The determination of high energy particle spectra via gamma ray regularized inversion

Federico Benvenuto

Dipartimento di Matematica Genova

benvenuto@dima.unige.it

July 29, 2016

15 RHESSI meeting Graz

Joint work with:

Gordon Emslie, Richard Schwartz, Alec MacKinnon, Michele Piana, Gabriele Torre

A γ -ray spectrum

Share, Murphy, APS Conference Series

Figure: Count spectrum of the 2002 July 23 solar flare with fits revealing different components.

Federico Benvenuto (DIMA)

Ingredients for γ -ray solar flare spectra

```
Energy range : 100 KeV - 8 MeV
```

Many different interactions and physical processes contributing to X-ray and γ -ray solar flare spectra.

electrons

X-ray and γ -ray Bremsstrahlung

ions

 γ -ray line radiation (1-8 MeV) (narrow and broad lines) $\alpha - \alpha$ -particle interaction neutron capture line (2.223 MeV)s

Line radiation model

- L: number of ambient species
- K: number of accelerated species

$$I_{line}(\epsilon) \Delta \epsilon = \sum_{k=1}^{K} \sum_{\ell=1}^{L} a_{\ell} \int_{0}^{\infty} j_{k,\ell}(\epsilon, E) F_{k}(E) dE.$$
(1)

- $\{F_k(E)\}_{k=1}^K$ Accelerated ion spectra
- $j_{k,l}(\epsilon, E)$ Interaction integral kernel
- $I(\epsilon)\Delta\epsilon$ emergent γ -line spectrum
- a_{ℓ} Ambient abundances

Nuclear deexcitation gamma-ray lines from accelerated particle interactions,

ApJS, Kozlovsky Murphy Ramaty 2002

What does the interaction integral kernel contain ?

- 24 spectra for the narrow lines
- - accelerated H, 4He and 3He interacting with the eight ambient elements 4He, 24 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 56Fe
- 14 spectra for the broad lines
- accelerated 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 56Fe interacting with ambient H and 4He

Discretized framework

•
$$x_p \sim (F_1(E), \ldots, F_K(E))$$

• $H_{i,\ell,p} \sim j_{k,\ell}(\epsilon, E)$ $(E,k) \to p$ $\epsilon \to i$

Let us consider the problem to find a, ${\sf x}$ and ${\sf g}$ once ${\sf y}$ is given and described by the equation:

Inverse Problem

$$y_i = f(\mathbf{a}, \mathbf{x}) = \sum_{\ell=1}^{L} a_{\ell} \sum_{p=1}^{KM} H_{i,\ell,p} \mathbf{x}_p + b_i$$

Take a look at the forward model

Take a look at the forward model

Generated using the 'Murphy code'

Assumptions:

- the data y has to be realizations of a Poisson random variable.
- x, a and b have non-negative components;

The standard **Maximum Likelihood** approach boils down to find the solution x, a which minimizes the

C-statistic

$$C(x,y) = \frac{2}{N} \sum_{i=0}^{N} y_i \log\left(\frac{y}{aHx+b}\right)_i + (aHx+b)_i - y_i$$
(2)

If you consider the abundances to be known = a, it is a linear problem: a popular **non parametric** inversion method is the

Richardson Lucy

$$x_{k+1} = x_k \ P \star \frac{y}{P * x_k}$$

where P is a point spread function, P* and P* indicate convolution and correlation.

Here we use its generalization:

Expectation Maximization

$$x_{k+1} = \frac{x_k}{(aH)^T 1} (aH)^T \frac{y}{aHx_k}$$

where we have aH(k), row-column multiplication (convolution) and column-row multiplication (correlation).

Inversion with known abundances

Take another step towards reality

$$y = f(a, x, z) = aHx + Qz + b$$

- background *b* unknown (+ Bremsstrahlung effect)
- ambient abundances a unknown

Inspired by the blind deconvolution scheme

INIT : set x_0 , z_0 and a_0

$$STEP \ 1: \ x_{k+1} = \frac{x_k}{(a_k H)^T 1} (a_k H)^T \frac{y}{a_k H x_k + Q z_k + b}$$

$$STEP \ 2: \ a_{k+1} = \frac{a_k}{(H x_{k+1})^T 1} (H x_{k+1})^T \frac{y}{a_k H x_{k+1} + Q z_k + b}$$

$$STEP \ 3: \ z_{k+1} = \frac{z_k}{Q^T 1} Q^T \frac{y}{a_{k+1} H x_{k+1} + Q z_k + b}$$

Repeat STEP 1,2 and 3 until a given condition is met (stop criterion)

Some comments:

- The used method is convergent as shown in Lee & Seung, Neural Information Processing Systems (2000) to an optimized solution.
- From a numerical point of view the solution is unique, but the key point is the $\alpha \alpha$ interaction.
- Perform several inversions (several initializations x_0 , a_0 , z_0) with fixed carbon ambient abundance. Select the optimal one.

Simulations

Ramaty R., Murphy R. J., Nuclear processes and accelerated particles in solar flares, 1987

Input spectra for energetic electrons:

Share G., H. Murphy R. J., Solar gamma-ray line spectroscopy - physics of a flaring star, 2004

Federico Benvenuto (DIMA)

Simulation: high statistic

Black line under the red one represents simulated data (Fermi bins)

Ambient Abundances

H	1.0 ± 0.0	1.0
He	0.084 ± 0.005	0.1
С	$(4.34\pm0.00)10^{-4}$	$4.34 \ 10^{-4}$
Ν	$(1.67\pm0.11)10^{-4}$	$1.57 \ 10^{-4}$
0	$(1.058 \pm 0.024) 10^{-3}$	10 ⁻³
Ne	$(4.11\pm0.12)10^{-4}$	$4 \ 10^{-4}$
Mg	$(4.20\pm0.08)10^{-4}$	$4.08 \ 10^{-4}$
Al	$(6.8\pm0.6)10^{-5}$	$6.8 \ 10^{-5}$
Si	$(3.68\pm0.07)10^{-4}$	$3.52 \ 10^{-4}$
S	$(1.205\pm0.022)10^{-4}$	$1.17 \ 10^{-4}$
Ca	$(9.21\pm0.25)10^{-5}$	$8.8 \ 10^{-5}$
Fe	$(1.116 \pm 0.022)10^{-3}$	$1.08 \ 10^{-3}$

Energetic Abundances

Н	1.00 ± 0.19	1.0
He	0.082 ± 0.018	0.1
C	$(5.8\pm3.6)10^{-4}$	$4.34 \ 10^{-4}$
Ν	$(1.52\pm1.01)10^{-4}$	$1.57 \ 10^{-4}$
0	$(1.7\pm1.4)10^{-3}$	10-3
Ne	$(2.8\pm0.9)10^{-4}$	4 10 ⁻⁴
Mg	$(4.9 \pm 2.7) 10^{-4}$	$4.08 \ 10^{-4}$
AI	$(0.55 \pm 1.04) 10^{-4}$	$6.8 \ 10^{-5}$
Si	$(3.59 \pm 2.09) 10^{-4}$	$3.52 \ 10^{-4}$
S	$(1.31 \pm 1.09) 10^{-4}$	$1.17 \ 10^{-4}$
Ca	$(2.81 \pm 3.07) 10^{-4}$	8.8 10 ⁻⁵
Fe	$(8.6 \pm 2.4)10^{-4}$	$1.08 \ 10^{-3}$

Simulation: medium statistic

Black line under the red one represents simulated data (Fermi bins)

Ambient Abundances

Н	1.0 ± 0.0	1.0
He	0.02 ± 0.014	0.1
С	$(4.34\pm0.0)10^{-4}$	$4,34 \ 10^{-4}$
Ν	$(1.9\pm0.5)10^{-4}$	$1.57 \ 10^{-4}$
0	$(1.18\pm0.09)10^{-3}$	10^{-3}
Ne	$(4.4\pm0.5)10^{-4}$	$4 \ 10^{-4}$
Mg	$(4.6\pm0.3)10^{-4}$	$4.08 \ 10^{-4}$
Al	$(4.2\pm5.2)10^{-5}$	$6.8 \ 10^{-5}$
Si	$(4.2\pm0.3)10^{-4}$	$3.52 \ 10^{-4}$
S	$(1.29\pm0.11)10^{-4}$	$1.17 \ 10^{-4}$
Ca	$(9.89 \pm 1.05) 10^{-5}$	$8.8 \ 10^{-5}$
Fe	$(1.22\pm0.09)10^{-3}$	$1.08 \ 10^{-3}$

Energetic Abundances

Н	1.0 ± 0.5	1.0
He	0.09 ± 0.06	0.1
С	$(1.4\pm2.1)10^{-3}$	$4.34 \ 10^{-4}$
Ν	$(6.6\pm 8.9)10^{-4}$	$1.57 \ 10^{-4}$
0	$(3.4 \pm 3.6)10^{-3}$	10 ⁻³
Ne	$(2.9\pm2.9)10^{-4}$	4 10 ⁻⁴
Mg	$(0.79 \pm 1.02) 10^{-3}$	$4.08 \ 10^{-4}$
Al	$(0.86 \pm 2.8) 10^{-4}$	$6.8 \ 10^{-5}$
Si	$(4.9\pm9.9)10^{-4}$	$3.52 \ 10^{-4}$
S	$(0.61 \pm 1.12) 10^{-4}$	$1.17 \ 10^{-4}$
Ca	$(5.3\pm7.4)10^{-4}$	8.8 10 ⁻⁵
Fe	$(1.32 \pm 1.16) 10^{-3}$	$1.08 \ 10^{-3}$

Simulation: low statistic

Black line under the red one represents simulated data (Fermi bins)

Ambient Abundances

Н	1.0 ± 0.0	1.0
He	$(3.0\pm5.2)10^{-7}$	0.1
С	$(4.34\pm0.0)10^{-4}$	$4.34 \ 10^{-4}$
Ν	$(0.8\pm1.1)10^{-4}$	$1.57 \ 10^{-4}$
0	$(6.4 \pm 1.3)10^{-4}$	10 ⁻³
Ne	$(3.2\pm0.8)10^{-4}$	4 10 ⁻⁴
Mg	$(3.0\pm0.5)10^{-4}$	$4.08 \ 10^{-4}$
Al	$(0.5\pm1.7)10^{-4}$	$6.8 \ 10^{-5}$
Si	$(2.6\pm0.9)10^{-4}$	$3.52 \ 10^{-4}$
S	$(8.9 \pm 2.6) 10^{-5}$	$1.17 \ 10^{-4}$
Ca	$(5.6 \pm 2.2)10^{-5}$	$8.8 \ 10^{-5}$
Fe	$(6.5 \pm 1.2)10^{-5}$	$1.08 \ 10^{-8}$

Energetic Abundances

Н	1.0 ± 1.2	1.0
He	0.09 ± 0.12	0.1
С	$(0.7 \pm 1.7) 10^{-3}$	$4.34 \ 10^{-4}$
Ν	$(1.5\pm2.5)10^{-4}$	$1.57 \ 10^{-4}$
0	$(2.2\pm5.3)10^{-3}$	10^{-3}
Ne	$(5.4\pm7.1)10^{-4}$	$4 \ 10^{-4}$
Mg	$(3.3 \pm 4.8) 10^{-3}$	$4.08 \ 10^{-4}$
Al	$(0.6 \pm 1.5) 10^{-2}$	$6.8 \ 10^{-5}$
Si	$(1.2\pm2.6)10^{-5}$	$3.52 \ 10^{-4}$
S	$(2.6\pm9.9)10^{-4}$	$1.17 \ 10^{-4}$
Ca	$(0.4 \pm 1.3) 10^{-3}$	$8.8 \ 10^{-5}$
Fe	$(6.4 \pm 9.2)10^{-3}$	$1.08 \ 10^{-3}$

28 November 2003 event

28 November 2003 event

Ambient Abundances	
Н	1.0 ± 0.0
He	$(3.7\pm0.4)10^{-5}$
С	$(2.2\pm2.5)10^{-4}$
Ν	$(3.9\pm3.2)10^{-5}$
0	$(1.8\pm2.4)10^{-4}$
Ne	$(9.1\pm5.6)10^{-5}$
Mg	$(3.28 \pm 1.19) 10^{-4}$
AI	$(3.1\pm4.9)10^{-5}$
Si	$(4.9 \pm 1.7) 10^{-4}$
S	$(2.45\pm0.11)10^{-3}$
Ca	$(5.5\pm 6.4)10^{-5}$
Fe	$(3.3\pm1.6)10^{-6}$

Energetic Abundances

Н	1.00 ± 0.24
He	$(1.4\pm0.5)10^{-3}$
С	$(2.52 \pm 1.06) 10^{-3}$
N	$(3.90 \pm 1.15) 10^{-3}$
0	$(3.0\pm0.8)10^{-1}$
Ne	$(4.04 \pm 1.09)10^{-3}$
Mg	$(1.6\pm0.8)10^{-4}$
AI	$(2.6\pm2.4)10^{-4}$
Si	$(1.6\pm0.7)10^{-2}$
S	$(3.30 \pm 1.06) 10^{-3}$
Ca	$(1.5\pm1.5)10^{-3}$
Fe	$(9.2\pm3.3)10^{-4}$

To be continued

- A fundamental issue is the background subtraction
- RHESSI spectra have a high energy resolution
- Shift effect can make the fit procedure totally ineffective.

Possible solutions:

- Produce a family of models parametrized by the acceleration angle.
 choose which model gives the best fit (if any)
- Introduce a parameter for each species for modeling the shift.
 - Is there an efficient optimization strategy for solving the inverse problem?
- Extract the main peaks of a RHESSI gamma ray spectrum and shift them at the 'right' energy (those of the Murphy code).
 - what to do with broader lines ?
- Convolve both the gamma ray data and the gamma ray model output by a psf in order to dump the doppler shift.
 - how large the psf should be ?