CURIE: CUbesat Radio Interferometry Experiment

Pascal Saint-Hilaire & the CURIE team
Space Sciences Laboratory, UC Berkeley

RHESSI 15, Graz, Austria, 2016/07/29
The highlights

- Two-element radio interferometer in LEO/MEO
- Launched (piggyback) as 6U cubesat, separating into 2x3U
- Digital radio receiver inherited from Solar Probe Plus: 0.1-20 MHz range.
- Study (tracking & sizing + polarization) CMEs (Type II) and Type III bursts, at frequencies unreachable from the ground; radio sky; study ionospheric n_e & T_e and their gradients over several km.
- Proposed to NASA Low-Cost Access to Space (LCAS)
Science

- CME tracking beyond ionospheric cutoff
- Type II/III source positions & sizes at various frequencies
 - Position of Type II along CME shock front
- Details of local plasma line (in-situ)
 - Density i& temperature gradients over few km
- Jupiter DAM brightness distribution (*)
- Mapping of radio sky
Deployment & Antennas

- launch as a 6U cubesat
- de-tumbling
- Separates into 2x 3U cubesats
- Deployment of science antennas & solar panels
- Thrusters keep the distance ~2 km
- Magnetic torquing to keep solar-pointed attitude
- 3-axis stabilizeds

- 5 monopoles, 4 of which in same plane
- Goniopolarimetry from each spacecraft
- Fourier components time-tagged and telemetred: Inter-SC baseline visibility computed on the ground
Digital radio receiver

- Solar Probe Plus’ FIELDS suite. Analog portion of RFS is circled.
- 2 channel input (combinations of monopoles or “dipoles”)
- FX, with Polyphase Filter Banks
- Output: 2048 channels (complex Fourier components)

- Timing provided by GPS augmented by on-board atomic clock
- Position provided by GPS (~1 m level)
Goniopolarimetry, interferometry

- For total SNR=100, at 10 MHz:
 - Goniopolarimetry (DF): ~0.5° (2-D)
 - Long baseline: ~0.1’ (1-D)
 - Source sizes accurate to ~2% (1-D)

- 1.5 km projected baseline optimal for heliophysical bursts (snapshot)
- Jupiter DAM imaging would require ~200 km (aperture synthesis possible)

- Top: uv-coverage and psf from 2 weeks of orbit (incl. station-keeping maneuvers)
- Bottom: same for 6 months of spacecraft drifting away at 1 mm/s
Calibration

- Galactic background
- Jupiter DAM
- Earth radio stations
Effects of the ionosphere

- Large-scale refraction:
 \[\Delta z/z \approx \frac{1}{2} \left(\frac{f_p}{f} \right)^2 \]
- Scattering (angular broadening): 2-3' at 10 MHz, prop to \(\lambda^2 \)
Telemetry & orbit

• 600 MB/day (both S/C), S-band
 – Heavily dependent on number of spectral bins, time accumulation, cadence, post-facto data selection, etc.
• Ideal orbit: ~450 x (1600-2000) km, 27-45° inclination
 – Meets torquing & orbital lifetime requirements
 – Long period with very low local plasma frequencies
 – Accessible by Berkeley Ground Station
• Station-keeping is loose (1-3 km range)
 – Very little fuel used
 – Maneuvers ~once a week
Heritage

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna system</td>
<td></td>
</tr>
<tr>
<td>Preamplifier</td>
<td></td>
</tr>
<tr>
<td>Radio Receiver</td>
<td></td>
</tr>
<tr>
<td>Data Controller Board</td>
<td></td>
</tr>
<tr>
<td>Spacecraft</td>
<td></td>
</tr>
<tr>
<td>Onboard Computer</td>
<td>Solar Probe Plus, Van Allen Probes, MAVEN CINEMA, RHESSI, THEMIS, MAVEN, CINEMA, RHESSI, CINEMA, RHESSI, THEMIS, Van Allen Probes, THEMIS, Van Allen Probes, RHESSI</td>
</tr>
<tr>
<td>Power Management</td>
<td></td>
</tr>
<tr>
<td>Flight Software</td>
<td></td>
</tr>
<tr>
<td>ACS System</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Mission Operations / orbit control</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: *CURIE* specific heritage at Space Sciences Laboratory.
More. More. More!!

- CURIE as presented here is a prototype-proof of concept for a larger constellation
- Easily expandable

- NASA Mission of Opportunity
 - Constellation of >= 4 S/C, beyond LEO
 - UCB/SSL vs. MIT/Haystack vs. NASA/JPL
 - Emphasis on heliophysical science