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Why study return currents?

◮ They heat the corona and modify the shape of x-ray spectra

◮ They solve the electron number and associated current
stability ”problems”
High electron fluxes on the order 1036 electrons/s (e.g. Hoyng
et al. 1976)
=> charge separation and high induced magnetic field, at
least 3 orders of magnitude higher than coronal magnetic field
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Standard collisional thick-target model with return currents

Beam propagates in a
conducting plasma =>

charge displacement by
the beam will create a
current
(e.g. Knight & Sturrock
1977; Emslie 1980,1981;
Rowland & Vlahos 1985;
Litvinenko & Somov 1991;
Zharkova & Gordovskyy
2006, Holman 2012)
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Return current collisional thick-target model: Assumptions

Adapted from Holman 2012

◮ 1D and J parallel to B

◮ Injected power law electron distribution E−δ with sharp
low-energy cutoff at the loop top

◮ JRC has had the time to reach the steady state and JRC =
Jdirect

◮ Electrons are thermalized and lost from the beam when their
energy decreases to δkB T (from Kontar et al. 2015)

◮ All the spectral flattening is due to potential drop associated
with return currents
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Spectral fits using the return current model
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Fit parameters

Non-thermal parameters

Total electron "ux    5x10    e   /s

Potential drop           160 kV

Spectral index           = 5.2

Max. low-energy cuto#       58 keV

High-energy cuto# ($xed)  32 MeV

Thermal parameters

Temperature             27 MK

Emission measure   10     cm 

Thermal+RC
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How much energy flux density reaches the footpoints?
What is the total energy deposited in the corona?

HXR light curve and potential drop time evolution
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How much energy flux density reaches the footpoints?
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How much energy flux density reaches the footpoints?
What is the total energy deposited in the corona?

How much energy is lost in corona due to RC losses?
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How much energy is lost in corona due to RC losses?
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How much energy flux density reaches the footpoints?
What is the total energy deposited in the corona?

Intermediate summary

◮ δ k T is too low a low-energy cutoff

◮ It is possible to discriminate between a spectral flattening due
to a high value of the low-energy cutoff and a potential drop

◮ 19-Jan-2005 better explained with a high value of the
low-energy cutoff 120 keV rather than a potential drop

◮ 20-Jan-2005 is consistent with a potential drop flattening
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Is the resistivity classical or anomalous?
Return current electric field vs. Dreicer field in the corona?
Background density vs. beam density

When return-current losses are the better

explanation for the spectral flattening, what can be

deduced about plasma and beam parameters?
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Is the resistivity classical or anomalous?
Return current electric field vs. Dreicer field in the corona?
Background density vs. beam density

Is the resisitivity classical or anomalous?

Classical Spitzer resistivity at "tted temperature  38 MK

Deduced resistivity E  maxc

Deduced resistivity E  minc

> 1000 x Spitzer resistivity
> 10   x Spitzer resistivity

4
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Is the resistivity classical or anomalous?
Return current electric field vs. Dreicer field in the corona?
Background density vs. beam density

How does the return current electric field compare to

Dreicer field in the corona?
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Is the resistivity classical or anomalous?
Return current electric field vs. Dreicer field in the corona?
Background density vs. beam density

Are there enough electrons in the background plasma to

form the return current?

Thermal background density

Beam density (E   min)c

Beam density (E   max)c
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Conclusions

◮ Return current collisional thick-target model provides good
fits to x-ray spectra with strong breaks

◮ Energy flux density in footpoints is 10% to 30% the injected
energy flux density at loop top when potential drop is
significant

◮ Thermal response of the plasma gives an indication of the
plausibility of return currents being significant and observable

◮ Resistivity in the corona is up to 3 orders of magnitude higher
than classical Spitzer resistivity at loop top temperature at Ec

max

Alaoui, Holman Return currents in solar flares



Co-spatial return current model
Spectral fits with co-spatial return current model

Heating due to return-current losses
Deduced plasma and beam parameters

Conclusions

Other collaborators:
Brian Dennis, Kim Tolbert, Richard Schwarz, Joel Allred

meriem.alaouiabdallaoui@nasa.gov
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All other spectra with significant potential drop

56%<3 

78% <4 }
orders of 

magnitude 
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All other spectra with significant potential drop

84%  n     <   n 
beam        bkg
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All other spectra with significant potential drop

97%  E   < E 
RC         Dreicer
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Limits on the low-energy cutoff

Electron distribution

        at loop top

Electron distribution at 08:25:12 UT
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