CubeSats for Solar Soft X-ray Spectroscopy: MinXSS and CubIXSS

Amir Caspi

Southwest Research Institute, Boulder

+ the MinXSS Team

+ the CubIXSS Team

Spectrally-Resolved SXR Observations

 Crucial observational gap from ~0.2 to ~3 keV (~0.4 to ~6 nm) with very few spectrally-resolved observations in previous decades

Spectrally-Resolved SXR Observations

- Crucial observational gap from ~0.2 to ~3 keV (~0.4 to ~6 nm) with very few spectrally-resolved observations in previous decades
- Rich with med- and high-T lines and continuum for diagnostics of coronal plasma temperatures
- Extremely sensitive to temperature, esp. high T
- Especially important for non-flaring corona, where there is little >3 keV (<0.4 nm) emission
 - *Critical* for understanding heating and for interpreting nonthermal observations
- Large photon fluxes

X123 Soft X-ray Spectrometer

- Amptek X123-SDD X-ray spectrometer package:
 - $-500 \ \mu m$ Silicon Drift Detector (SDD), 8 μm Be window
 - ~0.5–30 keV (~0.04–2.4 nm) @ ~0.15 keV FWHM
 - Up to ~200 kpcs, on-board pulse pileup rejection
 - All in one: TEC, HVPS, CPU included
 - $-7 \times 10 \times 2.5$ cm, ~300 g (with mods), ~2.5 W, \$11K + mods

30 July 2016

Miniature X-ray Solar Spectrometer

MinXSS-1 CubeSat Deployed from ISS on May 16, 2016

MinXSS Science Team: Tom Woods (PI, LASP), Amir Caspi (SwRI), Phil Chamberlin (GSFC), Andrew Jones (LASP), Rick Kohnert (LASP), James Mason (LASP), Chris Moore (CU-APS), Scott Palo (CU-AES), Stan Solomon (NCAR-HAO)

MinXSS is NASA Science Mission Directorate's *first* CubeSat in space!

Led by CU Boulder's LASP, in collaboration with SwRI, NASA/GSFC, NCAR/HAO, and industry partners

44 students and over 40 professional scientists and engineers involved

RHESSI 15 Workshop (Graz, AT)

MinXSS Science Objectives

New Soft X-Ray (SXR) spectra measurements can address the following outstanding issues:

- Flare energetics (plasma heating mechanisms)
- Active region evolution (corona heating and abundances)
- Earth's E-region ionosphere energetics and variability
- Factor of 3 difference in irradiance from broad band SXR photometers

Time (year)

MinXSS CubeSat Design Overview

System (EPS) Board Handling (C&DH)

8

Acronyms: Command and Data Handling (CDH), Electrical Power System (EPS), Communications (COMM, Li-1 UHF Radio), Attitude Determination and Control System (ADCS, BCT), 300hahyP203160n Sensor (SPS), X-ray 8EHE65(XS)WS12Shop4(GiptzkAX-)ray spectrometer.

Enabling Technology – precision ADCS

- Blue Canyon Technology (BCT) XACT ADCS specification
 - Mass: 850 g Size: 0.5 U
 - Power: < 2 W using 5 V and 12 V DC</p>
 - Pointing Accuracy: < 25 arc-sec
 - Pointing Stability: < 10 arc-sec
 - Slew Rate: > 10 deg/sec
 - ADCS components: star tracker, coarse sun sensor, 3 reaction wheels, 3 torque rods, magnetometer, IMU, ADCS processor

MinXSS Statistics

<u>Deployed</u>: 16 May 2016 <u>Days in Orbit</u>: 75 <u>Orbit #</u>: 1155

LEO, ~400 km ~1 yr lifetime

~10 W power consumption Power-positive w/ 35% margin

Pointing: $\sim 8" \pm 2"$

First light: 30 May 2016

RHESSI 15 Workshop (Graz, AT)

MinXSS June-July Observations 7 M-class flares and ~40 C class flares

Example X123 Soft X-ray Spectra M1.2 Flare on DOY 203 (7/21/16)

The rocket 2013 X123 measurement for active (non-flaring) sun is included for comparison as the red spectrum [Caspi, Woods, & Warren, ApJ Lett, 2015].

MinXSS Level 1 Irradiance Spectra will be released in August at http://lasp.colorado.edu/home/minxss/

30 July 2016

RHESSI 15 Workshop (Graz, AT)

Two MinXSS Missions

- MinXSS-1 will observe moderate solar activity
- MinXSS-2 will observe into the next minimum

MinXSS-1: May 2016 (6-month mission)

MinXSS-2. Dec 2016 (5-year mission)

New Proposed Mission

CubIXSS:

CubeSat Imaging X-ray Solar Spectrometer

 Goal: Improve physical understanding of thermal plasma processes and impulsive energy release in the solar corona, from quiescence to flares 30 July 2016 RHESSI 15 Workshop (Graz, AT)

CubIXSS: Spectroscopy & Imaging

- 6U CubeSat, proposed to H-TIDeS
- 2019 launch, LEO
 - Optimized for solar minimum
- Novel instrument suite includes:
 - Soft and hard X-ray spectrometers (spatially-integrated)
 - Soft X-ray imaging spectrograph (first solar imager on a CubeSat)

CubIXSSInstrument Summary

	Small Assembly for Solar Spectroscopy (SASS)	Multi-Order X-ray Spectral Imager (MOXSI)
Spectral range	SASS-S: ~0.5–30 keV SASS-H: ~5–100 keV	~1–55 Å (~0.22–12 keV)
Spectral res.	SASS-S: ~0.15 keV FWHM SASS-H: ~1 keV FWHM	~0.25 Å FWHM (~0.06 Å/pixel detector scale)
Spatial res	N/A (spatially-integrated)	~25 arcsec FWHM (~6 arcsec/pixel detector scale)
Cadence	~1 s	~20 s

Multi-Order X-ray Spectral Imager

- For < 0.5 keV, single-photon measurement is impractical
- Dispersed spectra via transmission grating provide a solution
- Pinhole provides spatial resolution at low cost/mass/complexity (limited photon throughput NOT a problem)
- Combination yields full-Sun "overlappograph" with 0th order and odd dispersed orders (±1, ±3, etc.) on same detector (even orders suppressed)

Chandra HETG image for point sources (stars)

30 July 2016

RHESSI 15 Workshop (Graz, AT)

S1

HEG

MEG

MOXSI Prototype Results

Pinhole image

Dispersion from grating

Dispersed multi-order spectral image

Prototype MOXSI Results

- Spectra from two ARs isolated, prominent lines observed
 - Preliminary analysis shows decidedly different spectra, indicates differences in DEM and/or abundances
- Optimized design improves sensitivity, resolution, and coverage, reduces noise and source confusion

30 July 2016

RHESSI 15 Workshop (Graz, AT)

MOXSI for CubIXSS

- Dispersed spectrum is rich, but complex to analyze alone
- Non-dispersed images w/ coarse spectral information provide spatial kernel *and* initial spectrum for forward modeling
- MOXSI has 5 additional pinholes to create *Hinode*/XRT-like filtergrams to provide this spatial kernel and spectral seed
 - Filters optimized for temperature coverage and dynamic range

Scaling Up to Larger Missions

- Better spatial resolution enables spectroscopy *within* sources ~7" achievable in 1.5m distance (e.g., SMEX or MoO)
- SASS-S can easily scale: multiple detectors, potentially with coded aperture or rotation modulation imaging
 SASS-H will use larger-format detectors

Synergistic pairing with FOXSI SMEX mission concept for simultaneous, high-sensitivity HXR and SXR imaging spectroscopy

EXTRA SLIDES

SASS for CubIXSS

10⁰

 10^{-2}

10

SNR > 5 (FL, 20 s)

SNR > 5 (AR, 10 m)

10

Energy [keV]

- Apertures, windows optimized
- Dynamic range from solar min to >X5
- Spectroscopic coverage: ~0.5–100 keV
- 5 bins per FWHM, 1 s cadence
 - Resolves prominent line clusters, T/NT transition

30 July 2016

100

MOXSI for CubIXSS

- e2v CIS115 CMOS detector (hardened): 7 μ m pitch, 1500 × 2000 pixels
- 44 μm pinhole, 25.5 cm focal distance, 5000 lpm grating: 6"/pix, 0.06 Å/pix; 25", 0.25 Å FWHM; 1–55 Å range
 - Fills the critical wavelength gap
- 5 additional pinholes with filters (Be, Al, etc.) provide non-dispersed images on second half of detector
- 1st order dynamic range from solar minimum to >X5
- Expected 20 s cadence
 - Multiple 1s integrations co-registered and summed to mitigate jitter, improve contrast

30 July 2016