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Two starting additive researches
in group theory

For any finite abelian group G, let D(G) be
the smallest ` ∈ N s.t., every sequence overG
of length at least ` contains a nonempty zero-
sum subsequence.

(H. Davenport, 1966)
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ftTwo starting additive researches
in group theory

Any sequence T of terms from a finite cyclic
group G of length 2|G| − 1 contains a zero-
sum subsequence of length |G|.

(Erdős, Ginzburg and Ziv, 1961)
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ftAdditive Group Theory

The arithmetic properties of sequences, sets,
or other combinatorial objects from groups
come into the domain of Additive Group The-
ory
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ftNumber of distinct semigroups
Order Groups Semigroups Commutative semigroups

2 1 4 3
3 1 18 12
4 2 126 58
5 1 1160 325
6 2 15,973 2143
7 1 836,021 17,291
8 5 1,843,120,128 221,805
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ftAdditively irreducible sequence

A sequence T on a commutative semigroup
is called additively reducible if T contains
a proper subsequence T ′ with σ(T ′) = σ(T ),
and additively irreducible if otherwise.
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Davenport constant for semi-
groups

Definition. Define the Davenport constant of
a commutative semigroup S, denoted D(S),
to be the smallest ` ∈ N ∪ {∞}, s.t., every
sequence T of length at least ` of terms from
S is reducible.

(G.Q. Wang, W.D. Gao, Semigroup Forum,
2007)
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ftSmall Davenport constant for
semigroups
Definition. For a commutative semigroup S, let d(S) denote
the smallest ` ∈ N0 ∪ {∞} with the following property:
For any m ∈ N and a1, . . . , am ∈ S there exists a subset I ⊂
[1,m] such that |I| ≤ ` and

m∑
i=1

ai =
∑
i∈I

ai.

(A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations,
2006.)
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ftProposition. Let S be a commutative semi-
group. Then D(S) is finite if and only if d(S)
is finite. Moreover, in case that D(S) is finite,
we have

D(S) = d(S) + 1.

(G.Q. Wang, Additively irreducible se-
quences in commutative semigroups,
arXiv:1504.06818.)
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On polynomial rings Fq[x]

Theorem. Let q > 2 be a prime power, and
let Fq[x] be the ring of polynomials over the
finite field Fq. Let R be a quotient ring of
Fq[x] with 0 6= R 6= Fq[x]. Then

D(SR) = D(U(SR)).

(G.Q. Wang, Journal of Number Theory,
2015)
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ft
Problem 1. Let R be a quotient ring of F2[x]
with 0 6= R 6= F2[x]. Determine D(SR) −
D(U(SR)).
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Theorem. Let F2[x] be the ring of polynomials over the finite
field F2, and let R = F2[x]

(f) be a quotient ring of F2[x] where
f ∈ F2[x] and 0 6= R 6= F2[x]. Then

D(U(SR)) ≤ D(SR) ≤ D(U(SR)) + δf ,

where

δf =

{
0 if gcd(x ∗ (x + 1F2), f ) = 1F2;
1 if gcd(x ∗ (x + 1F2), f ) ∈ {x, x + 1F2};
2 if gcd(x ∗ (x + 1F2), f ) = x ∗ (x + 1F2).

L.Z. Zhang, H.L. Wang, Y.K. Qu, A problem of Wang on Dav-
enport constant for the multiplicative semigroup of the quotient
ring of F2[x], arXiv:1507.03182.
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ftIrreducible sequences for groups

Definition. For any element g ∈ G•, let
Dg(G) be the largest length of irreducible se-
quences T with σ(T ) = g, which is called the
relative Davenport constant of G with respect
to the element g ∈ G•.

(M. Skałba, Acta Arith., 1993.)
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ftTheorem. IfG is a finite abelian group and
g ∈ G•, then

1

2
D(G) ≤ Dg(G) ≤ D(G)− 1.

(M. Skałba, Acta Arith., 1993.)
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Theorem. Let S be a commutative semigroup.
Let a be an element of S• with Ψ(a) being finite.
If |Ha| is infinite then Da(S) is infinite, and if
|Ha| is finite then Da(S) is finite and

ε D(Γ(Ha)) ≤ Da(S) ≤ Ψ(a) + D(Γ(Ha))− 1

where

ε =

{
1
2, if (a + a)H a;
1, if otherwise,

and both the lower and upper bounds are sharp.

(G.Q.Wang, Additively irreducible sequences in
commutative semigroups, arxiv, 2015)
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Theorem. Let R be a commutative unitary ring. Let a be an
element of S•R with Ψ(a) being finite. Then

Γ(Ha) ∼= U(Ra),

where Ra = R�Ann(a) be the quotient ring of R modulo the
annihilator of a. If U(Ra) is infinite then Da(SR) is infinite, and
if U(Ra) is finite then Da(SR) is finite and

ε D(U(Ra)) ≤ Da(SR) ≤ Ψ(a) + D(U(Ra))− 1.

In particular, if R is a finite commutative principal ideal unitary
ring and a /∈ U(R), then the above equality

Da(SR) = Ψ(a) + D(U(Ra))− 1

holds.
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ftTheorem. Let R = Z�n1Z ⊕ · · · ⊕ Z�nrZ. Let a =
(a1, . . . , ar) be an element of SR, where ai = ai+niZ ∈ Z�niZ
for i ∈ [1, r]. Let R′ = Z�n1

t1
Z ⊕ · · · ⊕ Z�nr

tr
Z, where

ti = gcd(ai, ni) for i ∈ [1, r]. Then

Da(SR) =

 Da(U(R)), if a ∈ U(R);
r∑
i=1

Ω(ti) + D(U(R′))− 1, if otherwise,

where Ω(ti) denotes the number of prime factors (repeat prime
factors are also calculated) of the integer ti.

(G.Q. Wang and W.D. Gao, Davenport constant for semigroups,
Semigroup Forum, 2007)
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ftTheorem. Let S be a commutative semigroup satisfying the
a.c.c. for principal ideals, and let a be an element of S•. If |Ha|
is infinite then Da(S) is infinite, and if |Ha| is finite then Da(S)
is finite and

ε D(Γ(Ha)) ≤ Da(S) ≤ Ψ(a) + D(Γ(Ha))− 1.
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ftProposition. Let S be a commutative semi-
group. Then D(S) is finite if and only if
Da(S) is bounded for all a ∈ S, i.e., there
exists a given large integer M such that
Da(S) ≤ M for all a ∈ S. In particular, if
D(S) is finite then

D(S) = max
a∈S
{Da(S)} + 1.
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ftProposition. Let S be a commutative Noethe-
rian semigroup. Then D(S) and d(S) is finite if,
and only if, |Ha| is bounded for all a ∈ S, i.e.,
there exists an integer M such that |Ha| < M
for all a ∈ S.
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ftProblem 2. From the point of view of semi-
group’s structure, does there exists a sufficient
and necessary condition to decide whether
Da(S) is finite or infinite?

Problem 3. From the point of view of semi-
group’s structure, does there exists a sufficient
and necessary condition to decide whether
D(S) is finite or infinite?
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An Erdős Problem
”Any sequence T of terms from a commuta-
tive semigroup S of length at least |S| con-
tains a nonempty subsequence of sum equal-
ing some idempotent.”

(Proposed by Erdős to Burgess)

In 1969, confirmed by D.A. Burgess for finite
commutative semigroup with only one idem-
potent.
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ftGillam-Hall-Williams Theorem
Theorem. Any sequence T = (a1, a2, . . . , at) on
a semigroup S of length t ≥ |S|−|E(S)|+1 con-
tains several terms whose product (in their natu-
ral orders) is idempotent, i.e., there exists 1 ≤
i1 < i2 < . . . < ik ≤ t with ai1 ∗ · · · ∗aik ∈ E(S).

(D.W.H. Gillam, T.E. Hall, N.H. Williams, Bull.
London Math. Soc., 1972.)
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ftTheorem A. Let S be a finite semigroup, and let T ∈ F(S) be a sequence with
length |T | = |S| − |E(S)| and

∏
(T ) ∩ E(S) = ∅. Let R = 〈supp(T )〉. Then

R is commutative with S \ R ⊆ E(S) and the universal semilattice Y (R) is a
chain such that x1 ∗ x2 = x1 for any elements x1, x2 ∈ R with x1 �NR x2.
Moreover,
(i) each archimedean component of R is, either a finite cyclic semigroup 〈x〉
with x ∈ supp(T ) and I(x) ≡ 1 (mod P(x)), or an ideal extension of a non-
trivial finite cyclic group 〈x2〉 by a nontrivial finite cyclic nilsemigroup 〈x1〉
with x1, x2 ∈ supp(T ) and the partial homomorphism ϕ

〈x1〉
〈x2〉 being trivial, i.e.,

ϕ
〈x1〉
〈x2〉(x1) = e〈x2〉 where e〈x2〉 denotes the identity element of the subgroup 〈x2〉.

(ii) vx(T ) = I(x) + P(x)− 2 for each element x ∈ supp(T ).

(G.Q.Wang, Structure of the largest idempotent-free sequences in finite semi-
groups, arXiv, 2014.)
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Erdős-Burgess constants

Define I(S), the Erdős-Burgess constant of S,
to be the least m s.t., every T ∈ F(S) of length
at least m satisfies

∏
(T ) ∩ E(S) 6= ∅.

Define SI(S), the strong Erdős-Burgess con-
stant of S, to be the least ` s.t., every T ∈ F(S)
of length at least ` contains several terms whose
product (in their natural order) is idempotent.
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ftRelation between two constants
(i). I(S) ≤ SI(S) ≤ |S| − |E(S)| + 1, and
the equality I(S) = SI(S) = |S|− |E(S)|+ 1
holds if and only if the semigroup S is given
as in Theorem A;

(ii). For any finite commutative semigroup
S, I(S) = SI(S).
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ft
Problem 4. Let S be a finite semigroup.
Does there exist a sufficient and necessary
condition to decide whether I(S) = SI(S) or
not?
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ftProblem 5. Let S be a finite semigroup. Find
the sufficient and necessary condition to de-
cide whether SI(S) = |S|−|E(S)|+1. More-
over, in case that SI(S) = |S| − |E(S)| + 1,
for any sequence T ∈ F(S) of length exactly
|S| − |E(S)| such that T contains no several
terms whose product (in their natural order in
this sequence) is idempotent, determine the
structure of the sequence T .



Home Page

Home

JJ II

J I

Page 29 of 35

Back

Full Screen

Close

QuitD
ra

ftProblem 6. Let S be a finite commutative
semigroup. Does there exist any relationship
between the Erdős-Burgess constant I(S) and
the Davenport constant D(S)?
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A connection between Davenport constant
and EGZ Theorem

For any finite abelian group G,
E(G) = D(G) + |G| − 1.

(W.D. Gao, A combinatorial problem of finite
Abelian group, J. Number Theory, 58 (1996)
100õ103.)
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ftEGZ constant for semigroups

Definition. Define E(S) of any finite commutative semigroup
S as the smallest positive integer ` such that, every sequence
A ∈ F(S) of length ` contains a subsequence B with σ(B) =
σ(A) and |A| − |B| = κ(G), where

κ(S) =

⌈
|S|

exp(S)

⌉
exp(S).
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Results on EGZ Theorm in semigroups

Conjecture A. For any finite commutative semigroup S,

E(S) ≤ D(S) + κ(S)− 1.

Conjecture B. For any finite commutative monoid S,

E(S) = D(S) + κ(S)− 1.
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ftObtained results on EGZ theorem for finite
commutative semigroups

We confirmed Conjecture A holds true for Group-free semigroups,
Subdirectly irreducible semigroups, Archimedean semigroups
with some constraint.

(Adhikari, Gao, Wang, Erdős-Ginzburg-Ziv theorem for finite commu-
tative semigroups, Semigroup Forum, 2014).
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