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Problem formulation

• hydrodynamic and radiative response of the solar
atmosphere to the heating by the particle beams

• 1D scenario

• describe state and evolution of plasma along a
single loop

• compute time evolution of continuum and line
profiles (H, Ca II, Mg II)

non-LTE RHD codes Flarix and RADYN

Initial hydrostatic atmospheres

• modified VAL C

• atmosphere in radiative
equilibrium from RADYN
(extra heating at the bottom)
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Flarix: non-LTE RHD code

• developed at AsI in Onďrejov (Varady et al., 2010)

Hydrodynamics

• standard set of 1D HD equations
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• Fc heat flux (using Spitzer thermal conductivity)

• H flare heating given by the beam energy deposit

• Q quiescent heating to assure stability of the initial atmosphere

• R radiative losses (optically thin + optically thick H, Ca II, Mg II)



Flarix: Flare heating H through particle beams

Typical beam properties

• power-law flux distribution

• electron, proton or neutral beams

• power-law index δ = 3− 7

• EL ≥ 10 keV(MeV), EH ≤ 500 keV(MeV)

• prescribed time modulation of the beam flux

Two approaches

• analytic beam energy deposit (Hawley & Fisher, 1994)

• the test particle approach (Varady et al., 2014)
• Coulomb collisions with neutrals and electrons (Emslie, 1978)
• electron scattering (Bai, 1982)
• consistent with Fokker-Planck approach (MacKinnon & Craig, 1991)
• the return current (runaway approx.,optional)
• secondary re-acceleration by electric fields (optional)
• beam hard X-ray emission and its directivity
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Flarix: non-LTE radiative transfer

• 1D plane parallel atmosphere in the lower part of the loop

• instant values of T and nH along the loop

• atoms important for radiative losses are treated in detail (H, Ca II, Mg II)

• time dependent equations of statistical equilibrium (ESE)

∂ni
∂t

=
∑
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∑
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• non-thermal collisional rates can be included into Pij

• radiative transfer equation

µ
∂Iµν
∂τν

= Iµν − Sν dτν = −χνdz Sν = ην/χν

• particle and charge conservation equations∑
ni = natom ne = np + εnH
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Comparison with RADYN

• 1D non-LTE RHD code (Carlsson & Stein, 1997)

RADYN

• adaptive spatial grid

• implicit scheme to solve linearised
equations

• Newton-Raphson iteration

• ALI techniques (radiative transfer)

• advection term in ESE

• analytical formula or Fokker-Planck
approach (beam heating)

• more atoms in detail (He)

• XEUV heating

Flarix

• fixed fine spatial grid

• explicit scheme for HD
equations

• LCPFCT alg. (convection)
• Cranck-Nicholson alg.

(conduction)

• ALI, linearisation of ESE
(radiative transfer)

• analytic. formula or test-particle
approach (beam heating)

• return current, re-acceleration

• beam HXR emission
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Initial settings for comparison

• analytical heating by an electron beam
• δ = 3, Fmax = 1010 erg cm−2 s−1

• moderate heating, triangular time modulation
• 20 s duration, integrated beam flux: 1011 erg cm−2

• identical initial atmosphere (VAL C)

• only H and Ca II computed in detail
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Results of the test model - atmosphere structure

• reasonably good agreement

RADYN Flarix
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Results of the test model - spectral lines and continua

• order of magnitude agreement
• differences due to velocity term, different hydrogen collisional rates

RADYN Flarix
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Summary

• comparison of two independent non-LTE RHD codes was presented

• a simplified model of moderate beam heating was used

• RADYN and Flarix results are in a good agreement despite different
concepts of the codes

• there are some discrepancies in the results but the general trends are
the same

⇓

RADYN and Flarix give comparable results


