Working Group 6

Theory and Modeling of Flare Processes

Electron Acceleration

Primary electron acceleration in flares occurs in the downward reconnection jet

- Gottfried Mann
 - Particle acceleration in slow mode shocks
 - Most efficient conversion of magnetic energy to heat if angle to B-field is 54 deg.
- Mitsuo Oka
 - Why is electron spectral index > 4 in solar flares?
 - delta < 4 in shock and turbulent acceleration, heliosphere
- Ivan Zimovets
 - Electron acceleration by kinetic Alfven waves
 - 10 100 keV in converging flux tube (secondary)

Electron Propagation and Heat Deposition

- Meriem Alaoui
 - Application of return-current model to flare data.
 - Model works well in cases with strong spectral breaks, enhanced resistivity frequently required.
- Gordon Emslie
 - Turbulent suppression of both heat flux and conductivity.
 - Increase in resistivity and decrease in conduction expected together.

Accelerated Electron Pitch-Angle Distribution

- Victor Melnikov
 - Calculations of directivity and polarization along a flare loop
 - Sensitive to electron pitch-angle distribution
- Weiqun Gan (Wei Chen)
 - Hard X-ray polarization
 - Polar mission
- Diego Casadei
 - Stereo observations of coronal and footpoint sources for directivity measurements
 - STIX & MiSolFA (Micro Solar-Flare Apparatus)

Energy Flux in Nonthermal Electrons

- Eduard Kontar
 - Collisions in flare loop plasma (thermalization) determine lowest effective low-energy cutoff.
 - Warm target model fitting function available in OSPEX.

Interpretation of X-ray Spectra

- Jeffrey Reep
 - Non-thermal thick-target recombination
 - Important for steep spectra and low low-energy cutoffs (microflares)

Tests of the Thick-Target Model

- John Brown
 - HXR albedo echo delay
 - How does this affect time-of-flight results?
- Michal Varady
 - Hybrid simulations (PIC + Flarix) of HXR source lengths
 - Mirroring produces more extended X-ray sources

Thermal Response

- Tremendous progress has been made in simulating the thermal response of flare plasma to heating by energetic particles and direct heating.
- Application of numerical simulations to combined hard X-ray, soft X-ray, EUV, UV, and optical data is rapidly advancing.

Thermal Response

- Lucia Kleint
 - Emission from both photosphere and chromosphere
 - Not blackbody in NUV during flare (from chromosphere)
- Pavel Kotrc
 - Ondrejov observations of blue Balmer continuum
 - Paschen continuum in the future (480 920 nm)
- Jana Kasparova
 - Flarix code, comparison with RADYN results
- Petr Heinzel
 - Evolution of hydrogen continua in solar flares Flarix and observations
 - White light has two contributions, direct ionization in chromosphere and back warming in photosphere, with different radiation signatures

Alternative to the Standard Flare Model

- Philippa Browning
 - Confined flares in twisted and interacting loops
 - Forward modeling of thermal & non-thermal emissions, microwaves (sensitive to **B**)

Miscellaneous

- Stephen White
 - Capabilities of Nobeyama observations
 - Dynamic range up to 1000
- Elena Kupriyanova
 - Origin of quasi-periodicities during a circular ribbon flare
 - 2.5 min quasi-periodicities found in H-alpha, HXR, and microwaves In outer and inner circular ribbons.

Presentations in Group 6 ranged from models for electron acceleration to electron propagation,

- energy deposition,
- pitch-angle distribution,
- the thermal response to heating by energetic electrons,
- and alternatives to the standard flare model.

Thank you to all presenters and participants!