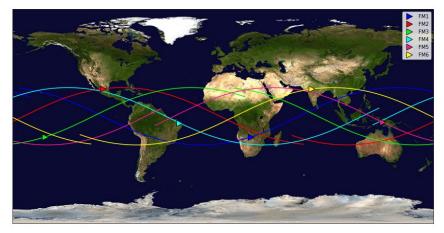
FORMOSAT-7/COSMIC-2 Program Overview and Status

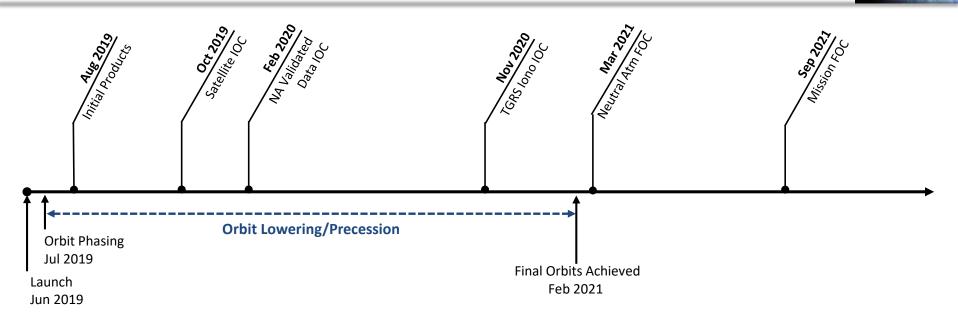
Wei Xia-Serafino (NOAA), Cheng-Yung Huang (NSPO) Ian Wheeler (USSF), Jan-Peter Weiss (UCAR) September 8, 2022 IROWG #9

Outline


- Program Overview
- Program Milestones
- Mission operations (5-6)
- COSMIC-2 Products and users (7-8)
- NA and SW requirements
- Open Work
- Summary
- Acknowledgement

Program Overview

- Partnership: National Oceanic and Atmospheric Administration (NOAA), Taiwan National Space Organization (NSPO), US Air Force/Space Force (USAF/USSF)
- 5 year mission, launched on 6/25/2019, SpaceX Falcon Heavy (USAF STP-2 Mission)
- 6-satellite constellation in six evenly-spaced orbit planes to provide uniform equatorial coverage
- 10 ground stations for downlink support
- Each satellite has 3 instruments provided by USSF
 - Tri-GNSS Radio Occultation System (TGRS) Primary Instrument
 - Ion Velocity Meter (IVM) Secondary Instrument
 - Radio Frequency Beacon (RFB) Secondary Instrument
- Providing > 5000 daily radio occultation for weather forecasting
- Providing ~12,000 daily ionospheric soundings for space weather monitoring
- Median latency <30 min (neutral atmosphere (NA) and space weather, 45 min/30 min requirement)



COSMIC-2 Ground Site locations

Mission Constellation Orbit

Major Post Launch Program Milestones

Major Program Achievements

- All satellites in final mission orbits (550 km altitude, 24° inclination, 60° RAAN separation)
- >5000 NA RO profiles/day with a precision better than 2 micro-radian from 30-60 km altitude
- Nearly 12,000/day Total Electron Content (TEC) occs and arcs with accuracy better than 3 TECU
- IVM density accuracy is at or below the 5% mission requirement
- Daily NA product and TEC latency from observation to product creation below 30 min median
- Data products delivered in Near Real Time (NRT) to multiple operational weather and space weather centers and openly available to the research community
- New ionosphere products specifying the presence, absence, and location of scintillation are under development and planned for release in the near-future

Mission Operations

Spacecraft

- NSPO Responsibility
 - Command upload
 - Ephemeris Generation
 - Collision Avoidance
 - Orbit Maintenance
 - Contact Schedule

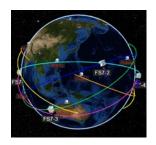
Ground Stations

- NOAA Responsibility
- 10 ground stations
 - 2 Telemetry and Command
 - 8 Telemetry Only
 - 1 emergency command
 - Partner and US Commercial
 - ~300 contacts per day

Instruments

- USSF Responsibility
 - Payload commanding
 - Flight Software Updates
 - Payload Monitoring
 - Product Calibration/Validation (Cal/Val)

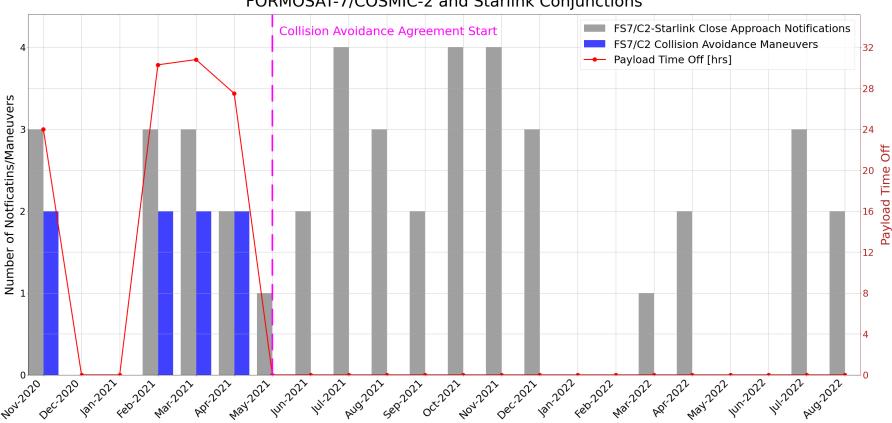
Data


- Processing/Management Centers

 UCAR
 Taiwan
- Distribution
 - NOAA GTS
 - o UCAR
 - o **Taiwan**

- Archival
 - NOAA NCEI
 - o UCAR
 - Taiwan

Collision Avoidance with Starlink Satellites



FS-7/C-2

Starlink

- Starlink: 2000+ spacecraft at 540-570-km altitude
- FORMOSAT-7/COSMIC-2 payloads average downtime during a collision avoidance is 14 hours
- 430+ hours FS-7/C-2 payload downtime avoided with the collision avoidance agreement in place since May 2021

FORMOSAT-7/COSMIC-2 and Starlink Conjunctions

COSMIC-2 Products

The COSMIC-2 team has worked to progressively release products as Cal/Val completes throughout the mission life and improve products and production through progressive updates to the payloads.

Data Releases

Neutral Atmosphere:

- 1. Provisional Products
 - Dec 2019
- 2. Operational Products
 - Mar 2020

Space Weather:

- 1. Provisional TEC, EDP, S4
 - Mar 2020
- 2. TGRS GPS Absolute TEC
 - Sep 2020
- 3. TGRS GLONASS Absolute TEC
 - Jan 2021
- 4. IVM Plasma Density
 - Mar 2021
- 5. Scint High-Rate data & Indices, IVM Comp, Temp and early Drift
 - Mar 2022

TGRS						
Atmospheric Profiles (Mar 2020)	Wet Profiles (Mar 2020)					
GPS Absolute TEC (Sep 2020)	GLONASS Abs TEC (Jan 2021)					
Electron Density Prof (Mar 2020)	Rel. GPS/GLONASS TEC (Mar 2020)					
Scint Amp Index (S4) (Mar 2022)	Scint Phase Index (σ_{φ}) (Mar 2022)					
Scint High Rate Data (Mar 2022)	Scintillation All-Clear (Sep 2022)					
Scintillation Bubble Map (TBD)	Scintillation Geolocation (TBD)					
IVM						
Plasma In-situ Density (Apr 2021)	Plasma Comp & Temp (Mar 2022)					
Plasma In-Track Drifts (TBD)	Plasma Cross-Track Drifts (TBD)					
RFB						
Relative TEC (TBD)	Scint Amplitude Index (S4) (TBD)					
Scint Phase Index (σ_{φ}) (TBD)						

All NRT and post-processed products are available from UCAR's website

NOAA National Center for Environmental Prediction (NCEP)

• Operational use of neutral atmosphere products since May 2020

NOAA Space Weather Prediction Center (SWPC)

• Began operational use of absolute TEC in Mar 2022

557th Weather Wing

- Operational use of neutral atmosphere products began July 2022
- Operational use of ionosphere products since Jan 2021

Taiwan Central Weather Bureau (CWB)

- Bending angle data assimilated in CWB Global Forecast System since Sep 2020
- Refractivity data assimilated into CWB regional model since June 2021
- Ionospheric profiles assimilated into CWB Global Ionospheric Specification and Ionospheric Space Weather Forecast System since Feb 2020

Neutral Atmosphere and Ionosphere Requirements

- The selected TGRS NA science requirements relate to RO profile counts per day after quality control (QC) and retrieved bending angle and refractivity precision
- Important TGRS ionosphere requirements are the TEC occultation and combined occultation and arc counts per day and absolute TEC uncertainty

Description	Requirement	Verification Status		
Good QC Neutral Atmosphere profiles/day	> 4,000	Met, typically > 5,000		
Daily NA profile median product latency	< 45 min (NA)	Met, typically <28 min		
Bending angle uncertainty, 30-60 km	2 mrad	Met, 1.6 mrad		
Refractivity uncertainty, 10-20 km	0.1 N units	Met, 0.076 N units		
TEC occultations per day	> 6,000	Met 33% of days JanMay 2022, and 42% days in May 2022. Average JanMay 2022 5797 and May 2022 is 5870. Waiver issu for compliance.		
Combined TEC arcs and occultations per day	> 12,000	Met 31% of days JanMay 2022, and 65% of days in May 2022. Average JanMay 2022 is 11626 and May 2022 is 11948. Waive issued for compliance.		
Absolute TEC uncertainty	3 TECU	Met, estimated 2.5 TECU for GPS and 2.6 TECU for GLONASS		
Daily TEC median product latency	< 30 min	Met, typically <28 min		
IVM in-situ plasma density accuracy	5%	Met		

Open Work – TGRS and IVM

- TGRS scintillation Cal/Val and products development
 - \circ Geolocation
 - Bubble Map
 - o All Clear

New TGRS ionosphere products specifying the presence or absence of scintillation events will provide additional important information to space weather centers.

• Flight software and ground processing updates

- Performance enhancement
- o Galileo capability (neutral atmosphere and ionosphere)
- Ground software improvement/enhancement

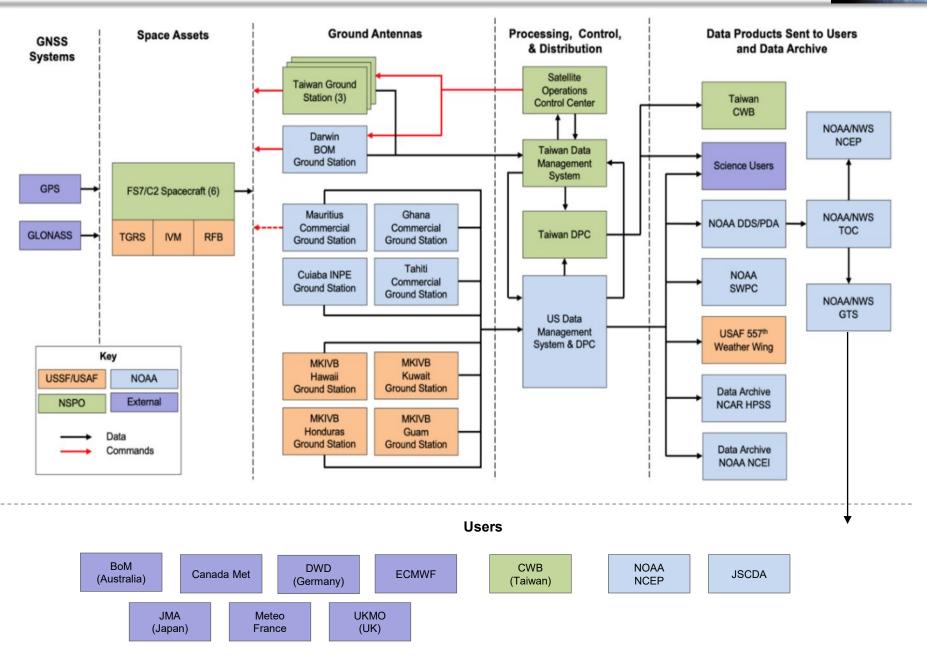
Incremental flight software and ground processing updates will further enhance the quantity and quality of both neutral atmosphere and ionosphere data products.

• IVM

- Validate FS702/FS704 early mission drifts
- Validate full mission in-track drifts
- \circ $\,$ Investigation into root cause of drift meter anomaly
- Develop improved photo-electron correction for early mission drifts

Summary

- All six spacecraft and payloads are operating nominally
- Program has reached Mission Full Operational Capability Sept 2021
- >5000 Neutral Atmosphere Profiles per day
- Approximately 12000 TEC arcs and occultations per day
- NA profile and TEC daily median latency <30 minutes
- NA data products in operational use at NCEP and USAF
- Iono. data products in operational use at SWPC and USAF
- COSMIC-2 making clearly positive impacts to operational weather and space weather specification and prediction
- COSMIC-2 contributing high quality data to science applications in the areas of weather, space weather, and climate
- New scintillation data products are under development
- Advances in RO techniques for scintillation detection are providing science and operational communities with an unprecedented ability to monitor equatorial ionospheric scintillation


Thanks to the FS-7/C-2 Program partners!

Back Up

System Element and Data Flow

Spacecraft / Instrument: Status

		9	0.41111
Tings I	11		

	COSMIC-2-1	COSMIC-2-2	COSMIC-2-3	COSMIC-2-4	COSMIC-2-5	COSMIC-2-6
Orbit Data Altitude Inclination RAAN Lowering Dates	Altitude: 550 km Inc: 24° RAAN: 245° 7/22/19- 8/16/19	Altitude: 550 km Inc: 24° RAAN: 360° 11/15/19-11/22/19 2/21/20-3/23/20	Altitude: 550 km Inc: 24° RAAN: 70° 6/8/20-7/16/20	Altitude: 550 km Inc: 24° RAAN: 307° 11/15/19-1/21/20 2/15/21-2/20/21	Altitude: 550 km Inc: 24° RAAN: 125° 9/23/20-10/19/20	Altitude: 550 km Inc: 24° RAAN: 184° 1/10/21-2/3/21
Spacecraft Status	Nominal Operation	Nominal Operation	Nominal Operation	Nominal Operation	Nominal Operation	Nominal Operation
Major Anomalies	FCV1 thermostat / Heater0 failed	PDM CAN1 node failed RW#2 Failed 3-Wheel Operation		SADEO Issue PDM CAN1 node failed RW#3 Issue TGRS RFIC failed	Sun Sensor 1 failed PDM CANO node failed Battery Internal Temp 1 failed RW#2 Failed 3-RW Operation	PDM CAN1 node Issue BCM Temperature failed RW#1 Failed 3-RW Operation
TGRS	v4.4.1 2021/12/01	v4.4.2 2022/07/07	v4.4.1 2022/02/08	v4.4.1 2022/02/23	v4.4.1 2022/02/08	v4.4.1 2022/02/15
IVM	Operating	Operating	Operating	Operating	Operating	Operating
RFB	Transmit mode enabled	Transmit mode enabled	Transmit mode enabled	Transmit mode enabled	Transmit mode enabled	Transmit mode enabled