for CO problem (5) necessitates variational inequality (VI) stated in
the form of two relations:

〈∂uF (ut; Ωt), ut〉Ωt = 0, 〈∂uF (ut; Ωt), w〉Ωt ≥ 0 for all w ∈ K(Ωt). (10)

Conversely, VI (10) is also sufficient for Problem (5) when

(F3) objective function w 7→ F ( · ; Ωt) in (4) is convex.

(iii) Solution set Ft = {ut} in (6) is a singleton if the condition (F3) is strict:

(F3’) the objective function w 7→ F ( · ; Ωt) in (4) is strictly convex.

Proof. In a reflexive Banach space V(Ωt), Condition (7) holds for coercive functions, and Condition (8)
is satisfied for the weakly lower semicontinuous functions w 7→ F ( · ; Ωt) in (4). The corresponding
proof of assertions (i), (ii), and (iii) is standard, see e.g., (Reference [4] Theorem 1.11).

For objective OV function f , we aimed at its shape derivative (SD):

∂ f (t) := lim
s→0+

f (t+s)− f (t)
s (one-sided), (11)

where, according to Problem (5), the perturbed OV is determined over perturbed geometry Ωt+s:

f (t + s) = inf
v∈K(Ωt+s)

F (v; Ωt+s) = F (ut+s; Ωt+s). (12)

The shape sensitivity of VI was investigated in Reference [32], Chapter 4. However, it can be
advantageous to consider a Lagrangian formulation of the problem, see Remark 1.

Let us define the Lagrangian function as (w, p) 7→ L(w, p; Ωt) : V(Ωt)× H?(Ωt) 7→ R,

L(w, p; Ωt) := F (w; Ωt)− (p,G(Ωt)w)Ωt (13)

with duality pairing ( · , · )Ωt between H?(Ωt) and H(Ωt). For a convex closed cone that is dual to the
primal cone (2) (hence called the dual cone):

K?(Ωt) := {p ∈ H?(Ωt)| (p,G(Ωt)w)Ωt ≥ 0 for all w ∈ K(Ωt)}, (14)
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a saddle-point (SP) problem related to Problem (5) reads: find a pair (ut, λt) ∈ V(Ωt) × K?(Ωt),
such that

L(ut, p; Ωt) ≤ L(ut, λt; Ωt) ≤ L(w, λt; Ωt) for all (w, p) ∈ V(Ωt)× K?(Ωt). (15)

The Lagrangian OV function ` : I 7→ R is defined from the relations

`(t) = lt := sup
p∈K?(Ωt)

inf
w∈V(Ωt)

L(w, p; Ωt) ≤ inf
w∈V(Ωt)

sup
p∈K?(Ωt)

L(w, p; Ωt) =: lt, (16)

and the corresponding solution sets are

Vt = {u ∈ V(Ωt)| sup
p∈K?(Ωt)

L(u, p; Ωt) = lt}, K?
t = {λ ∈ K?(Ωt)| inf

w∈V(Ωt)
L(w, λ; Ωt) = lt}. (17)

Using Notations (16) and (17), Inequalities (15) determine the set of SP for the Lagrangian (13):

S(t) := {(ut, λt) ∈ Vt × K?
t , `(t) = lt = L(ut, λt; Ωt) = lt}, (18)

which may be empty, a singleton, or contain more than one pair (ut, λt).

Proposition 2. (i) Under the following assumption:

(G1) mapping V(Ωt) 7→ H(Ωt), w 7→ G(Ωt)w in Problem (3) is surjective,

that is, for every ζ ∈ H(Ωt) there is at least one w ∈ V(Ωt), such that G(Ωt)w = ζ, the dual cone (14)
can be restated equivalently as the cone of non-negative elements in the dual space:

K?(Ωt) = {p ∈ H?(Ωt)| (p, ζ)Ωt ≥ 0 for all ζ ∈ H(Ωt), ζ ≥ 0}. (19)

(ii) Under Assumptions (G1) and (F1), (F2), (F3), the set of SP in (18) is nonempty, and saddle-point
(ut, λt) ∈ S(t) satisfies the optimality system (OS) in the form of variational relations:

〈∂uF (ut; Ωt), w〉Ωt − (λt,G(Ωt)w)Ωt = 0 for all w ∈ V(Ωt), (20)

(λt,G(Ωt)ut)Ωt = 0, (p,G(Ωt)ut)Ωt ≥ 0 for all p ∈ K?(Ωt). (21)

Primal component ut is unique when (F3’) holds. Uniqueness of dual component λt takes place if

(G2) the Ladyzhenskaya–Babuška–Brezzi (LBB) condition holds: there exists c > 0, such that

sup
w∈V(Ωt),w 6=0

(p,G(Ωt)w)Ωt
‖w‖V(Ωt)

≥ c‖p‖H?(Ωt), p ∈ H?(Ωt). (22)

In this case, sets Vt = {ut} and K?
t = {λt} in Problem (17) are singletons.

(iii) If a saddle-point in Problem (15) exists, then, under assumption (G1), the primal component ut ∈ K(Ωt)

solves the CO problem (5), and the OV functions for objective (5) and for Lagrangian (16) coincide:

f (t) = `(t). (23)

Proof. Assertion (i) is a consequence of the bipolar theorem. In Assertion (ii), using the Proposition 1
solution to the SP problem (15) can be derived in a standard way by determining ut from VI (10)
and by setting Lagrange multiplier λt from (20) (e.g., Reference [30] Chapter III, Proposition 3.1).
Optimality Conditions (20) and (21) and the uniqueness assertion under LBB Condition (G2) are stated,
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for example, in Reference [3], Theorem 3.14. In Assertion (iii), Problem (5) follows straightforwardly
by excluding λt from OS (20) and (21), while Identity (23) is guaranteed by (λt,G(Ωt)ut)Ωt = 0
in L(ut, λt; Ωt).

Based on Identity (23), the shape derivative of Objective (11) can be substituted by the SD of
Lagrangian ∂` as follows:

∂ f (t) = ∂`(t) := lim
s→0+

`(t+s)−`(t)
s (one-sided). (24)

According to Definition (16), the perturbed OV `(t + s) = lt+s = sup
µ∈K?(Ωt+s)

inf
v∈V(Ωt+s)

L(v, µ; Ωt+s)

in (24) is obtained for the perturbed Lagrangian (v, µ) 7→ L(v, µ; Ωt+s) : V(Ωt+s)× H?(Ωt+s) 7→ R,

L(v, µ; Ωt+s) = F (v; Ωt+s)− (µ,G(Ωt+s)v)Ωt+s , (25)

and the perturbed SP problem reads: find a pair (ut+s, λt+s) ∈ V(Ωt+s)× K?(Ωt+s) such that

L(ut+s, µ; Ωt+s) ≤ L(ut+s, λt+s; Ωt+s) ≤ L(v, λt+s; Ωt+s) for all (v, µ) ∈ V(Ωt+s)× K?(Ωt+s). (26)

However, the theorem of Delfour and Zolésio on differentiability of Lagrangians with respect
to parameter t (Reference [31] Chapter 10, Theorem 5.1), which they call the Correa–Seeger theorem,
is inapplicable to prove the limit in Problem (24). The reason is that the Lagrangian (25) is determined
over geometry-dependent spaces, which, in turn, depend on s→ 0+.

3. Shape Differentiability of Objectives for CO Problems

For the above reason, we further parametrized the geometry in Problem (1) as follows: For fixed
t ∈ I let

(s, x) 7→ φs(x), (s, y) 7→ φ−1
s (y) ∈W1,∞(I − t; W1,∞

loc (Rd))d (27)

associate coordinate transformation (CT) y = φs(x) and its inverse x = φ−1
s (y):

(φ−1
s ◦ φs)(x) = x, (φs ◦ φ−1

s )(y) = y (28)

such that shape perturbation

Ωt+s = {y ∈ Rd| y = φs(x), x ∈ Ωt} (29)

builds the diffeomorphism

φs : Ωt 7→ Ωt+s, x 7→ y, φ−1
s : Ωt+s 7→ Ωt, y 7→ x. (30)

Following the velocity method (e.g., Reference [36]), a given kinematic velocity

Λ(t, x) ∈ L∞(I; W1,∞
loc (Rd))d (31)

establishes Flow (27) by solving the nonautonomous ODE and the transport equation [35]:

d
ds φs = Λ(t + s, φs) for s > 0, φs = x as s = 0; (32)

∂
∂s φ−1

s + Λ(t + s, y) · ∇yφ−1
s = 0 for s > 0, φ−1

s = y as s = 0. (33)

Assume that



Axioms 2018, 7, 76 6 of 15

(D1) map (v, µ) 7→ (v ◦ φs, µ ◦ φs) is bijective between the function spaces

V(Ωt+s) 7→ V(Ωt), H?(Ωt+s) 7→ H?(Ωt); (34)

(D2) map µ 7→ µ ◦ φs is bijective between the dual cones

K?(Ωt+s) 7→ K?(Ωt). (35)

Assumption (D1) determines the transformed perturbed Lagrangian: I − t×V(Ωt)× H?(Ωt) 7→ R,

(s, w, p) 7→ L̃(s, w, p; Ωt) := F̃ (s, w; Ωt)− (p, G̃(s; Ωt)w)Ωt (36)

with continuous function (s, w) 7→ F̃ (s, w; Ωt) : I− t×V(Ωt) 7→ R and continuous operator (s, w) 7→
G̃(s; Ωt)w : I − t×V(Ωt) 7→ H(Ωt), which are resulted from the application of CT (28):

F̃ (s, v ◦ φs; Ωt) = F (v; Ωt+s), (µ ◦ φs, G̃(s; Ωt)(v ◦ φs))Ωt = (µ,G(Ωt+s)v)Ωt+s (37)

in such a way that the identity holds:

L̃(s, v ◦ φs, µ ◦ φs; Ωt) = L(v, µ; Ωt+s), (v, µ) ∈ V(Ωt+s)× H?(Ωt+s). (38)

According to Problem (37), F̃ (0, w; Ωt) = F (w; Ωt) and G̃(0; Ωt) = G(Ωt) as s = 0.

Remark 1. We remark that Assumption (D2) on the dual cone stated in the (19) form is advantageous in
comparison to the condition on Feasible Set (2):

(D2’) map v 7→ v ◦ φs is bijective between the feasible sets

K(Ωt+s) 7→ K(Ωt) (39)

that is needed for OV perturbation for the objective in Problem (12).
In fact, Bijection (D2’) fails for integral and derivative-type operators in Feasible Set (2), which are generally

not preserved G(Ωt+s) ◦ φs 6= G(Ωt) under velocity-induced geometry flow φs (see the example in Remark 2).

Under Assumptions (D1) and (D2), we reset the OV function for the transformed perturbed
Lagrangian as I − t 7→ R, s 7→ ˜̀( · ; t):

˜̀(s; t) = l̃t+s := sup
p∈K?(Ωt)

inf
w∈V(Ωt)

L̃(s, w, p; Ωt) ≤ inf
w∈V(Ωt)

sup
p∈K?(Ωt)

L̃(s, w, p; Ωt) =: l̃l+s (40)

and the corresponding solution sets:

Ṽt+s = {u ∈ V(Ωt)| sup
p∈K?(Ωt)

L̃(s, u, p; Ωt) = l̃t+s},

K̃?
t+s = {λ ∈ K?(Ωt)| inf

w∈V(Ωt)
L̃(s, w, λ; Ωt) = l̃t+s}.

(41)

If s = 0, then l̃t = lt, l̃l = ll in (16), (40) and Ṽt = Vt, K̃?
t = K?

t for sets (17) and (41) according
to (38). Since a solution to Perturbed SP Problem (26) exists, applying Identity (38), we get the solution

ũt+s := ut+s ◦ φs ∈ V(Ωt), λ̃t+s := λt+s ◦ φs ∈ K?(Ωt) (42)
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satisfying the transformed perturbed SP inequalities:

L̃(s, ũt+s, p; Ωt) ≤ L̃(s, ũt+s, λ̃t+s; Ωt) ≤ L̃(s, w, λ̃t+s; Ωt) for all (w, p) ∈ V(Ωt)× K?(Ωt), (43)

thus, it forms the SP set for transformed perturbed Lagrangian (36) similar to (18):

S̃(t + s) := {(ũt+s, λ̃t+s) ∈ Ṽt+s × K̃?
t+s| l̃t+s = L̃(s, ũt+s, λ̃t+s; Ωt) = l̃t+s}. (44)

Following Delfour–Zolésio, we assume that a small δ > 0 and a topology in V(Ωt)× H?(Ωt)

exist, such that the following hypotheses resulting from the specific representation (36) hold:

(H1) for all s ∈ [0, δ), the set of saddle-points S̃(t + s) in (44) is nonempty;
(H2) for all u ∈ ⋃

s∈[0,δ)
Ṽt+s × K̃?

t and τ ∈ [0, δ), there exists a one-sided partial derivative of the

transformed perturbed Lagrangian at perturbation parameter s = τ in the form:

∂
∂s L̃(τ, u, p; Ωt) =

∂
∂s F̃ (τ, u; Ωt)−

(
p, ∂

∂s G̃(τ; Ωt)u
)

Ωt
, p ∈ H?(Ωt), (45)

obtained from the partial derivatives of the objective and constraint functions as follows

∂
∂s F̃ (τ, u; Ωt) := lim

s→0+
F̃ (τ+s,u;Ωt)−F̃ (τ,u;Ωt)

s , ∂
∂s G̃(τ; Ωt) := lim

s→0+
G̃(τ+s;Ωt)−G̃(τ;Ωt)

s ; (46)

(H3) as s→ 0+, accumulation point ũt ∈ Ṽt and subsequence ũt+sk ∈ Ṽt+sk exist, such that

ũt+sk → ũt strongly in V(Ωt) as sk → 0+ (47)

and the lower estimate holds:

lim inf
τ, sk→0+

∂
∂s F̃ (τ, ũt+sk ; Ωt) ≥ ∂

∂s F̃ (0, ũt; Ωt); (48)

(H4) as s→ 0+, accumulation point λ̃t ∈ K̃?
t and subsequence λ̃t+sk ∈ K̃?

t+sk
exist, such that

λ̃t+sk → λ̃t strongly in H?(Ωt) as sk → 0+. (49)

The main result is stated in the next theorem.

Theorem 1. (i) Under Hypotheses (H1)–(H4), accumulation point (ũt, λ̃t) of Sequences (47) and (49)
implies an SP of the partial derivative ∂

∂s L̃(0, u, λ; Ωt) on Ṽt × K̃?
t , such that

sup
λ∈K̃?

t

inf
u∈Ṽt

∂
∂s L̃(0, u, λ; Ωt) =

∂
∂s L̃(0, ũt, λ̃t; Ωt) = inf

u∈Ṽt

sup
λ∈K̃?

t

∂
∂s L̃(0, u, λ; Ωt); (50)

the shape derivative exists and is represented by the partial derivative at the accumulation point:

∂s ˜̀(0; t) := lim
s→0+

˜̀(s;t)− ˜̀(0;t)
s = ∂

∂s L̃(0, ũt, λ̃t; Ωt) (one-sided). (51)

(ii) Under Assumptions (D1) and (D2), the shape derivatives defined in (24) and (51) coincide:

∂ f (t) = ∂`(t) = ∂s ˜̀(0; t). (52)

Proof. (i) According to Hypothesis (H1), SP inequalities (43) hold for sequence sk → 0+

from Hypotheses (H3) and (H4). In the next section, we used the accumulation point of
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Sequences (47) and (49) and insert it for a test function (w, p) = (ũt, λ̃t) ∈ Ṽt × K̃?
t ⊂ V(Ωt)× K?(Ωt)

into Problem (43) for s = sk:

L̃(sk, ũt+sk , λ̃t; Ωt) ≤ L̃(sk, ũt+sk , λ̃t+sk ; Ωt) ≤ L̃(sk, ũt, λ̃t+sk ; Ωt). (53)

We also plugged (w, p) = (ũt+sk , λ̃t+sk ) ∈ Ṽt+sk × K̃?
t+sk
⊂ V(Ωt)× K?(Ωt) into (43) as s = 0:

L̃(0, ũt, λ̃t+sk ; Ωt) ≤ L̃(0, ũt, λ̃t; Ωt) ≤ L̃(0, ũt+sk , λ̃t; Ωt). (54)

Subtracting L̃(0, ũt, λ̃t; Ωt) from left inequality (53), using right inequality (54) and the
representation of L̃ in (36), after division of the result with sk leads to

L̃(sk ,ũt+sk ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t ;Ωt)

sk
≥ L̃(sk ,ũt+sk ,λ̃t ;Ωt)−L̃(0,ũt+sk ,λ̃t ;Ωt)

sk
=
F̃ (sk ,ũt+sk ;Ωt)−F̃ (0,ũt+sk ;Ωt)

sk

−
(
λ̃t,
G̃(sk ;Ωt)−G̃(0;Ωt)

sk
ũt+sk

)
Ωt

= ∂
∂s F̃ (αksk, ũt+sk ; Ωt)− (λ̃t, ∂

∂s G̃(β
k
sk; Ωt)ũt+sk )Ωt , (55)

where mean value theorem guarantees existence of weights αk, β
k
∈ (0, 1) in (55) due to differentiability

property (46). Passing to the limit as sk → 0+ by the virtue of assumptions (47) and (48) proceeds (55)
further with the lower estimate:

lim inf
sk→0+

L̃(sk ,ũt+sk ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t ;Ωt)

sk
≥ ∂

∂s F̃ (0, ũt; Ωt)− (λ̃t, ∂
∂s G̃(0; Ωt)ũt)Ωt

= ∂
∂s L̃(0, ũt, λ̃t; Ωt). (56)

Similarly, subtracting L̃(0, ũt, λ̃t; Ωt) from right inequality (53) and using left inequality (54)
provides the following relations with weights αk, βk ∈ (0, 1):

L̃(sk ,ũt+sk ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t ;Ωt)

sk
≤ L̃(sk ,ũt ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t+sk ;Ωt)

sk
= F̃ (sk ,ũt ;Ωt)−F̃ (0,ũt ;Ωt)

sk

−
(
λ̃t+sk , G̃(sk ;Ωt)−G̃(0;Ωt)

sk
ũt
)

Ωt
= ∂

∂s F̃ (αksk, ũt; Ωt)− (λ̃t+sk , ∂
∂s G̃(βksk; Ωt)ũt)Ωt , (57)

hence the upper bound

lim sup
sk→0+

L̃(sk ,ũt+sk ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t ;Ωt)

sk
≤ ∂

∂s L̃(0, ũt, λ̃t; Ωt). (58)

Inequalities (56) and (58) together imply Equality (51) yielding the SD ∂s ˜̀ of OV function ˜̀ given
in Problem (40) for transformed Lagrangian L̃, thus proving Assertion (i).

(ii) When Bijection (34) and (35) holds, from Identity (38) we infer that

˜̀(sk ;t)− ˜̀(0;t)
sk

=
L̃(sk ,ũt+sk ,λ̃t+sk ;Ωt)−L̃(0,ũt ,λ̃t ;Ωt)

sk
=
L(ut+sk ,λt+sk ;Ωt+sk )−L(ut ,λt ;Ωt)

sk
= `(t+sk)−`(t)

sk
. (59)

After passage (59) to the limit as sk → 0+, this follows the equivalence asserted in (52) between
∂s ˜̀ and the SD ∂` = ∂ f from (24).

4. Application to Brinkman Flow

Let domain Ωt in Problem (1) have Lipschitz continuous boundary ∂Ωt obeying the unit normal
vector nt = (nt

1, . . . , nt
d) outward to Ωt and consisting of two nonempty, disjoint sets ΓD

t and ΓN
t .

For stationary force f = ( f1, . . . , fd) ∈ H1
loc(R

d)d, we consider the Brinkman problem [24]: find a flow
velocity ut = ((ut)1, . . . , (ut)d) and a pressure λt satisfying

− µ∆ut + αut +∇λt = f in Ωt, (60)
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divut = 0 in Ωt, (61)

ut = 0 on ΓD
t , −µ ∂

∂nt ut + λtnt = 0 on ΓN
t , (62)

under mixed Dirichlet–Neumann boundary conditions (62), where parameter µ > 0 denotes fluid
viscosity, and α > 0 is the drag coefficient.

Incompressibility Condition (61) determines the operator

G(Ωt) = div : H1
Γ(Ωt)

d 7→ L2(Ωt) (63)

where L2(Ωt) =: H(Ωt) = H?(Ωt), and Sobolev space H1
Γ(Ωt)d =: V(Ωt) accounts for the Dirichlet

boundary condition in (62):

H1
Γ(Ωt)

d = {w = (w1, . . . , wd) ∈ H1(Ωt)
d| w = 0 a.e. ΓD

t }. (64)

The primal cone (2) is presented here by the equality-type constraint:

K(Ωt) = {w ∈ H1
Γ(Ωt)

d| divw = 0 a.e. Ωt}. (65)

Corresponding duality pairings are

〈u, w 〉Ωt =
∫

Ωt
(µ∇u · ∇w + αu · w) dx, u, w ∈ H1

Γ(Ωt)
d, (66)

(p,G(Ωt)w)Ωt =
∫

Ωt
p divw dx, p ∈ L2(Ωt), (67)

and the latter one builds the dual cone

K?(Ωt) = {p ∈ L2(Ωt)|
∫

Ωt
p divw dx = 0 for all w ∈ K(Ωt)}. (68)

The underlying objective function in (5) reads:

F (w; Ωt) =
∫

Ωt

( µ
2 |∇w|2 + α

2 |w|
2 − f · w

)
dx. (69)

The quadratic function in (69) satisfies Assumptions (F1), (F2), and (F3’) of Proposition 1;
hence, CO Problem (5) obeys unique solution ut ∈ K(Ωt). The Lagrangian function in (13) takes
the form:

L(w, p; Ωt) =
∫

Ωt

( µ
2 |∇w|2 + α

2 |w|
2 − f · w− p divw

)
dx. (70)

If meas(ΓN
t ) > 0, then LBB condition (22) holds, (Reference [3], Theorem 7.2), namely:

sup
w∈H1

Γ(Ωt)d ,w 6=0

∫
Ωt

p divw dx
‖w‖H1(Ωt)d

≥ c‖p‖L2(Ωt)
, c > 0, p ∈ L2(Ωt). (71)

This means that the divergence operator in (63) is surjective; thus, Assumptions (G1), (G2) and
Assertions (i)–(iii) of Proposition 2 hold true. In the case of equality constraint, the positive cone turns
into the whole space K?(Ωt) = L2(Ωt) according to (19). OS (20) and (21) implies the solution pair
(ut, λt) ∈ H1

Γ(Ωt)d × L2(Ωt) satisfying the following variational equations:∫
Ωt

(
µ∇ut · ∇w + (αut − f ) · w− λt divw

)
dx = 0 for all w ∈ H1

Γ(Ωt)
d, (72)

∫
Ωt

p divut dx = 0 for all p ∈ L2(Ωt). (73)
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Note that (73) is equivalent to (61) by the fundamental lemma of the calculus of variations, and any
smooth solution of (72) after integration by parts leads to Brinkman Equation (60) and the Neumann
condition in (62).

Next we apply CT (27). It can be directly checked that bijective Properties (34) and (35), and hence
Assumptions (D1) and (D2), hold true. Possible counterexamples are accounted below.

Remark 2. Bijective property (39) in (D2’) fails for the primal cone defined in (65) because condition divyv =

(∇φ−T
s ◦ φs) · ∇x(v ◦ φs) = 0 is not equivalent to divx(v ◦ φs) = 0 for v ∈ H1

Γ(Ωt+s)d.

Remark 3. If meas(ΓN
t ) = 0, then the operator in (63) is not surjective since the divergence operator maps

div : H1
0(Ωt)d 7→ L2

0(Ωt), where

L2
0(Ωt) = {p ∈ L2(Ωt)|

∫
Ωt

p dx = 0},

and its topologically dual space L2
0(Ωt)? excludes constants. In this case, Bijection (35) in (D2) fails,

because
∫

Ωt+s
µ dy =

∫
Ωt
(µ ◦ φs)det(∇φs)dx = 0 is not equivalent to

∫
Ωt
(µ ◦ φs) dx = 0 for µ ∈ L2

0(Ωt+s).

Based on CT y = φs(x) with Jacobian matrix ∇φs and its determinant det(∇φs) > 0, from (70)
we get the transformed perturbed objective and Lagrangian according to Relations (36)–(38):

L̃(s, w, p; Ωt) = F̃ (s, w; Ωt)−
∫

Ωt
p
(
(∇φ−T

s ◦ φs) · ∇w
)

det(∇φs)dx,

F̃ (s, w; Ωt) =
∫

Ωt

( µ
2 |(∇φ−T

s ◦ φs)∇w|2 + α
2 |w|

2 − ( f ◦ φs) · w
)

det(∇φs)dx. (74)

By checking Hypotheses (H1)–(H4), we prove the result on shape differentiability in the following:

Theorem 2. In the Brinkman problem, there exists the shape derivative expressed by the partial derivative:

∂ f (t) = ∂`(t) = ∂s ˜̀(0; t) = ∂
∂s L̃(0, ut, λt; Ωt) =

∫
Ωt

( µ
2 divΛ|∇ut|2 − µ∇ut · (∇Λ∇ut)

+ α
2 divΛ|ut|2 − ((divΛ) f + (Λ · ∇) f ) · ut + λt∇ΛT · ∇ut

)
dx, (75)

where (ut, λt) ∈ H1
Γ(Ωt)d × L2(Ωt) is the unique SP solving OS (72) and (73), and kinematic velocity Λ(t, x)

comes from (31).

Proof. (H1) For s ∈ [0, δ) with arbitrarily fixed δ > 0, the set of SP (44) contains exactly one element:

S̃(t + s) = {(ũt+s, λ̃t+s) := (ut+s ◦ φs, λt+s ◦ φs) ∈ H1
Γ(Ωt)

d × L2(Ωt)} (76)

by transforming solution (ut+s, λt+s) ∈ H1
Γ(Ωt+s)d × L2(Ωt+s) to the perturbed at t + s system (72)

and (73). This satisfies the transformed perturbed OS for all (w, p) ∈ H1
Γ(Ωt)d × L2(Ωt):

∫
Ωt

(
µ
(
(∇φ−T

s ◦ φs)∇ũt+s
)
·
(
(∇φ−T

s ◦ φs)∇w
)
+ (αũt+s − f ◦ φs) · w

− λ̃t+s (∇φ−T
s ◦ φs) · ∇w

)
det(∇φs)dx = 0, (77)

∫
Ωt

p
(
(∇φ−T

s ◦ φs) · ∇ũt+s
)

det(∇φs)dx = 0. (78)
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(H2) For the velocity Λ from (31), we expand as s→ 0+ at (t, x) (see Reference [37] Chapter 5):

∇φ−1
s ◦ φs = I − s∇Λ + o(s), det(∇φs) = 1 + sdivΛ + o(s), f ◦ φs = f + sΛ · ∇ f + o(s) (79)

uniformly over t and Ωt. Plugging (79) into (74) we straightforwardly derived the partial derivative
∂
∂s L̃(0, w, p; Ωt) and extended it to ∂

∂s L̃(τ, w, p; Ωt) in (45) and (46) for τ ∈ [0, δ) by setting the

time-shifted velocity Λ|t+τ := Λ(t + τ, x) instead of Λ = Λ(t, x). It has the following form:

∂
∂s L̃(τ, w, p; Ωt) =

∂
∂s F̃ (τ, w; Ωt)−

∫
Ωt

p (divΛ|t+τdivw−∇Λ|Tt+τ · ∇w) dx,

∂
∂s F̃ (τ, w; Ωt) =

∫
Ωt

( µ
2 divΛ|t+τ |∇w|2 − µ∇w · (∇Λ|t+τ∇w)

+ α
2 divΛ|t+τ |w|2 − ((divΛ|t+τ) f + (Λ|t+τ · ∇) f ) · w

)
dx. (80)

(H3) & (H4) Testing (77) with w = ũt+s, since ((∇φ−T
s ◦ φs) · ∇ũt+s)det(∇φs) = 0 due to (78),

we have ∫
Ωt

(
µ|(∇φ−T

s ◦ φs)∇ũt+s|2 + α|ũt+s|2
)

det(∇φs)dx =
∫

Ωt
( f ◦ φs) · ũt+s det(∇φs)dx. (81)

Using the asymptotic expansions (79) and applying Young’s inequality with a suitable weight to
the right-hand side of (81), this follows the uniform in s ∈ [0, δ) estimate:

‖ũt+s‖2
H1(Ωt)d ≤ 1

min(µ,α)

∫
Ωt

(
µ|∇ũt+s|2 + α|ũt+s|2

)
dx = O(1). (82)

We divide (77) with the norm of w 6= 0 and apply the Cauchy–Schwarz inequality such that

∫
Ωt

λ̃t+s

(
(∇φ−T

s ◦φs)·∇w
)

det(∇φs)dx
‖w‖H1(Ωt)d

=

∫
Ωt

(
µ((∇φ−T

s ◦φs)∇ũt+s)·((∇φ−T
s ◦φs)∇w)+(αũt+s− f ◦φs)·w

)
det(∇φs)dx

‖w‖H1(Ωt)d

= O
(
‖ũt+s‖H1(Ωt)d + ‖ f ‖L2(Ωt)d

)
. (83)

Taking the supremum in (83) over admissible w, in the virtue of (82) and LBB condition (71),
we get:

‖λ̃t+s‖L2(Ωt)
= O(1). (84)

By the reflexivity of the underlying function spaces, from (82) and (84) it follows that there exists
an accumulation point (ũt, λ̃t) and subsequence (ũt+sk , λ̃t+sk ), such that

(ũt+sk , λ̃t+sk ) ⇀ (ũt, λ̃t) weakly in H1
Γ(Ωt)

d × L2(Ωt) as sk → 0+. (85)

From asymptotic Relations (79) and (85), we get the limit of the system of linear equations (77)
and (78) in the form of OS (72) and (73). Then, due to the uniqueness of its solution, the accumulation
point implies

(ũt, λ̃t) = (ut, λt). (86)

Using Representations (70), (72), (73), and algebra formula 1
2 (a− b)2 = −(a− b)b + 1

2 a2 − 1
2 b2

we rearrange the following terms:

∫
Ωt

( µ
2 |∇(ũt+sk − ut)|2 + α

2 |ũt+sk − ut|2
)

dx = −
∫

Ωt

(
µ∇(ũt+sk − ut) · ∇ut + α(ũt+sk − ut) · ut

+ f · (ũt+sk − ut) + λ̃t+sk divũt+sk

)
dx + L(ũt+sk , λ̃t+sk ; Ωt)−L(ut, λ̃t+sk ; Ωt). (87)



Axioms 2018, 7, 76 12 of 15

In the virtue of asymptotic Formula (79), from (74) and (43), with test function w = ut, it follows

L(ũt+sk , λ̃t+sk ; Ωt)−L(ut, λ̃t+sk ; Ωt) ≤ L̃(sk, ũt+sk , λ̃t+sk ; Ωt)− L̃(sk, ut, λ̃t+sk ; Ωt) + csk ≤ csk

with some constant c > 0, and divũt+sk = O(sk) according to (78), hence (87) yields that

lim sup
sk→0+

‖ũt+sk − ut‖2
H1(Ωt)d ≤ 0. (88)

Subtracting (72) from (77), due to (79) and (88) we have the asymptotic equality∫
Ωt
(λ̃t+sk − λt)divw dx =

∫
Ωt

(
µ∇(ũt+sk − ut) · ∇w + α(ũt+sk − ut) · w

)
dx + O(sk). (89)

Therefore, using (89) together with (88), the convergence in (85) is updated to a strong one:

(ũt+sk , λ̃t+sk )→ (ũt, λ̃t) strongly in H1
Γ(Ωt)

d × L2(Ωt) as sk → 0+, (90)

implying (47) and (49) in Hypotheses (H3) and (H4).
Finally, due to the continuity of mapping (τ, w) 7→ ∂

∂s F̃ (τ, w; Ωt) in (80) and using the strong
Convergence (90), we have:

lim
τ, sk→0+

∂
∂s F̃ (τ, ũt+sk ; Ωt) =

∂
∂s F̃ (0, ut; Ωt), (91)

that proves (48). Applying Theorem 1, from Formula (80) at τ = 0 with (w, p) = (ut, λt) and using
divut = 0 it follows Formula (75) of the shape derivative and finishes the proof.

We remark a singularity of the mixed Dirichlet–Neumann boundary value Problem (72) and (73)
at intersection ΓD

t ∩ ΓN
t , such that its solution (ut, λt) is generally not in H2(Ωt)d × H1(Ωt). Therefore:

Corollary 1. Let the singular set be localized in a domain ωt ⊂ Ωt such that the solution (ut, λt) of (72) and
(73) (ut, λt) ∈ H2(Ωt \ ωt)d × H1(Ωt \ ωt), force f ≡ const and velocity Λ ≡ const in ωt. In this case,
using integration of (75) by parts, the following Hadamard representation over the boundary of Ωt \ωt with
the outward normal nt holds true:

∂
∂s L̃(0, ut, λt; Ωt) =

∫
∂(Ωt\ωt)

Λ ·
(
nt( µ

2 |∇ut|2 + α
2 |ut|2 − f · ut)−∇ut(µ

∂
∂nt ut − λtnt)

)
dSx. (92)

Proof. In domain D with regular boundary ∂D and unit normal vector n outward to D, for smooth
functions w and p, we used the following formulas of integration by parts written component-wisely
with the convention of summation over repeated indices i, j, k = 1, . . . , d :

∫
D
( 1

2 Λk,kw2
i,j − wi,kΛk,jwi,j) dx =

∫
D

Λkwi,jjwi,k dx +
∫

∂D
(Λknk

1
2 w2

i,j −Λkwi,kwi,jnj) dSx,∫
D

1
2 Λk,kw2

i dx = −
∫

D
Λkwi,kwi dx +

∫
∂D

Λknk
1
2 w2

i dSx,

−
∫

D
(Λk,k fi + Λk fi,k)wi dx =

∫
D

Λk fiwi,k dx−
∫

∂D
Λknk fiwi dSx,∫

D
pΛk,iwi,k dx = −

∫
D

Λk(piwi,k + pwi,ik) dx +
∫

∂D
Λkwi,k pni dSx. (93)
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The summation of four equations in (93) (where the first equation is multiplied with µ and the
second one with α) provides the identity

∫
D

( µ
2 divΛ|∇w|2 − µ∇w · (∇Λ∇w) + α

2 divΛ|w|2 − ((divΛ) f + (Λ · ∇) f ) · w + p∇ΛT · ∇w
)

dx

=
∫

D

(
(Λ · w)(µ∆w− αw + f −∇p)− pΛ · divw

)
dx

+
∫

∂D
Λ ·
(
n( µ

2 |∇ut|2 + α
2 |w|

2 − f · w)−∇w(µ ∂
∂n w− pn)

)
dSx. (94)

The integral in (75) over ωt vanishes when ∇ f ≡ 0 and ∇Λ ≡ 0 here. For the complement
integral over Ωt \ ωt, we applied Formula (94) and Equations (60), (61) to derive (92). The proof
is completed.

Remark 4. If the parameter α = 0, then (60) turns into the Stokes flow equation. In this case, the shape
differentiability result of Theorem 2 holds true for the Stokes problem and was proved by direct method in the
earlier work [9].

Remark 5. If parameter µ = 0, then (60) turns into the equation describing Darcy flow [16]. In this
case, function space V(Ωt) = {w ∈ H(div; Ωt)| w = 0 a.e. ΓD

t }, where

H(div; Ωt) = {w = (w1, . . . , wd) ∈ L2(Ωt)
d| divw ∈ L2(Ωt)}.

It fails bijection property (34) in (D1), because divyv = (∇φ−T
s ◦ φs) · ∇x(v ◦ φs) ∈ L2(Ωt) does not

imply divx(v ◦ φs) ∈ L2(Ωt) and vice versa (see also Remark 2).

5. Conclusions

The current study extends the class of shape differential models to the incompressible Brinkman
flow problem under mixed Dirichlet–Neumann boundary conditions. This result can be continued to
flow problems under pure no-slip boundary conditions for area-preserving maps within L2

0(Ωt)-spaces
(see Remark 3) that form special linear group SL(d) in Rd. Future research in this field might use
divergence-preserving maps (see Remark 2 and Remark 5) like Piola transformation, which challenges
a rigorous mathematical tool. The other challenging direction concerns examining the geometric
singularity of the mixed Dirichlet–Neumann boundary value problem (72) and (73) at intersection
point ΓD

t ∩ ΓN
t .
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The following abbreviations are used in this manuscript:

CO constrained optimization
CT coordinate transformation
LBB Ladyzhenskaya–Babuška–Brezzi
ODE ordinary differential equation
OS optimality system
OV optimal value
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SD shape derivative
SP saddle-point
VI variational inequality
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