Time Evolution Observation of De-excitation Line Shapes in Solar Flare

> Wei, Chen and W. Q. Gan Purple Mountain Observatory, China

15th RHESSI Workshop, 2016.7.26-30, Graz

Introduction

- Solar de-excitation lines, produced from nuclear reactions of accelerated ions interacting with solar atmospheric media, are the most direct diagnosis of the accelerated ions.
- How to derive the ion's information?
 - Estimate the fluency ratio of the 4-7 MeV band to the neutron capture lines (Murphy & Ramaty, 1984; Murphy et al. 2007).
 - Spectrscopic fit the whole gamma-ray spectrum (Chen & Gan, 2012).
- The lines shapes, include energy shifts and width of lines, reveal the angular distribution of the interacting ions (Ramaty & Crannell 1976).
 Smith (2003) report the first measurements of de-excitation lines shapes by the RHESSI.

Spectral line shapes calculation

Scheme of gamma emission from inelastic collision

$$\begin{aligned} E_{\gamma} &= E_0 / \gamma (1 - \beta_{res} cos \theta) \\ &= E_0 (1 + \beta_{res} \cos \theta) \quad \gamma \ll 1 \end{aligned}$$

- 1. Recoil nucleus emit isotropically in the CM frame;
- 2. Isotropic gamma-ray emissions in the excited nucleus rest frame

$$v_{tx} = \frac{v_{tcm} * \cos(\theta_{cm}) + v_{cm}}{1 + v_{tcm} * \cos(\theta_{cm}) * v_{cm}}$$
$$v_{ty} = \frac{v_{tcm} * \sin(\theta_{cm})}{\gamma(1 + v_{tcm} * \cos(\theta_{cm}) * v_{cm})}$$

$$v_{res} = \sqrt{v_{tx}^2 + v_{ty}^2}$$
$$\theta = \tan^{-1} \left(\frac{v_{tx}}{v_{ty}} \right)$$

Shapes of ²⁰Ne line

Calculated shapes of r-ray lines from the de-excitation of 20Ne relative to: (left)the isotropic incident ions for the various spectrum, (right)and the different flare location with downward-isotropic ions.

Property of ²⁰Ne line shapes (FWHM, Redshift)

Property of 1.634 MeV line shapes varied with the spectral index (s) and *a*/p for downward-isotropic ions at flare sites near the center of the Sun. Left: line width (FWHM); Right: center energy shift.

Analysis of observation data

2002 Jul 23 X4.8 event, 00:27:20-00:39:56
S13 E72 ,heliocenter angle ≈ 73°

De-excitation lines spectrum template

Solar de-excitation lines spectrum for ions index of 4.0 and alpha-toproton ratio of 0.1. Blue curve represent the whole spectrum exclude the lines of Fe 0.847 MeV, Mg 1.369 MeV, Ne 1.634 MeV, Si 1.779 MeV, C 4.438 MeV and O 6.129 MeV. (Chen & Gan, 2011)

Fitting results for different templates of de-excitation lines spectrum

Best-fit gaussian parameters for lines

lsotope	Rest energy (keV)	Fit energy (keV)	% Redshift	FWHM (keV)	% FWHM
С	4438	4405±9	0.74 ± 0.20	89±19	2.01 ± 0.43
0	6129	6105 ± 17	0.39 ± 0.28	107 ± 34	1.75 ± 0.55
Ne	1634	1628.6 ± 1.5	0.33±0.10	21.9 ± 3.6	1.34 ± 0.22
Mg	1369	1366.3 ± 2.7	0.20 ± 0.20	33.6±6.5	2.45 ± 0.47
Si	1779	1779.2±2.9	-0.01 ± 0.16	37.6±6.7	2.11 ± 0.38
Fe	847	846.8±0.7	0.04 ± 0.08	3.0±3.3	0.36 ± 0.40

BEST-FIT GAUSSIAN PARAMETERS FOR PROMPT NUCLEAR LINES

ISOTOPE	Rest Energy (keV)	Fit Energy (keV)	% Redshift	FWHM (keV)	% FWHM	FLUENCE (photons cm ⁻²)
⁵⁶ Fe	847	846.09+0.70	0.11+0.08	$1.2^{+2.9}_{-1.1}$	$0.14^{+0.34}_{-0.13}$	7.5+3.4
²⁴ Mg	1369	1363.6+23	0.40 ^{+0.17} -0.14	$21.0^{+8.0}_{-5.4}$	1.54+0.59	28.3+72
²⁰ Ne	1634	$1628.8^{+1.7}_{-1.7}$	0.32+0.10	17.6+4.3	$1.07^{+0.26}_{-0.22}$	$21.4^{+3.8}_{-4.5}$
²⁸ Si	1779	1776.8+1.9	$0.12^{+0.11}_{-0.12}$	$16.7^{+4.5}_{-5.4}$	0.94 ^{+0.25} _{-0.30}	$17.1^{+4.0}_{-4.5}$
¹² C	4438	4403+10	0.79 ^{+0.23} _{-0.22}	92 ⁺⁴² ₋₂₉	2.06+0.95	28.6+13.1
¹⁶ 0	6129	6094^{+15}_{-18}	0.58+0.24 -0.29	122^{+68}_{-51}	$1.99^{+1.11}_{-0.83}$	34.2+12.8

Smith, 2003

Downward isotropic injection

Beam injection

Discussion

- De-excitation line shape analysis method is a new window for studying ion's property.
 - NOT rely much on the fitting model of whole spectrum
 - WITH abundant lines observations
 - POOR count rate and sensitivity in observation
 - EXISTENCE of multiple solutions of one fitting parameter. e.g. Combine α-α line (⁷Be^{0.429} -> g.s., ⁷Li^{0.478} ->g.s.)

- The observation redshifts of C, O and Ne lines are larger than theoretical calculation for a model of interacting ions with downward-isotropic in a radial magnetic field. Beam injection of accelerated ions or tilt of the magnetic field to the solar surface?
- The results of ions property by analyzing different lines shape are not completely consistent. The property of accelerated ions is varied as flare evolution.

Thanks for your attention!