WG 1

IRIS/RHESSI +WGs 3 & 6

WG 1 : Of hot and cold flares

Zongjun Ning Peter Gömöry Marina Battaglia Gregory Fleishman

Z. Ning

Chromospheric evaporation

It's electrons beams!

- 2 HXR peaks
- FeXXI velocity negatively correlated with HXR flux
- CI velocity positively correlated with HXR flux

P. Gömöry

Chromospheric evaporation

It's electron beams – but beware Fisher 1985!

Hinode/EIS doppler-shifts at different temperatures \rightarrow explosive evaporation RHESSI non-thermal beam power: 1.34 × 10¹⁰ erg s⁻¹ cm⁻²

But: explosive evaporation threshold is dependent on the cut-off energy (Reep et al. 2015)

 \rightarrow threshold could be lower for lower energy cut-offs \rightarrow supported by these observations

Chromospheric evaporation

It's not (always or entirely) electron beams!

IRIS FeXXI and RHESSI observations of 29.3.2014 flare:

evaporation at location not associated with HXR

Electron beams are dominant means of energy input during the flare peak **but** cannot explain the whole observation \rightarrow energy input by thermal conduction equally important

G. Fleishman

G. Fleishman

-790 -780 -770 -760 -750 -740 X (orcsecs)

-800 -790

-770 -760 -750 -740

¥ [orcsecs]

-780

-800 -790 -780 -770 -760 -750 ¥ (orcsecs)