Additive properties of sequences on semigroups

Guoqing Wang Tianjin Polytechnic University E-mail: gqwang1979@aliyun.com

Two starting additive researches in group theory

For any finite abelian group G, let D(G) be the smallest $\ell \in \mathbb{N}$ s.t., every sequence over Gof length at least ℓ contains a nonempty zerosum subsequence.

(H. Davenport, 1966)

Two starting additive researches in group theory

Any sequence T of terms from a finite cyclic group G of length 2|G| - 1 contains a zero-sum subsequence of length |G|.

(Erdős, Ginzburg and Ziv, 1961)

Additive Group Theory

The arithmetic properties of sequences, sets, or other combinatorial objects from groups come into the domain of Additive Group Theory Home Page Home ↓ ↓ ↓ ↓ Page 4 of 35 Back Full Screen Close Quit

Number of distinct semigroups

Order	Groups	Semigroups	Commutative semigroups
2	1	4	3
3	1	18	12
4	2	126	58
5	1	1160	325
6	2	15,973	2143
7	1	836,021	17,291
8	5	1,843,120,128	221,805

Additively irreducible sequence

A sequence T on a commutative semigroup is called **additively reducible** if T contains a proper subsequence T' with $\sigma(T') = \sigma(T)$, and **additively irreducible** if otherwise.

Davenport constant for semigroups

Definition. Define the Davenport constant of a commutative semigroup S, denoted D(S), to be the smallest $\ell \in \mathbb{N} \cup \{\infty\}$, s.t., every sequence T of length at least ℓ of terms from S is reducible.

(G.Q. Wang, W.D. Gao, Semigroup Forum, 2007)

Small Davenport constant for semigroups

Definition. For a commutative semigroup S, let d(S) denote the smallest $\ell \in \mathbb{N}_0 \cup \{\infty\}$ with the following property: For any $m \in \mathbb{N}$ and $a_1, \ldots, a_m \in S$ there exists a subset $I \subset [1, m]$ such that $|I| \leq \ell$ and

$$\sum_{i=1}^{m} a_i = \sum_{i \in I} a_i.$$

(A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations, 2006.)

Proposition. Let S be a commutative semigroup. Then D(S) is finite if and only if d(S) is finite. Moreover, in case that D(S) is finite, we have

 $D(\mathcal{S}) = d(\mathcal{S}) + 1.$

(G.Q. Wang, Additively irreducible sequences in commutative semigroups, arXiv:1504.06818.) Home Page Home Home Page 9 of 35 Back Full Screen Close Quit

On polynomial rings $\mathbb{F}_q[x]$

Theorem. Let q > 2 be a prime power, and let $\mathbb{F}_q[x]$ be the ring of polynomials over the finite field \mathbb{F}_q . Let R be a quotient ring of $\mathbb{F}_q[x]$ with $0 \neq R \neq \mathbb{F}_q[x]$. Then

 $D(\mathcal{S}_R) = D(U(\mathcal{S}_R)).$

(G.Q. Wang, Journal of Number Theory, 2015)

Problem 1. Let *R* be a quotient ring of $\mathbb{F}_2[x]$ with $0 \neq R \neq \mathbb{F}_2[x]$. Determine $D(\mathcal{S}_R) - D(U(\mathcal{S}_R))$.

Theorem. Let $\mathbb{F}_2[x]$ be the ring of polynomials over the finite field \mathbb{F}_2 , and let $R = \frac{\mathbb{F}_2[x]}{(f)}$ be a quotient ring of $\mathbb{F}_2[x]$ where $f \in \mathbb{F}_2[x]$ and $0 \neq R \neq \mathbb{F}_2[x]$. Then

 $D(U(\mathcal{S}_R)) \le D(\mathcal{S}_R) \le D(U(\mathcal{S}_R)) + \delta_f,$

where

$$\delta_f = \begin{cases} 0 & \text{if } \gcd(x * (x + 1_{\mathbb{F}_2}), f) = 1_{\mathbb{F}_2}; \\ 1 & \text{if } \gcd(x * (x + 1_{\mathbb{F}_2}), f) \in \{x, x + 1_{\mathbb{F}_2}\}; \\ 2 & \text{if } \gcd(x * (x + 1_{\mathbb{F}_2}), f) = x * (x + 1_{\mathbb{F}_2}). \end{cases}$$

L.Z. Zhang, H.L. Wang, Y.K. Qu, A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of $\mathbb{F}_2[x]$, arXiv:1507.03182.

Irreducible sequences for groups

Definition. For any element $g \in G^{\bullet}$, let $D_g(G)$ be the largest length of irreducible sequences T with $\sigma(T) = g$, which is called the relative Davenport constant of G with respect to the element $g \in G^{\bullet}$.

(M. Skałba, Acta Arith., 1993.)

Theorem. If G is a finite abelian group and $g \in G^{\bullet}$, then

$$\frac{1}{2}\mathcal{D}(G) \le \mathcal{D}_g(G) \le \mathcal{D}(G) - 1.$$

(M. Skałba, Acta Arith., 1993.)

Theorem. Let S be a commutative semigroup. Let a be an element of S^{\bullet} with $\Psi(a)$ being finite. If $|H_a|$ is infinite then $D_a(S)$ is infinite, and if $|H_a|$ is finite then $D_a(S)$ is finite and

 $\epsilon \operatorname{D}(\Gamma(H_a)) \leq \operatorname{D}_a(\mathcal{S}) \leq \Psi(a) + \operatorname{D}(\Gamma(H_a)) - 1$

where

$$\epsilon = \begin{cases} \frac{1}{2}, \text{ if } (a+a) \mathcal{H} a;\\ 1, \text{ if } otherwise, \end{cases}$$

and both the lower and upper bounds are sharp.

(G.Q.Wang, Additively irreducible sequences in commutative semigroups, arxiv, 2015)

Theorem. Let R be a commutative unitary ring. Let a be an element of S_R^{\bullet} with $\Psi(a)$ being finite. Then

 $\Gamma(H_a) \cong \mathrm{U}(R_a),$

where $R_a = R \swarrow \operatorname{Ann}(a)$ be the quotient ring of R modulo the annihilator of a. If $U(R_a)$ is infinite then $D_a(\mathcal{S}_R)$ is infinite, and if $U(R_a)$ is finite then $D_a(\mathcal{S}_R)$ is finite and

 $\epsilon \operatorname{D}(\operatorname{U}(R_a)) \leq \operatorname{D}_a(\mathcal{S}_R) \leq \Psi(a) + \operatorname{D}(\operatorname{U}(R_a)) - 1.$

In particular, if R is a finite commutative principal ideal unitary ring and $a \notin U(R)$, then the above equality

 $D_a(\mathcal{S}_R) = \Psi(a) + D(U(R_a)) - 1$

holds.

Theorem. Let $R = \mathbb{Z} / n_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / n_r \mathbb{Z}$. Let $\mathbf{a} = (\overline{a_1}, \ldots, \overline{a_r})$ be an element of S_R , where $\overline{a_i} = a_i + n_i \mathbb{Z} \in \mathbb{Z} / n_i \mathbb{Z}$ for $i \in [1, r]$. Let $R' = \mathbb{Z} / \frac{n_1}{t_1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / \frac{n_r}{t_r} \mathbb{Z}$, where $t_i = \gcd(a_i, n_i)$ for $i \in [1, r]$. Then

$$D_{\mathbf{a}}(\mathcal{S}_R) = \begin{cases} D_{\mathbf{a}}(U(R)), & \text{if } a \in U(R);\\ \sum_{i=1}^r \Omega(t_i) + D(U(R')) - 1, \text{ if otherwise,} \end{cases}$$

where $\Omega(t_i)$ denotes the number of prime factors (repeat prime factors are also calculated) of the integer t_i .

(G.Q. Wang and W.D. Gao, Davenport constant for semigroups, Semigroup Forum, 2007)

Theorem. Let S be a commutative semigroup satisfying the a.c.c. for principal ideals, and let a be an element of S^{\bullet} . If $|H_a|$ is infinite then $D_a(S)$ is infinite, and if $|H_a|$ is finite then $D_a(S)$ is finite and

 $\epsilon D(\Gamma(H_a)) \le D_a(\mathcal{S}) \le \Psi(a) + D(\Gamma(H_a)) - 1.$

Home Page Home Home Page 18 of 35 Back Full Screen Close Quit **Proposition**. Let S be a commutative semigroup. Then D(S) is finite if and only if $D_a(S)$ is bounded for all $a \in S$, i.e., there exists a given large integer \mathcal{M} such that $D_a(S) \leq \mathcal{M}$ for all $a \in S$. In particular, if D(S) is finite then

$$D(\mathcal{S}) = \max_{a \in \mathcal{S}} \{D_a(\mathcal{S})\} + 1.$$

Proposition. Let S be a commutative Noetherian semigroup. Then D(S) and d(S) is finite if, and only if, $|H_a|$ is bounded for all $a \in S$, i.e., there exists an integer \mathcal{M} such that $|H_a| < \mathcal{M}$ for all $a \in S$.

Problem 2. From the point of view of semigroup's structure, does there exists a sufficient and necessary condition to decide whether $D_a(S)$ is finite or infinite?

Problem 3. From the point of view of semigroup's structure, does there exists a sufficient and necessary condition to decide whether D(S) is finite or infinite?

An Erdős Problem

"Any sequence T of terms from a commutative semigroup S of length at least |S| contains a nonempty subsequence of sum equaling some idempotent."

(Proposed by Erdős to Burgess)

In 1969, confirmed by D.A. Burgess for finite commutative semigroup with only one idempotent.

Gillam-Hall-Williams Theorem

Theorem. Any sequence $T = (a_1, a_2, \ldots, a_t)$ on a semigroup S of length $t \ge |S| - |E(S)| + 1$ contains several terms whose product (in their natural orders) is idempotent, i.e., there exists $1 \le i_1 < i_2 < \ldots < i_k \le t$ with $a_{i_1} * \cdots * a_{i_k} \in E(S)$.

(D.W.H. Gillam, T.E. Hall, N.H. Williams, Bull. London Math. Soc., 1972.)

Theorem A. Let S be a finite semigroup, and let $T \in \mathcal{F}(S)$ be a sequence with length |T| = |S| - |E(S)| and $\prod(T) \cap E(S) = \emptyset$. Let $\mathcal{R} = \langle \operatorname{supp}(T) \rangle$. Then \mathcal{R} is commutative with $S \setminus \mathcal{R} \subseteq E(S)$ and the universal semilattice $Y(\mathcal{R})$ is a chain such that $x_1 * x_2 = x_1$ for any elements $x_1, x_2 \in \mathcal{R}$ with $x_1 \not\leq_{\mathcal{N}_{\mathcal{R}}} x_2$. Moreover,

(i) each archimedean component of R is, either a finite cyclic semigroup ⟨x⟩ with x ∈ supp(T) and I(x) ≡ 1 (mod P(x)), or an ideal extension of a non-trivial finite cyclic group ⟨x₂⟩ by a nontrivial finite cyclic nilsemigroup ⟨x₁⟩ with x₁, x₂ ∈ supp(T) and the partial homomorphism φ^{⟨x₁⟩}_{⟨x₂⟩} being trivial, i.e., φ^{⟨x₁⟩}_{⟨x₂⟩}(x₁) = e_{⟨x₂⟩} where e_{⟨x₂⟩} denotes the identity element of the subgroup ⟨x₂⟩.
(ii) v_x(T) = I(x) + P(x) - 2 for each element x ∈ supp(T).

(G.Q.Wang, Structure of the largest idempotent-free sequences in finite semigroups, arXiv, 2014.)

Erdős-Burgess constants

Define I(S), the **Erdős-Burgess constant** of S, to be the least m s.t., every $T \in \mathcal{F}(S)$ of length at least m satisfies $\prod(T) \cap E(S) \neq \emptyset$.

Define SI(S), the strong Erdős-Burgess constant of S, to be the least ℓ s.t., every $T \in \mathcal{F}(S)$ of length at least ℓ contains several terms whose product (in their natural order) is idempotent. Home Page Home ↓↓ ↓ Page 25 of 35 Back Full Screen Close Quit

Relation between two constants

(i). $I(S) \leq SI(S) \leq |S| - |E(S)| + 1$, and the equality I(S) = SI(S) = |S| - |E(S)| + 1holds if and only if the semigroup S is given as in Theorem A;

(ii). For any finite commutative semigroup S, I(S) = SI(S).

Problem 4. Let S be a finite semigroup. Does there exist a sufficient and necessary condition to decide whether I(S) = SI(S) or not?

Problem 5. Let S be a finite semigroup. Find the sufficient and necessary condition to decide whether SI(S) = |S| - |E(S)| + 1. Moreover, in case that SI(S) = |S| - |E(S)| + 1, for any sequence $T \in \mathcal{F}(S)$ of length exactly |S| - |E(S)| such that T contains no several terms whose product (in their natural order in this sequence) is idempotent, determine the structure of the sequence T.

Problem 6. Let S be a finite commutative semigroup. Does there exist any relationship between the Erdős-Burgess constant I(S) and the Davenport constant D(S)?

A connection between Davenport constant and EGZ Theorem

For any finite abelian group G, E(G) = D(G) + |G| - 1.

(W.D. Gao, A combinatorial problem of finite Abelian group, J. Number Theory, 58 (1996) 100 - 103.)

EGZ constant for semigroups

Definition. Define E(S) of any finite commutative semigroup S as the smallest positive integer ℓ such that, every sequence $A \in \mathcal{F}(S)$ of length ℓ contains a subsequence B with $\sigma(B) = \sigma(A)$ and $|A| - |B| = \kappa(G)$, where

$$\kappa(\mathcal{S}) = \left\lceil \frac{|\mathcal{S}|}{\exp(\mathcal{S})} \right\rceil \exp(\mathcal{S}).$$

Results on EGZ Theorm in semigroups

Conjecture A. For any finite commutative semigroup S, $E(S) \le D(S) + \kappa(S) - 1.$

Conjecture B. For any finite commutative monoid S, $E(S) = D(S) + \kappa(S) - 1.$

Obtained results on EGZ theorem for finite commutative semigroups

We confirmed Conjecture A holds true for Group-free semigroups, Subdirectly irreducible semigroups, Archimedean semigroups with some constraint.

(Adhikari, Gao, Wang, Erdős-Ginzburg-Ziv theorem for finite commutative semigroups, Semigroup Forum, 2014).

References

[1] S.D. Adhikari, W.D. Gao and G.Q. Wang, *Erdős-Ginzburg-Ziv* theorem for finite commutative semi- groups, Semigroup Forum, 88 (2014), 555-568.

[2] G.Q. Wang, Davenport constant for semigroups II, J. Number Theory, 153 (2015), 124-134.

[3] G.Q.Wang, Structure of the largest idempotent-product free sequences in finite semigroups, arXiv:1405.6278.

[4] G.Q. Wang and W.D. Gao, *Davenport constant for semigroups*, Semigroup Forum, 76 (2008) 234-238.

[5] G.Q. Wang, Additively irreducible sequences in commutative semigroups, arXiv:1504.06818.

[6] L.Z. Zhang, H.L. Wang and Y.K. Qu, A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of $\mathbb{F}_2[x]$, arXiv:1507.03182.

Thank you!

Home Page

Home

Page 35 of 35

Back

Full Screen

Close

Quit

▲

◀