Radio counterparts of a behind the limb flare detected by FERMI GBM:

A coronal mass ejection magnetic field strength estimate.

Eoin P. Carley^{1,2}, Brían Ó Fearraigh², Nicole Vilmer¹ and Peter T. Gallagher² ¹ l'Observatoire de Paris, France. ² Trinity College Dublin, Ireland.

TRINITY COLLEGE DUBLINTHE
UNIVERSITY
OF DUBLINCOLÁISTE NA TRÍONÓIDETHE
UNIVERSITY
OF DUBLIN

eoincarley@gmail.com

Introduction - Observing CMEs in radio

- Observing CMEs in decimetric domain can show evidence for (gyro)synchrotron emission
- Allows for rare diagnostic of CME magnetic field
- Bastian et al. (2001): 0.3-1.5 G Maia et al. (2007): 0.1-1.0 G Raja et al. (2014): 1.4-2.4 G Bain et al. (2014): 3-5 G Tun & Vourlidas (2013): 15 G

2014-September-01 Event - Radio event

2014-September-01 Event - Radio event

2014-September-01 Event

- AIA 21.1 nm (red), AIA 19.3 nm (green), AIA 17.1 nm (blue)
- Eruption off the east limb
- EUV wave propagating both north and South
- X2.1 flare 36 degrees beyond east limb. CME of ~2000 km s⁻¹ (Pesce-Rollins et al. 2015)

2014-September-01 Event - EUV + Radio Imaging

- Eruption off the east limb
- Large radio sources $\sim 0.7 R_{sun}$ along major axis.

2014-September-01 Event - EUV + Radio Imaging

- Eruption off the east limb
- Large radio sources ~0.7 R_{sun} along major axis.
- Nearly all frequencies at same position.

2014-September-01 Event - Brightness Temperatures

- Eruption off the east limb
- Large radio sources ~0.7 R_{sun} along major axis.
- Separate emission mechanism above 173 MHz?

2014-September-01 Event - Flux Densities (NRH)

- Low NRH frequencies: higher SFU, bursty.
- High NRH frequencies: lower SFU, smooth.

2014-September-01 Event - Flux Densities (RSTN, San Vito)

- Flux increase in Radio Solar Telescope Network (RSTN) San Vito site at time of event.
- 3 flux density measurements from 1.4 - 5.0 GHz
- NRH + RSTN: Flux density measurements from 150 5000 MHz.

2014-September-01 Event - Flux Density Spectrum

2014-September-01 Event - Flux Density Spectrum

2014-September-01 Event - Flux Density Spectrum

2014-September-01 Event - Flux Densities Spectrum

2014-September-01 Event - Flux Densities Spectrum

$$\alpha_{thin} = 1.8$$

 $\delta = -1.1(\alpha_{thin} - 1.2)$ (Dulk & Marsh, 1982)
 $\delta = 3.3$
 $v_{peak} = 1.1 \text{ GHz}$

 $v_{peak} \approx 2.72 \times 10^3 10^{0.27\delta} (sin\theta)^{0.41+0.03\delta} (NL)^{0.32-0.03\delta} \times B^{0.68+0.03\delta}$

θ ~ 80 degrees: Very low polarization -> assume high LOS angle.

 $L \sim 0.5-0.6 R_{sun}$: estimated from radio source size.

N: No independent estimate with radio

• From behind the limb flare: Fit FERMI GBM spectrum thermal + thin target source model.

• From behind the limb flare: Fit FERMI GBM spectrum thermal + thin target source model.

• Possibility radio and X-ray are from same energetic electron distribution?

$$n_0 = \sqrt{\frac{\xi}{V_0}}$$

$$N = \frac{[n_0 V_0 \overline{F}]}{n_0 V_{nth}} \frac{\delta_{thin} - 1}{\delta_{thin} - 0.5} E_{min}^{1/2} \sqrt{\frac{m}{2}} \left(\frac{E_0}{E_{min}}\right)^{\delta_{thin} - 1}$$

- $\xi = 2.2 \times 10^{45} \text{ cm}^{-3}$
 - $\delta = 3.1$

 $[n_o V_o F] = 1.0 \times 10^{54}$ electrons s⁻¹

$$E_o = E_{min} = 9.1 \text{ keV}$$

m = electron mass

 V_o = ? Distribution of volumes from Warmth and Mann (2013). Estimate of 10^{27} cm³

 V_{nth} = ? Assumed the same as V_o

$$n_0 = \sqrt{\frac{\xi}{V_0}}$$

$$N = \frac{[n_0 V_0 \overline{F}]}{n_0 V_{nth}} \frac{\delta_{thin} - 1}{\delta_{thin} - 0.5} E_{min}^{1/2} \sqrt{\frac{m}{2}} \left(\frac{E_0}{E_{min}}\right)^{\delta_{thin} - 1}$$

 $v_{peak} \approx 2.72 \times 10^3 10^{0.27\delta} (sin\theta)^{0.41+0.03\delta} (NL)^{0.32-0.03\delta} \times B^{0.68+0.03\delta}$ • $\xi = 2.2 \times 10^{45} \text{ cm}^{-3}$ $\delta = 3.1$ $[n_o V_o F] = 1.0 \times 10^{54}$ electrons s⁻¹ $E_{o} = E_{min} = 9.1 \text{ keV}$ m = electron mass $V_o = 10^{27} \text{ cm}^3$, $V_{nth} = 10^{27} \text{ cm}^3$ $N = 9.0 \times 10^7 \text{ cm}^{-3}$ (6% of background density). $\theta = 80^{\circ}, L = 0.5 \text{ R}_{\text{sun}}, v_{peak} = 1.1 \text{ GHz}$

 $B = 5 \text{ G at } 1.2 \text{ R}_{sun}$

Conclusions

- Eruption off the east limb with large radio sources.
- Type IV with a gyrosynchrotron spectrum
- FERMI GBM burst detected
- X-ray and radio both give same non-thermal electron spectral index of 3.1-3.3
- Estimate of non-thermal electron number density from X-ray
- X-ray and radio parameters allow for CME Bfield strength of 5 G

eoincarley@gmail.com

2014-September-01 Event

 Pesce-Rollins et al. (2015): Study of FERMI-GBM observations of behind the limb events

2014-September-01 Event - SFU 'burstiness'

