

The University of Dublin

ESEARCH C

An Chomhairle um Thaighde in Éirinn

Quasi-Periodic Pulsations in Solar Flares RHESSI 15 Meeting

Peter T. Gallagher, Brian Dennis, Jack Ireland, Andrew Inglis 29 July 2016

Quasi-Periodic Pulsations (QPP) in Solar Flares Outline

- Observational Introduction to QPP & Why Interesting
- Possible Mechanisms for QPP
- Multi-wavelength analysis of QPP;
 - X1.0 Flare Impulsive and decay phase pulsations
 - M7.7 Long duration soft X-ray pulsations

Introduction

Nakariakov et al. 2006

- Oscillatory signatures in emission
- Characteristic periods of 1s several mins
- Majority of investigations focus on nonthermal emissions

Why interesting?

- 1. Fundamental physical processes in flares
- 2. Coronal seismology
- 3. Stellar flares

Previous Studies

Previous Studies: Soft X-ray Contributions

- Gradual trend removed
 highlights pulsations
- Pulsations observed across soft X-ray emissions from GOES, LYRA, EVE/ESP

- SXR variability now seen to be a very common, if not intrinsic feature of flare emission.
- Also detected in IRIS in intensity and doppler shift of Fe lines.

Possible Mechanisms

Key science goals X1.0 Flare

- Perform a multi-instrument study focusing on fine structure recently identified in soft X-ray emissions.
- Highlight pulsations using time derivative of soft X-ray time series
- Take advantage of LYRA, and EVE/ESP nominal cadence and use as a GOES proxy to highlight soft X-ray pulsations

Multi-wavelength detection of QPP X1.0 GOES event

X1.0 GOES event

- Short time-scale fluctuations correlated across multiple energies
- Minimal time delay between peaks (<=2s)
- Pulsations persist in thermal channels

X1.0 GOES event GOES wavelet Analysis

- Wavelet analysis taking into consideration power-law distribution
- Characteristic timescales ~20s across all channels
- In non-thermal emission, find second characteristic timescale of ~55s

X1.0 GOES event (persistent thermal pulsations)

- Thermal pulsations persist 20 mins after non-thermal emission cease
- Increase in timescale ~39s to ~70s

AIA 94Å, RHESSI 6-12 keV 2013-10-28 01:54:01 120 100 Y-position [arcsec] 80 60 40 20 0 860 880 900 920 940 960 X-position [arcsec]

Conclusions of Single Study: Mechanisms?

Impulsive phase:

- Co-existing QPP across 10 wavebands on 5 different instruments (both thermal and non-thermal) with characteristic timescales of ~20s in all channels and additional 55s in non-thermal emissions
- MHD modes doesn't make sense during impulsive phase due to complex evolution of geometrical structures
- Episodic or intermittent reconnection resulting in impulsive energy release timescale connected to characteristic timescale of dynamic reconnection processes - possibly multi-island?

Decay phase:

- Distinct pulsations in the high temperature plasma persist into decay phase with timescales increasing from ~40s to ~70s.
- Small amplitude and increasing timescale most likely connected with MHD processes within post-flare loops.
- Possibly fast sausage or vertical kink mode oscillation

Hayes et al. Accepted, ApJ Letters. http://arxiv.org/pdf/1607.06957.pdf

Long Duration Pulsations

M7.7 Limb Flare Long Duration Pulsations

M7.7 Flare Extra Slides

Quasi-Periodic Pulsations in Solar Flares

Long Duration Pulsations

Long Duration Pulsations SXR source height

Long Duration Pulsations SXR source height

- What causes prolonged pulsations in soft Xray? Signature of continued heating and reconnection at higher altitudes?
- Source height increase longer loop lengths, possibly kink modes triggered in loops of longer length?
- Liu, W et al. 2013 find plasmoid ejections and downward contractions of reconnected loops late into this event - possibly resulting in these observed pulsations

Y-position [arcsec]

SDO AIA 131.0 Angstrom 2012-07-19 04:15:08

Conclusions and Future Work QPP

Conclusions

- Soft X-ray pulsations are a common, if not intrinsic feature of solar flares
- Different characteristics in impulsive and decay phase, probably related to different mechanisms
- Can last late into decay phase of some solar flares

Proposed future work

- Large scale multi-wavelength analysis of QPP with particular attention of soft X-ray thermal emissions with GOES/XRS & LYRA Zr throughout impulsive and decay phases of flares
- Relate characteristic time scales to some physical parameters:
 - Higher altitude of energy release site or related to length of loops?
 - Length scales of reconnection?
 - Distinguish between impulsive and gradual processes

FOXSI

- Improved imaging and spectroscopic observations with the proposed FOXSI mission will be key in our understanding of the QPP phenomena.
- We can take advantage of its sub second cadence and energy resolution to determine locations of pulsating structures and their evolution throughout flare.

Future Work QPP Statistical Analysis

X1.0 Flare Extra Slides

X1.0 Flare

Future Work

Future Work:

- Large scale multi-wavelength analysis of QPP with particular attention of soft X-ray thermal emissions with GOES/XRS & LYRA Zr throughout impulsive and decay phases of flares
- LYRA important as use for GOES proxy and correct identification of 'real' pulsations of solar origin
- Relate characteristic timescales to some physical parameters:
 - Higher altitude of energy release site?
 - Length of loops?
 - Other factors; length scales of reconnection?

M7.7 Flare Extra Slides

October X1.0 Flare Extra Slides

NoRH Movie

M7.7 Flare Extra Slides

X1.0 Flare

Future Work

Future Work:

- Large scale multi-wavelength analysis of QPP with particular attention of soft X-ray thermal emissions with GOES/XRS & LYRA Zr throughout impulsive and decay phases of flares
- LYRA important as use for GOES proxy and correct identification of 'real' pulsations of solar origin
- Relate characteristic timescales to some physical parameters:
 - Higher altitude of energy release site?
 - Length of loops?
 - Other factors; length scales of reconnection?

X1.0 Flare

Future Work

Future Work:

- Large scale multi-wavelength analysis of QPP with particular attention of soft X-ray thermal emissions with GOES/XRS & LYRA Zr throughout impulsive and decay phases of flares
- LYRA important as use for GOES proxy and correct identification of 'real' pulsations of solar origin
- Relate characteristic timescales to some physical parameters:
 - Higher altitude of energy release site?
 - Length of loops?
 - Other factors; length scales of reconnection?