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The Flare

A flare is defined as a sudden 
enhancement of electromagnetic 
emission over a broad spectrum 
from the radio over the visible 
up to the γ-ray range.

→ generation of energetic electrons

Basic question:

How are 10 36 electrons accelerated 
up to high energies (> 30 keV) within 
a second? 
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Electron Acceleration

• diffusion region
− DC electric field 

(Holman, 1985; Benz, 1987; Litvinenko, 2000;

Zharkova & Gordovsky, 2004, 2005, 2006))

− collapsing magnetic islands 
(Drake et al., 2006; Barta et al., 2011)

• outflow region
− collapsing magnetic traps 

(Somov & Kosugi, 1997; Karlicky & Kosugi, 2004)

− plasma turbulence 
(Melrose, 1994; Miller et al., 1996; Miteva et al., 2007)

− termination shock 
(Tsuneta & Naito, 1999; Aurass & Mann, 2004; 
Mann et al., 2006, 2009; Chen et al., 2015) 

• The slow-mode shocks separate the inflow region
from the outflow one.

Which role do the slow-mode shocks play for generat ing energetic particles?
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Slow-Mode Shocks I

Rankine-Hugoniot relationships: temperature jump across the shock 
(Priest, 1982; Cargill & Priest, 1982)

slow-mode shocks:

N1 < N2

B1 > B2

T1 < T2

ϑ1 > ϑ2
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At the slow-mode shocks, magnetic field energy is 
transferred into heating of the downstream plasma
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Slow-Mode Shocks II

switch-off shock (ϑ2 = 0 → MA = 1)  →  strongest heating 
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The strongest heating occurs at the switch-off shoc k in regions with a large Alfvén speed

explanation: →   magnetic field energy available per particle
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Slow-Mode Shocks III

In the case of the switch-off shock the annihilatio n of the magnetic field energy

is most efficient if  ϑ1 = 54.7°.

sin2 ϑ1 -th part of the inflowing magnetic energy is available for the energetization 

of the plasma
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Motivation

● At slow-mode shocks, magnetic field energy is efficiently annihilated. 

● The plasma is strongly energized.

● The spatial extension (40 Mm · 10 Mm) of slow-mode shocks is much greater

than of the diffusion region. (Mann et al., 2011)

(Cargill & Priest, 1982; Somov et al., 1982; Forbes & Malherbe, 1991)

Which consequences have the slow-mode shocks 

for producing energetic electrons?
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Cross Shock Potential 

cross-shock potential

in the de Hoffmann-Teller frame:

stationary momentum equation of the 

electron fluid   
in the case of the slow-mode switch-off shock (MA → 1)
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Due to proton inertia, a charge separation is 

established at the shock transition region leading

to the cross shock potential

for example: vA1
= 3000 km/s; 

cs1
= 180 km/s (for T1 = 1.4 MK)

e ϕHT ≈ 28 keV
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Electron Kinematic at Slow-Mode Shocks

● Since the magnetic field is decreasing at the slow-mode shocks, all electrons are

transmitted from the upstream region into the downstream one.

● Due to the mirror force, the electrons are focused during their transmission into the

downstream region.

● Additionally, the electrons are accelerated by the cross-shock potential.

The slow-mode shock acts as a linear accelerator

Result: A nearly magnetic field aligned electron beam with a velocity

appear in the downstream region.

(for example: Ve = 100 000 km/s = c/3  for e ϕHT ≈ 28 keV)

Such an electron beam can excite whistler waves, wh ich can resonantly interact 

with the ambient plasma. That leads to a dissipatio n of the beam energy and, finally, 

to a collisionless heating of the downstream plasma.

eHTe m/e2V ϕ=
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RHESSI Results I 

hard X-ray spectrum of a flare

● thermal component

● non-thermal component

• sample of 9 X-class flares

− energetic electrons (> 28 keV)

− particle flux

1218
XF scm101.3F −− ⋅⋅=

1220
XF scmkeV102.1P −− ⋅⋅⋅=

− energy flux 

keV40
F
P

XF

XF =

The photon spectra are converted into
electron flux spectra with the forward
fitting method. (Holman et al., 2003)
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RHESSI  Results II

sample of 9 X-class flares

The photon spectra are converted into
electron flux spectra by the forward
fitting method. (Holman et al., 2003)

electron flux spectrum (broken power law) 
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RHESSI Results I 

hard X-ray spectrum of a flare

● thermal component

● non-thermal component

• sample of 9 X-class flares

− energetic electrons (> 28 keV)

− particle flux

1218
XF scm101.3F −− ⋅⋅=

1220
XF scmkeV102.1P −− ⋅⋅⋅=

− energy flux 

keV40
F
P

XF

XF =

The photon spectra are converted into
electron flux spectra with the forward
fitting method. (Holman et al., 2003)
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Electron Flux

● electron flux along the magnetic field:

● Maxwellian distribution:

● differential flux:
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In the downstream (or outflow) region, the electron s are described 
by a hot Maxwellian distribution.
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Comparison with RHESSI Observations
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comparison with observations:

• 15 % of the inflowing electrons are accelerated 

up to energies > 30 keV. They carry 32 % of the 

flare released energy.

(see e.g. Oka et al., 2014; Krucker & Battaglia, 2014) 
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total electron flux:

total energy flux:

0547.0cm/Ewith 2
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spectrum of energetic electrons
red: RHESSI measurements
blue: model
(jXF in cm-2 ⋅ s-1 ⋅ keV-1)
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Problem

Problem:   power law spectra are observed for energ etic electrons !!!

What is the electron distribution function in the i nflow region?

− Maxwellian distribution as discussed here

(1 free parameter – temperature)

− kappa distributions are observed in the quiet solar wind (Lin et al., 1996)

(2 free parameters – mean energy and kappa)

If a kappa distribution is taken as the initial one , then a power law spectra 

results for the accelerated electrons as observed. (see also Oka et al., 2013)
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Conclusions

● The slow mode shocks can strongly energized the pla sma in regions 

of large Alfvén-speeds (or in a very low β-plasma).

● The most efficient energetization of the outflow pla sma occurs at the 

switch-off shock (M A = 1) and ϑ1 = 54°.

● The energetization at the slow-mode shocks provides enough energetic 

electrons as required by RHESSI observations. 

● 15 % of the inflowing electrons are accelerated up to energies > 30 keV  

They carry 32 % of the flare released energy.

(see e.g. Oka et al., 2014; Krucker & Battaglia, 2014) 

(see also invited contribution: G. Mann, J. Plasma Phys. 81 (2015) 475 810 601)
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Thank you for your attention!


