14.09.2016

Non-thermal Thick
Target Recombination

S

Jeffrey W. Reep (NRC Post-doc at NRL)
John C. Brown (University of Glasgow)

29 July 2016

Based on Reep & Brown 2016, AplJ, 824, 90

)

O%
" Radiative Recombination

X" +e” — X"+ AE.

e

Kinetic Bound level energy (-V)
Energy E

~ @

Incoming electron recombines
with ion, releasing a photon

with energy equal to the kinetic Y
energy less the bound energy

Photon energy
E+V

(Apologies for the Bohr atom)




Non-thermal Recombination

e

Non-thermal electrons accelerated in a solar flare
recombine with ambient ions, resulting in an X-ray
emission spectrum. The general form for emission from a
bound state with effective charge state Z g is given by:

JRZ:-IE{E) = 3:U(EU) W(E!Eﬂ) dEy
Ey

where F,(E,) is the initial electron distribution and n(e, Eo)
the photon yield per unit photon energy for an electron.

Equations

e

Substituting for the photon yield, and reversing the
integral, we rewrite this as

E dQr
Iz, (€) = f dEy Fo(Eo) f 4B o N e

E dQ
= [ o e [ dE B
The integral of many electron distributions is analytic,

while the photon yield requires numerical evaluation for
all but the simplest cross-section.
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Equations

R

In the simple case of a sharp cut-off and Kramers cross-section, we find
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where the limits account for the collisional loss in energy in the thick
target and the fact that photons must have energy greater than the
ionization state of the bound state.

(Full derivation in Reep & Brown 2016)

Equations
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‘We then sum over all bound states and all ions:

16r2x* Foc 1
Jrle) = —="=——— E E wCRZur—5
wle) 3v3aeiA € e P gRZ‘"nj

{7 2718 2
[Fae]™ it > B+ e

o Va V3
x4{1 if 258 < e < By + =3¢
0 ife<v—7k‘2"1

n

Although the cross-section is not suitable for general use, we can use this
form to estimate the relative importance of NTR to the total non-thermal

spectrum in flares.

(Note this form corrects an algebraic mistake in Brown & Mallik 2008.)
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Remarks
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1. Linearly proportional to electron
rate, as with bremsstrahlung. More
electrons, more recombination.

Remarks
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2. Strongly weighted by states with
smaller principal quantum number
n. Higher states mostly negligible.

14.09.2016



Remarks

e

1672%* Foc 1
Jr(e) = e nCRZur 3
R( ) 3\/5(!844}\ € Zzﬁngmp é.RZdln_{

-V, 2q1=46 | v,
[[—“"*2 = ] if € > By + 25
De n
is Va v,
| if —:;ﬂ <e< By + —:‘qﬂ
; Va,
0 ife< 5

3. There exist ‘plateaus’ in the
emission with width equal to the initial
cut-off energy. Diagnostic tool?

Remarks
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4. The derivatives are discontinuous! This
implies substantial errors in inversion of photon
spectra if N'TR is not accounted for (cf. Brown &
Mallik 2008)
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Caveats

e

The abundances matter! NTR depends linearly on an ion’s
abundance relative to H, so photospheric vs. coronal abundance
strongly alters the resultant spectrum. (The plots in this talk all
use coronal abundance)

Non-equilibrium ionization important! NTR depends on
ionization fractions as well, so a proper treatment needs to
account for the possibility that the ionization states are not
described by the temperature. (This talk assumes equilibrium
ionization)

Many ions contribute to the emission! NTR must be calculated
with contributions from many ions and ionization states. (This
talk assumes contributions from Fe XXI — Fe XXV only)
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spectral indices, NTR can exceed
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Example spectrum 2
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107 Inversion depends on the
derivatives of the spectrum
(Brown 1971) so NTR still
should be considered!
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Simple scaling law
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Relative importance of NTR compared to NTB
empirically found to approximately follow:
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This can be used to quickly estimate whether to include
NTR in spectral fitting
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Fitted spectrum
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Fitted electron rate, cut-off, and spectral index over-estimated!

Observable?
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Conclusions

e

I.  NTR contributes to the non-thermal spectrum. In microflares, we
expect it to be comparable to or stronger than NTB.

I1. Spectral inversion depends on the derivatives of the photon
spectrum. NTR causes discontinuities, which causes errors in
derived parameters. (Brown & Mallik 2008)

III. Many factors affect the relative strength of NTR: abundance,
ionization fractions, electron rate, cut-off, and spectral index

IV. The edge widths may provide diagnostic information about the
low energy cut-off, but are difficult to observe
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