

Flare energetics deduced from X-ray observations: considering some caveats

Alexander Warmuth & Gottfried Mann Leibniz-Institut für Astrophysik Potsdam (AIP)

Study of Warmuth & Mann (2016a/b)

- 24 flares from C3 to X17
- time series of GOES fluxes and RHESSI spectra (isotherm. + CTTM)
- time series of HXR images: source sizes (*Warmuth & Mann 2013a,b*)

 E_{HC} $P_{nth}(t) = \int_{0}^{-\pi c} dE F_0(E,t) \cdot E$ nonthermal electron input:

- thermal energy:
- radiative loss rate:
- conductive loss rate:

 $E_{th}(t) = 3k_h T \sqrt{EM \cdot V}$ $P_{rad}(t)$ (from CHIANTI)

 E_{LC}

 $P_{cond}(t) \sim A_{FP} \cdot T^{7/2} \cdot l^{-1}$ (Spitzer, with saturation)

total heating requirement:
$$E_{th,tot} = \int_{t_B}^{t_E} dt \left(\frac{dE_{th}(t)}{dt} + P_{rad}(t) + P_{cond}(t) \right)$$

Results of Warmuth & Mann (2016a/b)

- two thermal components: 10-25 MK (evaporated), > 25 MK (directly heated)
- total energy requirements of hot plasma ~ bolometric energy
- conductive losses are a major contribution
- nonthermal energy input ~ bolometric energy only in large flares
- conduction is required as additional heating mechanism of dense lower atmosphere

Results of Warmuth & Mann (2016a/b)

Consider some caveats...

nonthermal component:

- low-energy cutoff
- energy input by protons

thermal component:

- potential energy and kinetic flow energy plasma
- filling factor
- temperature gradient for conductive losses
- conductive losses as gains (reprocessing)
- multithermality

Nonthermal energy input

- Electrons:
 - low-energy cutoff usually masked by thermal emission
 - highest low-E cutoff consistent with spectra
 → lower estimate for injected electron flux and power
- lons:
 - energy in >1 MeV ions broadly comparable to energy in electrons (but large uncertainties)
 - no constraints on energy in low-energy ions

Baseline

Low energy cutoff: 20 keV

Low energy cutoff: 10 keV

Summary on nonthermal input

- Electrons:
 - low-energy cutoff ~10 keV required to account for thermal component in small flares
 - this steepens power-law \rightarrow inconsistent with bolometric energy in strong flares
- lons:
 - weak flares would require 10x more energy in ions than in electrons \rightarrow inconsistent with observations
- Conclusion: additional non-beam heating mechanism required

Potential and flow energy

 potential energy negligible (1% of thermal energy)

flow energy <10% of thermal energy for 200 km/s (equipartition for 700 km/s)

Filling factor of thermal and nonthermal sources

- volume filling factor of coronal source influences thermal energy
 - EUV observations suggest small filling factors ($f_v < 0.1$)
 - X-ray observations suggest larger values ($f_v = 0.1-1$)
 - constraints by density-sensitive lines and plasma beta
- area filling factor of HXR FPs influence conductive loss
 - HXR FP area taken as thermal loop FP area
 - is this a valid assumption?
 - RHESSI imaging reaches limits for compact FPs
 - observation of compact WL kernels
 - \rightarrow real FP areas smaller ($f_A < 1$)

Baseline

Filling factor: $f_v = 0.1$, $f_A = 0.1$

Influences on conductive losses

- loop FP areas
- conductive losses ~ thermal gradient ~ thermal scale length
- partial 'recycling' of conductive losses
 - losses can drive chromsopheric evaporation, increasing amount of hot plasma
 - reduces nonthermal energy input requirements
- suppression of conduction by turbulence (cf. talk by Emslie)

Baseline: temperature scale length = loop half-length

Temperature scale length: 10 Mm

Temperature scale length: 1 Mm

Baseline

Fraction of conductive loss that is recycled: 0.5

Fraction of conductive loss that is recycled: 0.9

Summary on conductive losses

- Lower conductive losses
 - by reducing FP area, recycling
 - → would require additional energy release or transport process to heat lower atmosphere
- Higher conductive losses:
 - by decreasing thermal scale length
 - \rightarrow inconsistent with bolometric energy loss

Multithermality

- have considered RHESSI and GOES
 - \rightarrow bithermal model for hot plasma component
- difference to bolometric energy shows the strong contribution of cooler plasma
- comparison with true multithermal results (EUV-based DEM reconstructions)

Thermal energies: multithermal (EUV) vs. isothermal/bithermal (X-rays)

Conclusions

- energy requirements of hot plasma can be brought down to be consistent with nonthermal energy input
 - → inconsistent with bolometric energy (too little energy input into low atmosphere)
- nonthermal energy input can be increased to match heating requirements only by making ad-hoc assumptions
- additional non-beam heating mechanism required
- strong conductive losses of hot plasma required