# Combined IRIS and RHESSI observations to investigate continuum ("white light") emission

Lucia Kleint

University of Applied Sciences and Arts Northwestern Switzerland



University of Applied Sciences and Arts Northwestern Switzerland

#### **Flares: Principles**



9 University of Applied Sciences and Arts Northwestern Switzerland

#### **Previous studies on WL height**



Even if we see a source at the limb, its height is not trivial. Need STEREO to determine its position.

Krucker et al. 2015

**In** University of Applied Sciences and Arts Northwestern Switzerland

#### **Previous studies on WL height**

#### RHESSI HXR and HMI white light emission for 3 different flares



Parameters of the WL (617.3 nm) and HXR (30-100 keV) Footpoints (Values of the Stronger Footpoint (see Figure 5) are Shown in Bold)

| Parameters              | 2012 Jul 19                       | 2012 Nov 20                 | 2013 May 13             |
|-------------------------|-----------------------------------|-----------------------------|-------------------------|
| HMI time                | 05:21:40.7                        | 12:39:26.5                  | 02:12:37.8              |
| GOES flare class        | M7.7                              | M1.7                        | X1.7                    |
| WL altitude             | $\longrightarrow$ 824 $\pm$ 70 km | $7\hat{9}\hat{9} \pm 70$ km | $810 \pm 70$ km         |
| WL radial extent (FWHM) | ~862 km                           | ~652 km                     | ~839 km                 |
| HXR altitude            | 946 ± 103 km                      | $746\pm51~\mathrm{km}$      | $722\pm140~\mathrm{km}$ |

#### Krucker et al. 2015

**In** University of Applied Sciences and Arts Northwestern Switzerland

#### **Previous studies on WL height**



Emission heights (red: HXR, black: WL)

Heights in different studies disagree significantly (~800 km vs. 300 km) Spectra contain more information about WL mechanisms.

#### **Continuum Emission**

## Some theory:



- electrons probably stopped in chromosphere
- hydrogen recombination (=jumps in spectra)

- backwarming may heat photosphere
- H<sup>-</sup> and hydrogen continua

#### **Flare Energetics**

#### **Open questions for flares:**

- Where does the continuum radiation form?
- How is flare energy dissipated?
- What fraction of flare energy goes into radiation?

### => check emission in the continuum (and lines)



#### Flare Energetics

#### Stellar spectra have advantages: 1) wider spectral coverage, 2) larger field of view (whole star)



=> Combine multiple instruments for solar flare spectra

9 University of Applied Sciences and Arts Northwestern Switzerland

#### **Flare Energetics**

#### Wide solar flare spectrum: Combine IRIS (UV), HMI (vis), FIRS (IR) and RHESSI (X-rays)

March 29, 2014 X1 flare



#### 2014-03-29, X1 flare: IRIS & RHESSI

IRIS slit crossed HXR footpoint during X1 20140329.

HXR 30-70 keV: blue IRIS 1400 SJI: background image



**N** University of Applied Sciences and Arts Northwestern Switzerland

#### IRIS: 2014-03-29 (X1.0), WL emission

Detection of the Balmer continuum.

The whole spectrum is enhanced at some locations.



Heinzel & Kleint, ApJL 794, 23, 2015



#### IRIS: 2014-03-29 (X1.0), WL emission

Detection of the Balmer continuum.

The whole spectrum is enhanced at some locations.



#### IRIS: 2014-03-29 (X1.0), WL emission

Detection of the Balmer continuum.

The whole spectrum is enhanced at some locations.



#### **Continuum Emission: X1 Flare**



NUV increases more than VIS+IR. Therefore Balmer continuum, not H<sup>-</sup> in UV.

=> Continuum has contribution from H<sup>-</sup> (VIS+IR)=photosphere and hydrogen recombination (UV)=chromosphere.

Kleint, Heinzel, Judge & Krucker, ApJ, 816, 88, 2016

#### **Continuum Emission**

A simple blackbody is not a good fit to the continuum!

Because continuum forms at different heights (temperatures). NUV => chromospheric Balmer cont.

Use radiative transfer modeling.



#### **Continuum Emission**



University of Applied Sciences and Arts Northwestern Switzerland

#### **Flare Energetics**

How is flare energy dissipated?

# **Compare energy input** derived from RHESSI (accelerated electrons) to **energy output** in continuum and line radiation.



#### **Energy input: RHESSI**

Input energy calculated from RHESSI (cutoff 20 keV): **3.5 × 10<sup>11</sup> erg s<sup>-1</sup> cm<sup>-2</sup>** 

valid for a time when RHESSI HXR and IRIS slit coincided.





### **Continuum Emission: X1 Flare**

RHESSI (red) and IRIS slit (blue) coincided => input vs. output

Input energy calculated from IRIS SJI (aligned to AIA1600) 29-Mar-2014 17:46:23.27( RHESSI (cutoff 20 keV): 280 30-100 keV, contours=[40,55,70,85]% 29-Mar-2014 17:46:23.000+12 s  $3.5 \times 10^{11} \text{ erg s}^{-1} \text{ cm}^{-2}$ roll: 0.20 275 29-Mar-2014 17:46:13.500+12 s 270 (arcsecs) Energy losses in the continuum:  $8 \times 10^{10} \text{ erg s}^{-1} \text{ cm}^{-2}$ 265 260 => ~20% of input energy emitted 255 by continuum (method not 500 510 exact!) 520 530 X (arcsecs)

Future step: estimate radiation by spectral lines, heating

- Height of continuum: Contribution from photosphere and chromosphere. Energetics agree with backwarming model.
- Flare Energetics: can investigate Balmer continuum and white-light flares by combining instruments. ~20% of input energy [for cutoff 20 keV] goes into continuum radiation.

