"Non-thermal electrons alone carry < 50 % of the released-energy"

- Lin & Hudson 1976

"The energy density of non-thermal electrons ~ the magnetic energy density (i.e., βnonth-ele ~ 1)" – Krucker et al. 2010

Particle Acceleration in Solar Flares & Terrestrial Substorms

Power-law index in various cases $\longrightarrow \delta \sim 4$ may be a key number

Outline

- Introduction Definition of δ
- Solar Flares ($\delta \ge 4$)
- Terrestrial Substorms ($\delta \ge 4$)
- Heliosphere ($\delta \leq 4$)
- Conclusion

Power-law index

 $\begin{array}{ll} \mbox{Phase space density} & f(p) \propto p^{-s} \\ \mbox{Phase space density} & f(E) \propto E^{-\Gamma} & (E = p^2/2m) \\ \mbox{Differential density} & N(E) \propto E^{-\delta'} & (dN = 4\pi p^2 f(p) dp) \\ \mbox{Differential flux (flux density)} & J(E) \propto E^{-\delta} & (dJ = v dN) \\ \mbox{X-ray photon flux} & I(\varepsilon) \propto \varepsilon^{-\gamma} & \gamma_{thin} = \delta + 1 \\ & \gamma_{thick} = \delta - 1 \end{array}$

δ is used throughout this talk.

NOTE: Non-relativistic regime (because we use data below 100 keV)

Kappa distribution

Although I have been using the kappa distribution in data analysis, this talk has nothing to do with this model. This talk is focused on the slope itself.

Outline

- Introduction Definition of δ
- Solar Flares ($\delta \ge 4$)
- Terrestrial Substorms ($\delta \ge 4$)
- Heliosphere ($\delta \leq 4$)
- Conclusion

Coronal Sources

Ishikawa+2011

03 UT)

Battaglia+ 2015

Masuda-Type events analyzed carefully with imaging-spectroscopy (Likely thin-target)

> The values are obtained based on the kappa distribution (from Oka+ 2013, 2015) but any other power-law model would give similar values.

к (= δ) > 2 ?

Ongoing study by Effenberger et et al.

 $K_{thin} = 2$ $\gamma = 3$ $K_{thick} = 4$

If we assume thick-target, $\delta > 4$

Footpoint Sources

Let's assume thick-target emission

X-ray photon flux $I(\varepsilon) \propto \varepsilon^{-\gamma}$ $\gamma_{\text{thick}} = 2.5 - 4.0$ Diff. flux (flux density) $J(E) \propto E^{-\delta}$ $\delta = 3.5 - 5.0$

 $\gamma_{thick} = \delta - 1$

Saint-Hilaire et al. 2007

Outline

- Introduction Definition of δ
- Solar Flares ($\delta \ge 4$)
- Terrestrial Substorms ($\delta \ge 4$)
- Heliosphere ($\delta \leq 4$)
- Conclusion

Magnetotail

The THEMIS mission, launched in 2007 inner "loop" filled with radiation-belt electrons

Central Plasma Sheet

Statistical Studies by Christon et al. 1988, 1990, 1991 using ISEE spacecraft (1970s technology!)

Case studies on fine structures in the magnetotail (by more recent missions)

EDR detection by THEMIS

Where in the magnetotail do we start to see a power-law?

Ultimate source: Electron diffusion region (EDR)?

inner "loop" filled with radiation-belt electrons

EDR detection by THEMIS

EDR detection by THEMIS

Outline

- Introduction Definition of δ
- Solar Flares ($\delta \ge 4$)
- Terrestrial Substorms ($\delta \ge 4$)
- Heliosphere ($\delta \leq 4$)
- Conclusion

Shock (ions)

- e.g. interplanetary (CME) shock and SEPs
- Standard theory: Diffusive shock acceleration

of which the solution is $f_{+}(p) = qp^{-q} \int_{0}^{p} dp' f_{-}(p') p'^{(q-1)}$ $f_{+}(p) = qp^{-q} \int_{0}^{q} dp' f_{-}(p) p'^{(q-1)}$ $f_{+}(p)$

e.g. a review by Blandford and Eichler, 1987

Shock (electrons)

- Earth's bow shock (M_A can be as high as 10-20)
- Acceleration mechanism remains unclear (but we frequently observe a power-law at the shock front).

Phase space density $f(E) \propto E^{-\Gamma}$ $\Gamma = 3 - 5$ Diff. flux (flux density) $J(E) \propto E^{-\delta}$ $\delta = 2 - 4$

Oka et al. 2006

Quiet time solar wind (ions)

- Interstellar-origin pickup ions
- Ubiquitous power-law (No association with shocks and flares)

Phase space density $f(p) \propto p^{-s}$ S = 5 Diff. flux (flux density) $J(E) \propto E^{-\delta}$

 $\delta = 1.5$

Gloeckler+, 2000,2003 See also Fisk+ for the "pump" mechanism

Quiet time solar wind (electrons)

- Super-halo
- Not associated with flares origin unknown

Phase space density $f(p) \propto p^{-s}$ S = 5 - 9Diff. flux (flux density) $J(E) \propto E^{-\delta}$ $\delta = 1.5 - 3.5$

Wang+, 2012

Conclusion 1

Explosive energy-release (flares, substorms)

δ > 4

- common lower limit at δ ~ 4, suggesting a common (but not-yet-identified) physics in these entirely different environment
- Shocks and turbulence (solar wind)

 $\delta < 4$

• Much harder (more flat) spectra, suggesting efficient production of non-thermal particles (?)

Discouraging for the flare community?

 We still have outstanding problems "number problems", "energetics problems"

Conclusion 2

We need to expand our investigation

- Flares: Only 6 cases of convincing ALT
- **Substorms**: Only 6 case studies w/ modern datasets lacksquare
- Interdisciplinary approach w/ a larger number of

events.

(Leader/Coordinator) UC Berkeley, USA Mitsuo Oka Marina Battaglia (Sub-leader) Univ. Applied Sciences Northwestern Switzerland Joachim Birn Space Science Institute, USA International Team at ISSI in Bern **Christopher Chaston** UC Berkeley, USA / Univ. Sydney, Australia Elin Eriksson Swedish Institute of Space Physics, Sweden Univ. Glasgow, UK Lyndsay Fletcher Shinsuke Imada (Sub-leader) Nagoya Univ., Japan Yuri Khotyaintsev Swedish Institute of Space Physics, Sweden Univ. Applied Sciences Northwestern Switzerland Matej Kuhar Southwest Research Institute, USA **George Livadiotis** Yoshizumi Miyoshi Nagoya Univ., Japan **CNRS École Polytechnique, France** Alessandro Retinò

• Theoretical interpretation?

cf: Drake et al. 2006,2013 Guo et al. 2014

 $\frac{dN}{dp} \propto p^{-\left(1 + \frac{t_{\rm acc}}{t_{\rm esc}}\right)}$

 $\delta > 4$