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• COSMIC-2 is putting in place several new radio occultation (RO)-based 
capabilities for routinely monitoring equatorial ionospheric scintillation

• “All-Clear”: specifies longitude regions in which UHF scintillation is not present
– Also applies to higher frequencies, but is overly conservative in such cases 
– Based on analysis of TGRS “low rate” (1Hz) observations of L1 SNR

• Geolocation: determines locations of irregularity regions that cause scintillation
– Based on analysis of TGRS “high rate” (50Hz: GPS or 100Hz: GLONASS) L1 SNR & 

carrier phase data at ionospheric tangent altitudes (collected via POD antennae)
– Two different algorithms have been validated by the COSMIC-2 Cal/Val effort
– Boston College (BC) algorithm
– UCAR algorithm 

• “Bubble Map”: amalgamates the geolocation algorithm results into a single map 
to provide a global (equatorial latitudes) picture of ionospheric instability regions
– Can employ either BC or UCAR geolocation products
– Various future augmentations possible, including incorporation of in-situ density data 

from the IVM sensor on COSMIC-2

COSMIC-2 Scintillation Capabilities Overview
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• All Clear infers the absence of ionospheric irregularities from the absence of scintillation 
observed by TGRS using a simple premise
– Regions most likely to be free of irregularities when scintillations are not observed are the same as 

those most likely to contain irregularities when scintillations are observed
• Occulting ray path segments that would likely have strong irregularities if scintillation were 

present are considered irregularity-free if scintillation is not observed
• An ad hoc (“PCA Index”) model developed by BC describes irregularity probability as a 

function of apex altitude and climatological electron density

“All Clear” Algorithm Concept (1 of 2)

All-Clear Irregularity Probability Example
Lines of Sight

Tangent Point Track
High Irregularity 
Probability

Apex Too High

TP Too Low

Originally developed with RO data from the C/NOFS mission

Boston College Analysis
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• Presence of scintillation is assessed via the 31s pseudo-S4 index (SNR data contaminated 
by RFI is excluded from the analysis)

• For each epoch, a “PCA Index” map is generated, showing the regions most likely to be 
devoid of irregularities based on all occultations observed by the full COSMIC-2 constellation

“All Clear” Algorithm Concept (2 of 2)
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• All Clear maps are generated by extending 
regions in latitude to model the expansion of 
irregularities along magnetic field lines

• Green regions: >95% chance of no scintillation

• Yellow regions: >75% chance of no scintillation

• Gray regions: indeterminate (no coverage or 
scintillation observed)

Boston College Analysis
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• All Clear specifications were compared to ground-based scintillation 
observations from
– (1) VHF SATCOM receivers (S4)
– (2) S4 inferred from GNSS receiver Rate-of-TEC-Index (ROTI) – analysis determined 

that ROTI was an adequate proxy for S4 during pre-midnight local times
• Ground-based GNSS receiver scintillation measurements could not be used for 

validation because of the weak L-band scintillation under these solar minimum 
conditions

“Green specification” performance was determined to be accurate 97.5% of the time

All Clear Validation

VHF Stations
ROTI Stations

Validation Time Periods
01 Sep - 15 Oct 2020 
06 - 31 Mar 2021

ROTI

VHF S4

Boston College Analysis
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• TGRS simultaneously collects “tracks” of 
GNSS satellite observations (GPS & 
GLONASS) made via POD antennae
– ~16 channels of GPS
– ~9 channels of GLONASS

• Tracks are comprised of occultation & arc 
portions (below/above 0° elevation)

• Every track provides
– L1 & L2 SNRs every 1s
– On-board S4 every 10s

TGRS Ionospheric HR Data Enables Geolocation
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• For each rising or setting occultation TGRS analyzes the on-board S4 profile
– If scintillation is observed and certain threshold criteria are met, TGRS sends down 

high rate (HR) amplitude & phase data for the entire occultation
• Total HR data volume is limited by TGRS’ data transmission capability

– HR data generation is shut down if an orbital (~95 min) volume limit is exceeded
– This can limit the amount of TGRS HR scintillation data available for operational use
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• Irregularities are geolocated via back-propagation in the time domain, with 
Fresnel frequency as the independent variable to be measured

• The Rino scintillation model (1979), generalized to RO geometry, is used to 
relate Fresnel frequency to Fresnel scale, and then to distance along the ray-
path to the irregularity region.

Boston College (BC) Geolocation Algorithm
Boston College Analysis
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• Scan velocity is proportional to the distance (ds) from the irregularities

• For anisotropic field-aligned irregularities we must use an effective scan velocity, Veff

• Effective scan velocity:

• Fresnel frequency:

• Fresnel scale:

Mapping Fresnel Frequency to Irregularity Location
BC algorithm
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Boston College Analysis
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• Based on 2001GL013398, 2002 algorithm
• Numerically solves 2D Kirchhoff equation 

using TGRS observed amplitude/phase 
using phase screen approximation

• Corrections for receiver motion & wave 
front curvature are applied

• Irregularities are geolocated via back-
propagation (BP) at the location of the 
minimum of the back-propagated signal 
amplitude variance

• Because BP plane orientation depends 
on magnetic field (MF) orientation at the 
irregularity location (initially unknown), an 
iterative process is employed to search 
for the solution

UCAR Geolocation Algorithm
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UCAR Analysis
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Major Differences Between BC & UCAR Algorithms

BC Algorithm
• Back-propagation used to determine 

Fresnel frequency of propagation
• High-pass filtering of raw phase data
• Entrance criteria: S4>0.13
• Success criteria: S4 reduced by >10%

• Magnetic field handled via effective 
scan velocity & Fresnel scale mapping 
to distance (no iteration needed)

• Irregularity aspect ratio 1:50
• No restriction on orientation of ray 

path relative to magnetic field

UCAR Algorithm
• Back-propagation used to determine 

distance to irregularities directly
• Based on UCAR excess phase
• Entrance criteria: σϕ>0.33 rad
• Success criteria: Normed amplitude 

variance decreases by factor >1.2
• Magnetic field handled by iterative 

adjustment of BP plane

• Irregularity aspect ratio infinite
• Angle between ray path & magnetic 

field must be <75°
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Validation via NASA GOLD Comparisons

• GOLD 135.6 nm O+ recombination imagery scales with square of ionospheric density
• Ionospheric depletions (“bubbles”) are associated with instability/irregularity regions
• GOLD bubble locations/widths were initially identified by UCAR analysis, then manually 

sanity checked by Cal/Val team
– GOLD bubbles identified by the process were validated vs. ground-based VHF 

scintillation data (Sao Luis, Brazil): 100% agreement wrt pre-midnight scintillation 

GOLD Image w/ RO LOS Overlay
GOLD Image w/o Overlay

Blue: no scintillation 
Else colored by S4

200-800km LOS

Joint Cal/Val Team Analysis

Geoloc-
ation

Results

Tangent 
Points

Bubbles
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Multiple Bubbles Detected in Single Occultations

Red indicates GOLD bubbles

• Various occultation geometries result in potential detection of multiple bubble regions
• However, TGRS may not detect all bubbles – just those intersected by the RO ray-paths 

at F-region altitudes (assuming that TGRS downlinks HR data for the occultations)

200 < Alt < 800; Apex < 1000

200 < Alt < 800; Apex < 1000

Joint Cal/Val Team Analysis
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GOLD Validation Results

• Both algorithms assessed for 15 Feb-15 April 2020 time period
• Both algorithms performed well (BC slightly better)

– BC: 90% of geolocations within 1° of GOLD
– UCAR: 90% of geolocation within 2° of GOLD

• Outliers (>5° differences) were carefully evaluated
– Most of these cases involved lower quality GOLD imagery near the 

geolocations (bubbles may have been present, but not with 
certainty)

Error % Cases % Cases
0° 77 70

<1° 90 84

<2° 95 90

<5° 98 98

BC UCAR

Joint Cal/Val Team Analysis

BC: 1107 GEOs UCAR: 860 GEOs



14

BC Geolocation Validation Outside of S. America

• Ground sensor for geolocation accuracy evaluation
– Receivers tracking VHF geostationary satellite signals 
– GPS receiver ROTI data (Addis Ababa station only)

• Analysis assumes bubble structures observed by 
ground are “frozen in” and drift at 75 m/s
– Bubbles identified relative to 0.2 S4 sensor noise floor & 

projected out for 2 hours (5° longitude)
– Pre-midnight events only

• Geolocation accuracy for 4 non-S. American stations 
similar to GOLD analysis (90/96% are within 1°/2°
longitude)
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Inter-Comparison of BC & UCAR Algorithms

• UCAR compared their “common” geolocations with BC’s and found generally 
good agreement

• A small number of outlier cases (>5° differences) were carefully investigated
– No clear indications of algorithm flaws were identified
– In many cases both algorithms may be right (sensitivity to different bubbles along LOS)
– Ideas for improving the UCAR algorithm have arisen from these investigations

1

1
2 3

~63% 
more

~85% 
more

UCAR BC

Both BC & UCAR 
produce a geolocation

Only UCAR 
produces a 
geolocation

Only BC 
produces a 
geolocation

UCAR Analysis
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The “Bubble Map”
Geolocation amalgamation

• Algorithm provides a 
coherent picture of low 
latitude irregularity region 
locations based on 
combining all available 
COSMIC-2 geolocations

• This analysis was 
performed using the BC 
algorithm geolocations

• It will be applied to UCAR 
geolocations in the future

• Current bubble “coloring” is 
based on TGRS S4 
observations in the RO 
limb-viewing geometry
– Translation to the space-to-

ground geometry is planned 
for the future 

BC Analysis
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Bubble Persistence & Propagation in the Maps
• Once a bubble is detected, we know that it can persist, typically for a few hours

• Since TGRS/COSMIC-2 may not detect all bubbles, it may or may not re-
sample persistent bubbles

• To improve Bubble Map “coverage”, detected bubbles are propagated in the 
map for a specified duration (e.g. 60/90/120 minutes)

BC Analysis

• Old bubbles are propagated to the valid 
time of the current map using a 
climatological zonal irregularity drift model

• Statistical analysis reveals that bubble 
persistence wouldn’t be necessary if 
geolocations had zero latency (“prompt” 
case) – this implies that TGRS detects 
most bubbles repeatedly

• However, persistence is needed to help 
mitigate effective coverage loss due to 
realistic data latency
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TGRS HR Data Latency

GPS GLONASS

• Histograms & cumulative distributions for GPS & GLONASS HR data 
are shown below

• The impact of data latency on the Bubble Maps was assessed using 
scnPhs file generation time stamp information provided by UCAR

UCAR Analysis
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With 
Simulated 
Latency

Prompt
Data

GOLD data 
is used to 
determine 
the effective 
“coverage” 
that the 
Bubble Maps 
provide

BC Analysis
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Simulated 
Latency

BC Analysis
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Bubble Map Effective Coverage

• The cumulative distribution function below summarizes effective Bubble Map 
coverage for “prompt” and realistic latency with different bubble persistence

• On average, 80% bubble coverage (relative to GOLD) is obtained 90% of the 
time in the prompt (unrealistic) case, but only 50% of the time with latent data

30

Latency
Persistence

• The large separation between the 
prompt (solid) and latent (dashed) 
curves demonstrates the 
performance gap driven by data 
latency

• The lesser separation within each 
group of curves depicts 
differences due to persistence
– There is a clear advantage to 

using at least 90 minutes 
persistence in the case of realistic 
latency 

BC Analysis
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IVM-Based Bubble Map Development
Algorithm developed by UCAR 

IVM in-situ density data can also be used to detect plasma bubbles

Longitude

In-situ 
density data  

Calculation/thresholding 
of Bubble Presence & 

Depth Indices  

Mapping along 
orbit tracks  

Bubble extension 
within equatorial 

region
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Comparisons to GOLD & Path Forward

• Initial analysis is promising, but 
much additional work remains:

• Assessment of the degree to which 
bubbles rise up high enough to be 
seen by IVM

• Can we tell the difference between 
“live” and “dead” bubbles?

• Tuning of index thresholds to 
optimize map

• Validation of IVM Bubble Maps
• How to optimally combine TGRS 

and IVM maps to improve effective 
coverage/refresh

UCAR Analysis

GOLD Image
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Considerations for Future RO Systems

• COSMIC-2’s low inclination orbits are optimal for scintillation monitoring
– High inclination orbits spend significant time at higher latitudes where they do not 

contribute to equatorial scintillation monitoring
– Scintillation bubbles are better sensed by low inclination orbits that traverse north-

south aligned bubbles each orbit – high inclination orbits can pass between bubbles
• High-rate data at ionospheric tangent altitudes must be collected to enable 

accurate geolocation

Monitoring equatorial ionospheric scintillation

• Low data latency is critical
– While excellent compared to most 

prior missions, COSMIC-2’s 30min 
median latency is not sufficient to 
provide a complete map of scintillation 
activity on ionospheric instability 
development time scales

COSMIC-2
6 S/C in Polar Orbits

Effective Irregularity Coverage vs. Refresh

Scintillation Development Time Scale

Note: This somewhat dated analysis 
assumes All-In-View GPS capability & 
employs a simplistic scintillation detectability 
model.  Nevertheless, it illustrates the 
advantage of low inclination orbits.



34

Summary

Advances in RO techniques for scintillation detection within the COSMIC-
2 mission are providing science & operational communities with an 
unprecedented ability to monitor equatorial ionospheric scintillation
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