

KARL-FRANZENS-UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

Magnetic reconnection rates in eruptive and confined flares

A.M. Veronig, J. Hinterreiter, J. Tschernitz, J.K. Thalmann, W. Pötzi

Kanzelhöhe Observatory & Institute of Physics, University of Graz, Austria

15th RHESSI Workshop, Graz, 26 – 30 July 2016

Context:

- Eruptive flares are powered by magnetic reconnection behind the erupting CME/flux rope ("standard CME/flare model").
- The energy release process in confined flares is less well established.

Aim:

Comparative study of a set of confined & eruptive flares to check for observational differences related to the energy release process:

- Flare ribbon separation and separation motion
- Magnetic reconnection rates and fluxes
- Coronal electric field (local reconnection rates)

1) Coronal electric field in reconnection region (assumes 2.5D geometry): (Forbes and Priest 1984)

 $E_{\rm c} = v_{\rm r} B_{\rm n}$

2) Magnetic reconnection flux and flux change rates

(Priest and Forbes 2000, Hesse et al. 2005)

$$\dot{\varphi}(t) = \frac{\mathrm{d}\varphi}{\mathrm{d}t} \approx \frac{\partial}{\partial t} \int B_{\mathrm{n}}(a) \,\mathrm{d}a = \sum_{i} \frac{a_{i}(t_{k})B_{\mathrm{n}}(a_{i})}{(t_{k} - t_{k-1})}$$
$$\varphi(t_{k}) = \int_{t_{0}}^{t_{k}} \dot{\varphi}(t) \,\mathrm{d}t \approx \sum_{j=1}^{k} \dot{\varphi}(t_{j})(t_{j} - t_{j-1})$$

Selection:

- Set of ~50 eruptive and confined flares, CMD < 30°
- Flares well distributed over classes (in particular includes large confined events)

GOES-Class	n _{confined}	n _{eruptive}	n _{total}
В	7	0	7
С	12	3	15
М	7	11	18
Х	6	5	11
Total	32	19	51

Yashiro et al. (2006): statistics of 98 X, 692 M, 575 C flares

Selection:

- Set of ~50 eruptive and confined flares, CMD < 30°
- Flares well distributed over classes (in particular includes large confined events)

GOES-Class	n _{confined}	neruptive	n _{total}
В	7	0	7
С	12	3	15
Μ	7	11	18
Х	6	5	11
Total	32	19	51

Data set: 2000 - 2015

- MDI and HMI LOS magnetic field maps
- Kanzelhöhe H α (+ USO for 28-Oct-03 X17 + ISOON for 29-Oct-03 X10 flare)
- Ground-based H α : seeing influences

+ homogeneous data set over 2 solar cycles

Comparison: KSO Hα & SDO AIA 1600 22-Oct-2014: X1.6 flare, confined

Movie 1: newly brightened flare area (left) and cumulated flare area (right) on AIA 1600 images

Movie 2: newly brightened flare area (left) and cumulated flare area (right) on HMI LOS magnetic field map

Movie 3: newly brightened flare area (left) and cumulated flare area (right) on KSO H α images

Example: reconnection flux study

Newly brightened flare area A

Mean field strength in flare pixels

Cumulated reconnection flux $\varphi(t)$

Reconnection rate $\frac{d\varphi}{dt}$

GOES X-ray flux and derivative

Veronig & Polanec (2015)

Example: reconnection flux study

detector⁻¹

-s

counts

SDO/AIA 1600 Å

Kanzelhöhe Obs. H α

Kanzelhöhe Obs. Ca II K

&

RHESSI HXR flux

peak simultaneously within 1 min

Reconnection rate (Mx/s) against GOES peak flux

Red: eruptive flares Blue: confined flares

Reconnection flux (Mx) against GOES peak flux

Red: eruptive flares Blue: confined flares

Cross-check: Negative against positive reconnection flux

Red: eruptive flares Blue: confined flares

9-Nov-2011: M1.1/2N flare, eruptive ($v_{CME} = 900$ km/s) Movie

15th RHESSI Workshop, Graz, 26 – 30 July 2016

Example: coronal Ec study

15th RHESSI Workshop, Graz, 26 – 30 July 2016

GOES flux & derivative

Ribbon separation

Ribbon separation speed

Underlying phot. B-field

Coronal electric field Ec

Start Time (09-Nov-11 13:03:20)

More details: see Poster by Jürgen Hinterreiter

Red: eruptive events Blue: confined events

Red: eruptive events Blue: confined events

- Ribbon separation distance and separation speed are statistically smaller in confined flares, and show weaker dependence on GOES class.
- Ec fields are smaller in confined flares: confined flares have all Ec < 20 V/cm, whereas in eruptive flares it may reach up to Ec = 80 V/cm.
- Distinct correlations between reconn. rates and reconnection fluxes with GOES flare class (c > 0.9).
- Small difference for eruptive and confined flares: for same reconnection flux & rates, confined flares reach smaller GOES class

GOES 1-8 Å flux / Wm⁻²

- AR 12192 was the largest AR on Sun since 25 years
- Maximum magnetic flux in the AR was 2 ·10²³ Mx on 27 Oct 2014 (Sun et al. 2015, Thalmann et al 2015)
- Max. estimate: assume all AR flux is reconnected

half

 $\begin{array}{l} \rightarrow \text{X250 flare} \\ \rightarrow \text{X100 flare} \end{array}$

X100 flare would be less extreme than the "superflares" (X1000-ish) suggested from Kepler observations of flares on Sun-like stars (Maehara et al., 2012, Nature 485)

THANK YOU!

15th RHESSI Workshop, Graz, 26 – 30 July 2016