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Starting a question in Computer Sciences — Barak, Implagliazzo,
Wigderson (2004) :

Sum-product type theorems a way of creating algebraically
" pseudo-randomness” properties

Question (B-I-W) : Fix 0 < a < 1, find an explicit polynomial
f:FpxF,—=Fp A BCF,, |B| < |A| ~ p® for some 3 = () > «

(A, B) > p”.
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Starting a question in Computer Sciences — Barak, Implagliazzo,
Wigderson (2004) :

Sum-product type theorems a way of creating algebraically
" pseudo-randomness” properties

Question (B-I-W) : Fix 0 < a < 1, find an explicit polynomial
f:FpxF,—=Fp A BCF,, |B| < |A| ~ p® for some 3 = () > «

(A, B) > p”.

f = f(x,y) IS SAID TO BE expander polynomial
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Theorem (J. Bourgain (2005))

For all 0 < ae < 1, there exists a § > 0, s.t. |B| < |A| ~ p® the polynomial
f(x,y) = x> + xy is an expander, i.e.

(A, B)| > p*°.
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Theorem (J. Bourgain (2005))

For all 0 < ae < 1, there exists a § > 0, s.t. |B| < |A| ~ p® the polynomial
f(x,y) = x> + xy is an expander, i.e.

IF(A,B)| > p**°.

Remark :
1. IN HIS PROOF § IS INEXPLICIT.
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Theorem (H.-Hennecart)
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F(x,y) = f(x) + x“g(y)

is an expander, provided f(x) is affinely independent to x*.
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Questions :
1. IS THERE AN INFINITE FAMILY OF
EXPANDING MAPS OF TWO VARIABLES 7

Theorem (H.-Hennecart)
Let k> 1, f,g € Z[x]. Then
F(x,y) = f(x) +x“g(y)
is an expander, provided f(x) is affinely independent to x*.

AFFINELY INDEPENDENT :
NO (u,v) € Z? s.t. f(x) = uh(x) + v or h(x) = uf(x) + v.
IF u # 0, THEN

Fey) = (F0) + )1+ ug(y) -~
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Theorem (H.-Hennecart)

For any pair (A, B) of subsets of F, such that |A| < |B| < p%, a > 1/2

min{2a—1;2—2a}

IF(A,B)| > |A* 2
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MEASURE OF EXPANDING :

Theorem (H.-Hennecart)

For any pair (A, B) of subsets of F, such that |A| < |B| < p%, a > 1/2

min{2a— 1 2—2a}

|[F(A, B)| > A"

Theorem (I. Shkredov)

For the Bourgain function G(x,y) = x> + xy,

4Op5/2

|G(A,B)| > (p—1)— TAIB]
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Expander polynomials

Corollary

If|A||B| > p3/2*¢, ¢ > 0, then G(A, B) covers almost all F,.

It motivates the following

Definition

F(x,y) is said to be a complete expander according to « if for any positive
real numbers Ly < Ly, there exists a constant ¢ = c¢(F, Ly, Ly) such that
for any prime number p and any pair (A, B) of subsets of ¥, satisfying
Lip® < |A[,|B| < L2p?,
we have

|Fp(A, B)| > Cpmin{l;Za}'
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Theorem (H.-Hennecart)

Let f(x) and g(y) be non constant integral polynomials and

F(x,y) = f(x)(f(x) + g(y)). Then F is not a complete expander
according to o < 1/2.
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Expander polynomials

As a contrast

Theorem (H.-Hennecart)

Let f(x) and g(y) be non constant integral polynomials and
F(x,y) = f(x)(f(x) + g(y)). Then F is not a complete expander
according to o < 1/2.

For the proof we need the following :

Lemma

Let u € Fp,, L be a positive integer less than p/2 and f(x) be any integral
polynomial of degree k > 1 (as element of F,[x]). Then the number N(I)
of residues x € F, such that f(x) lies in the interval | = (u— L,u+ L) of
F, is at least L — (k —1),/p.
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Proof

Let J be the indicator function of the interval [0, L) of F, and let

T:= 3" T«J(r)Se(—r. p)ey(ru),

refF,
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Let J be the indicator function of the interval [0, L) of F, and let

T:= 3" T«J(r)Se(—r. p)ey(ru),

refF,

where 5¢(r, p) := > icr, ep(rf(x))

It is known |S¢(r,p)| < (k —1)/p for r # 0 (p is an odd prime)
Thus

T=pd*J0)+ Y T+ I(r)S(—r, pep(ru) >

refy

> pl2—kyp Y [T+ J(r)| > pL? — kLp*/2.

refy
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Proof of the Lemma

Hence

T > pL(L — k\/p).
On the other direction

T=3 3" > J2y+2)ep(rly +u) D ep(—rf(x)) =

reF, yelFp z€F, x€F,
=Y Y D H@Iy+2) D ep(rly +u—f(x) =
x€F, yelF, z€F, ref,
p Y di(f(x)—
x€Fp

where d;(z) denotes the number of representations in F,, of z under the
formj—j,0<,,// <L
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Proof of the Lemma

Using
di(z) < L for each z € F)p, we get

T < pLN(/).

Combining the two bounds one can obtain the statement.

Furthermore we need a result of Erdés :

There exists a positive real number § such that the number of different
integers ab where 1 < a, b < n is O(n?/(In n)°).

(the best known ¢ is due to G. Tenenbaum)
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By the first lemma, one has |A|,|B| > /p.
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Proof of the Theorem

(Let p be large enough f(x) and g(y) are not constant polynomials
modulo p.)

Let L = k\/p

Let A (resp. B) be the set of the residue classes x (resp. y) such that f(x)
(resp. g(y)) lies in the interval (0,2L).

By the first lemma, one has |A|,|B| > /p.

Moreover for any (x,y) € A x B, we have f(x) and f(x) 4+ g(y) in the
interval (0,4L).

By Erdés Lemma, the number of residues modulo p which can be written
as F(x,y) with (x,y) € A x B, is at most

O(L2/(In L)") = ofp),

(as p tends to infinity).
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Remark
1. Our result (F(x,y) = f(x) + x¥g(y)) covers many special cases
bound on |[A(A+1)], f(x) =xX k=1,g(y) =y,
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Remarks

Remark

1. Our result (F(x,y) = f(x) + x¥g(y)) covers many special cases
bound on |[A(A+1)], f(x) =xX k=1,g(y) =y,

or x(x +y) (Bourgain's polynomial) e.t.c.

2. T. Tao obtained a very deep result on expander polynomials
("expalining” the reason that a function F(x,y) is not an expander, and
giving bounds for the measure of expanding on certain range)

Norbert Hegyvari (Budapest, E6tvés Universi 13 / 25



Covering polynomials

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

f(AL, As, ..., A) =T,

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

F(AL, A, ..., A) =T,
provided [; |Ai| > p”.

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

f(A1,As, ..., Ax) =TFp
provided [; |Ai| > p”.

Many other problems can be performed as a covering question :

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

f(A1,As, ..., Ax) =TFp
provided [; |Ai| > p”.

Many other problems can be performed as a covering question :
If H<T}, [H| > \/p, then what is the min{k : kH = F}?

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

Definition

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

f(A1,As, ..., Ax) =TFp
provided [; |Ai| > p”.

Many other problems can be performed as a covering question :
If H<T}, [H| > \/p, then what is the min{k : kH = F}?
For k < 8 by Glibichuk Konyagin :

Norbert Hegyvari (Budapest, E6tvés Universi 14 / 25



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if
f(A1,As, ..., Ax) =TFp

provided [; |Ai| > p”.

Many other problems can be performed as a covering question :
If H<T}, [H| > \/p, then what is the min{k : kH = F}?
For k < 8 by Glibichuk Konyagin : For f(xi,...,x16) := Z?:l XiXit1,

f(A,B,...,A B)=TF,,

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if
f(A1,As, ..., Ax) =TFp

provided [; |Ai| > p”.

Many other problems can be performed as a covering question :
If H<T}, [H| > \/p, then what is the min{k : kH = F}?
For k < 8 by Glibichuk Konyagin : For f(xi,...,x16) := Z?:l XiXit1,

f(A,B,...,A B)=TF,,

provided |A||B| > p.

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if

f(A1,As, ..., Ax) =TFp
provided [; |Ai| > p”.

Many other problems can be performed as a covering question :
If H<T}, [H| > \/p, then what is the min{k : kH = F}?
For k < 8 by Glibichuk Konyagin : For f(xi,...,x16) := Z?:l XiXit1,

f(A,B,...,A B)=TF,,

provided |A||B| > p. (reduced to k < 6, by Shkredov)

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if
f(A1,As, ..., Ax) =TFp

provided [; |Ai| > p”.

Many other problems can be performed as a covering question :

If H<T}, [H| > \/p, then what is the min{k : kH = F}?

For k < 8 by Glibichuk Konyagin : For f(xi,...,x16) := Z?:l XiXit1,
f(AB,...,A,B)=TF,,

provided |A||B| > p. (reduced to k < 6, by Shkredov)
Further central notion at Heisenberg groups (see later)

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials

A map F : Fpk — I, is said to be covering polynomial respect to (3 if
f(A1,As, ..., Ax) =TFp

provided [; |Ai| > p”.

Many other problems can be performed as a covering question :

If H<T}, [H| > \/p, then what is the min{k : kH = F}?

For k < 8 by Glibichuk Konyagin : For f(xi,...,x16) := Z?:l XiXit1,
f(AB,...,A,B)=TF,,

provided |A||B| > p. (reduced to k < 6, by Shkredov)
Further central notion at Heisenberg groups (see later)

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials ; two examples

Norbert Hegyvari (Budapest, E6tvés Universi



Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
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Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write Hp, (x,y,z,w) == Fpu(x,y) + p(z) + t(w)
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gu(x,y) +s(z) + r(w) (p,s, r, t are non-constant
polynomials).
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Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).
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Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < §,0" < 1 s.t.
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < 6,0’ < 1 s.t. for any p
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < 6,0’ < 1 s.t. for any p and for any sets
AB,C,DCT,
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < 6,0’ < 1 s.t. for any p and for any sets
A,B,C,D CF, with |C| > p'/>=%, |D| > p*/?>=% |A||B| > p>¥,
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < 6,0’ < 1 s.t. for any p and for any sets
A,B,C,D CF, with |C| > p'/>=%, |D| > p*/?>=% |A||B| > p>~%, then

Ho(C,D,A,B) =F,
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Covering polynomials ; two examples

Let Fpu(x,y) = x'Tty + x*7tg} for any p where g, generates F and
v € {0,1} is fixed,

Gu(x,y) = x' T4y 4+ x>~ h(y) where u € {0,1}, h(y) € Z[y] is a non
constant polynomial.

Write H,, (x,y,z,w) == Fp(x,y) + p(z) + t(w) and

Ku(x,y,z,w) := Gy(x,y) + s(z) + r(w) (p,s, r,t are non-constant
polynomials).

Theorem (H.-Hennecart)

There exist real numbers 0 < 6,0’ < 1 s.t. for any p and for any sets
A,B,C,D CF, with |C| > p'/>=%, |D| > p*/?>=% |A||B| > p>~%, then

Ho(C,D,A,B) =F,

K,(C,D,A B) =TF,.
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Covering polynomials ; two examples

Note that for S(x,y,z,w) := x +y + zw,
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Covering polynomials ; two examples

Note that for S(x,y,z,w) := x+y + zw, S(A, B, C, D) =, provided
|A||B||C||D| > p* and this bound is sharp.
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Covering polynomials ; two examples

Remark

Note that for S(x,y,z,w) := x+y + zw, S(A, B, C, D) =, provided
|A||B||C||D| > p* and this bound is sharp.

In our functions H and K we can achieve |A||B||C||D| > p3~2.
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Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called
Heisenberg group
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Related to Freiman model in non-abelian groups pops up so called
Heisenberg group

1 x =z
x.y,z] = (0 I, 'y|[,
0 0 1
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Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called
Heisenberg group

1 x =z
x.y,z] = (0 I, 'y|[,
0 0 1

where X = (X15X2a"' ,Xn), X — (.ylay2a"' a)/n), XiyYi,Z S ]F,
i=1,2,...,n,and [, is the n X n identity matrix.
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Related to Freiman model in non-abelian groups pops up so called
Heisenberg group

1 x =z
x.y,z] = (0 I, 'y|[,
0 0 1

where X = (X15X2a cee ,Xn), X — (ylay2a cee a)/n), XiyYi,Z S ]F,
i=1,2,...,n,and [, is the n X n identity matrix.
and operations

Xy, Z)[X.y 2] =[x+ x,y + ¥, (x,y) + z+ 2],
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Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called
Heisenberg group

1 x =z
x.y,z] = (0 I, 'y|[,
0 0 1

where X = (X15X2a cee ,Xn), X — (ylay2a cee a)/n), XiyYi,Z S ]F,
i=1,2,...,n,and [, is the n X n identity matrix.
and operations

Xy, Z)[X.y 2] =[x+ x,y + ¥, (x,y) + z+ 2],

where (-, -) is the inner product
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Product sets in Heisenberg groups

The third coordinate
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is a kind of "sum-product function”

Norbert Hegyvari (Budapest, E6tvés Universi



Product sets in Heisenberg groups

The third coordinate
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is a kind of "sum-product function”
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Product sets in Heisenberg groups

The third coordinate

xy)+z+2
is a kind of "sum-product function”
Definition

A subset B of H,, is said to be a cube if
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Product sets in Heisenberg groups

The third coordinate
xy)+z+2
is a kind of "sum-product function”

A subset B of H,, is said to be a cube if

B=[X,Y,Z] :={[x,y,z] such thatx€ X, y€ Y, z€ Z}
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Product sets in Heisenberg groups

The third coordinate
xy)+z+2

is a kind of "sum-product function”

A subset B of H,, is said to be a cube if
B=[X,Y,Z] :={[x,y,z] such thatx€ X, y€ Y, z€ Z}

where X = X1 X «-+ X X,
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Product sets in Heisenberg groups

The third coordinate
xy)+z+2

is a kind of "sum-product function”

A subset B of H,, is said to be a cube if
B=[X,Y,Z] :={[x,y,z] such thatx€ X, y€ Y, z€ Z}

where X = Xy X --- x X, and Y = Y1 X --- X Y, with non empty-subsets
X, Y; C F*.
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)
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Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng
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For every € > 0, there exists a positive integer ny such that if n > ng,
B C H, is a cube and
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Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ny such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ny such that if n > ng,

B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,,
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For every € > 0, there exists a positive integer ny such that if n > ng,

B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,,
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ny such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial

subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition

Let n,m e N,
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition

Let n,m € N, X1,X2,...,X,,,Y1,Y2,...YnQF*:F\{O}, Z CF.
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition

Let n,m € N, X1,X2,...,X,,,Y1,Y2,...YnQF*:F\{O}, Z CF. We
have
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition

Let n,m € N, X1,X2,...,X,,,Y1,Y2,...YnQF*:F\{O}, Z CF. We
have

n n
mZ+Z)<JYJ = {Zl+'”+zm+zxjyj7 ziel, Xj € )<j7 Yj € YJ} =F,
j=1 j=1
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every € > 0, there exists a positive integer ng such that if n > ng,
B C H, is a cube and |B| > |H,|3/**¢ then there exists a non trivial
subgroup G of H,, such that B - B contains a union of at least |B|/p
many cosets of G.

Proposition

Let n,m € N, X1,X2,...,X,,,Y1,Y2,...YnQF*:F\{O}, Z CF. We
have

n
mZ+Z)<JYJ = {Zl+'”+zm+zxjyj7 ziel, Xj € )<j7 Yj € YJ} =F,
j=1 j=1

provided |Z|2 TTy |Xi|" TTr, | Yi]" > p(rtD+2,
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Two other results

A set A is said to be semi-cube of H if

A = {[x,y, z] such that (x,y) € U, z € Z}.
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Two other results

A set A is said to be semi-cube of H if

A = {[x,y, z] such that (x,y) € U, z € Z}.

Theorem (H.-Hennecart)

Let A= U x Z be a semi-cube in H. If |A| > 2=1/3p8/3 then the four-fold
product set A- A- A - A contains at least |U| (1 - ﬁk/z) cosets of the
type [x, y, F].
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Two other results

A set A is said to be semi-cube of H if

A = {[x,y, z] such that (x,y) € U, z € Z}.

Theorem (H.-Hennecart)

Let A= U x Z be a semi-cube in H. If |A| > 2=1/3p8/3 then the four-fold
product set A- A- A - A contains at least |U| (1 - ﬁk/z) cosets of the
type [x, y, F].

We considered the question of counting the subsets X of H such that
X = [A, B, C]? is a square of a 3-cubes.

Norbert Hegyvari (Budapest, E6tvés Universi



Two other results

A set A is said to be semi-cube of H if

A = {[x,y, z] such that (x,y) € U, z € Z}.

Theorem (H.-Hennecart)

Let A= U x Z be a semi-cube in H. If |A| > 2=1/3p8/3 then the four-fold
product set A- A- A - A contains at least |U| (1 - ﬁk/z) cosets of the
type [x, y, F].

We considered the question of counting the subsets X of H such that
X = [A, B, C]? is a square of a 3-cubes.
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Two other results

Theorem (H.-Hennecart)

The number of subsets X C H satisfying X = [A, B, C]* with
A B,CCF,
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Two other results

Theorem (H.-Hennecart)

The number of subsets X C H satisfying X = [A, B, C]* with
A,B,C C F, is a 0(22pP"*),
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Two other results

Theorem (H.-Hennecart)

The number of subsets X C H satisfying X = [A, B, C]* with
A,B,C C F, is a 0(22pP"*),

Since the total number of arbitrary 3-cubes is K := 23P, the above upper
bound is a O(K?/3+°(1)).
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Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
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Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
H(Xo, a1,az, ..., ad) = {XO + Zlgigd 6,‘3,‘} Ej € {0, 1}.
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Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
H(Xo, a1,az, ..., ad) = {XO + Zlgigd 6,‘3,‘} Ej € {0, 1}.

or d-dimensional cube of order r >1
Hr(Xo, ai,az,..., ad) = {XO + Zlgigd 6,‘3,‘} g € {0, ..., r}.
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Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
H(Xo, a1,az, ..., ad) = {XO + Zlgigd 6,‘3,‘} gi € {0, 1}.
or d-dimensional cube of order r >1

H,(xo,al,ag,. . .,ad) = {XO + Zlgigd 6,‘3,‘} g € {0,1, .. .,r}.

Hilbert cubes play an important role in the proof of Szemerédi's celebrated
theorem, and many authors investigated in different context
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Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
H(Xo, a1,az, ..., ad) = {XO + Zlgigd 6,‘3,‘} Ej € {0, 1}.

or d-dimensional cube of order r >1
Hr(Xo, ai,az,..., ad) = {XO + Zlgigd 6,‘3,‘} g € {0, ..., r}.

Hilbert cubes play an important role in the proof of Szemerédi's celebrated
theorem, and many authors investigated in different context (Elsholtz,
Dietmann and C. Elsholtz, Conlon-Fox-Sudakov e.t.c.)
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An observation of Montgomery :

Norbert Hegyvari (Budapest, E6tvés Universi



Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C I,
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0.
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = ¢(B), max,o |A(r)| > c|Al.

Norbert Hegyvari (Budapest, E6tvés Universi




Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = c(B), max,«g |A(r)| > c|A|. As a contrast

Norbert Hegyvari (Budapest, E6tvés Universi




Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = c(B), max,«g JA(r)| = c|A|. As a contrast Ajtai,
Iwaniec, Komlés, Pintz, and E. Szemerédi construct aset T C Z,,
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = c(B), max,«g JA(r)| = c|A|. As a contrast Ajtai,
Iwaniec, Komlés, Pintz, and E. Szemerédi construct a set T C Z,, for
which

|T| = O(log m(log* m)<''¢" ™) ¢’ > 0,
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = c(B), max,«g JA(r)| = c|A|. As a contrast Ajtai,
Iwaniec, Komlés, Pintz, and E. Szemerédi construct a set T C Z,, for
which

|T| = O(log m(log* m)<''¢" ™) ¢’ > 0,

and max, | T(r)| < O(|T|/ log* m)
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U C F, A C U for which
|A| < Blogp, B > 0. Let A(x) be its characteristic function,

o=fg ia

then for some ¢ = c(B), max,«g JA(r)| = c|A|. As a contrast Ajtai,
Iwaniec, Komlés, Pintz, and E. Szemerédi construct a set T C Z,, for
which

|T| = O(log m(log* m)<''¢" ™) ¢’ > 0,

and max, | T(r)| < O(|T|/ log* m)
(where log™ m is the multi-iterated logarithm) hold.
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Character Sums on Hilbert Cubes

A related result on Hilbert cubes :
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Character Sums on Hilbert Cubes

A related result on Hilbert cubes :
Theorem (H.)

Let H(xp,a1 < ap < --- < aq) be an arbitrary non-degenerate Hilbert

cube. For every € Iy, there is a subset H' C H with |H'| > eV log|H]
such that

|H (&) > |H|.

(H is non-degenerate, if |H(xp, a1 < ap < --- < ag)| = 29)
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Character Sums on Hilbert Cubes

A related result on Hilbert cubes :
Theorem (H.)

Let H(xp,a1 < ap < --- < aq) be an arbitrary non-degenerate Hilbert

cube. For every £ € IF}, there is a subset H'" C H with |H'| > eV log |H|
such that

|H (&) > |H|.

(H is non-degenerate, if |H(xp, a1 < ap < --- < ag)| = 29)
For the proofs we need some bound on energy of H;
Let A C F,. Its additive energy is defined by

E+(A) = {(31, a, 33,84) S A% ay +a»=a3z+ 34}
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Character Sums on Hilbert Cubes

A related result on Hilbert cubes :
Theorem (H.)

Let H(xp,a1 < ap < --- < aq) be an arbitrary non-degenerate Hilbert

cube. For every £ € IF}, there is a subset H'" C H with |H'| > eV log |H|
such that

|H (&) > |H|.

(H is non-degenerate, if |H(xp, a1 < ap < --- < ag)| = 29)
For the proofs we need some bound on energy of H;
Let A C F,. Its additive energy is defined by

E+(A) = {(31, a, 33,84) S A% ay +a»=a3z+ 34}
and its multiplicative energy is defined by
E (A) = {(81,82,83, 34) € A4 a1 -a) = as- 34}.

Norbert Hegyvari (Budapest, E6tvés Universi 24 / 25



Character Sums on Hilbert Cubes

A related result on Hilbert cubes :
Theorem (H.)

Let H(xp,a1 < ap < --- < aq) be an arbitrary non-degenerate Hilbert

cube. For every £ € IF}, there is a subset H'" C H with |H'| > eV log |H|
such that

|H (&) > |H|.

(H is non-degenerate, if |H(xp, a1 < ap < --- < ag)| = 29)
For the proofs we need some bound on energy of H;
Let A C F,. Its additive energy is defined by

E+(A) = {(31, a, 33,84) S A% ay +a»=a3z+ 34}
and its multiplicative energy is defined by
E (A) = {(81,82,83, 34) € A4 a1 -a) = as- 34}.

Norbert Hegyvari (Budapest, E6tvés Universi 24 / 25



Character Sums on Hilbert Cubes

Norbert Hegyvari (Budapest, E6tvés Universi



Character Sums on Hilbert Cubes

Theorem
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non-degenerate Hilbert cube.

Norbert Hegyvari (Budapest, E6tvés Universi



Character Sums on Hilbert Cubes

Theorem

Let r >1, re Nand let H= H,(xp,a1 < ap < -+ < aq) be an arbitrary
non-degenerate Hilbert cube. We have

Hprp |H| < p?/3

EX(H) << {|H|3+7’ 2/3
W H| > p

Norbert Hegyvari (Budapest, E6tvés Universi



Character Sums on Hilbert Cubes

Let r >1, re Nand let H= H,(xp,a1 < ap < -+ < aq) be an arbitrary
non-degenerate Hilbert cube. We have

Hprp |H| < p?/3
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where v, = log, 1 (2r + 1).

Remark

Note that the estimations above are nontrivial ; for example let |H| < p*/3
r is "big” then |H|7 p is close to |H|*/2, which is better than the trivial
bound |H3.
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Theorem

Let r >1, re Nand let H= H,(xp,a1 < ap < -+ < aq) be an arbitrary
non-degenerate Hilbert cube. We have

Hprp |H| < p?/3

EX(H) < {|H|3+'yr 2/3
W H| > p

where v, = log, 1 (2r + 1).

Remark
Note that the estimations above are nontrivial ; for example let |H| < p*/3
r is "big” then |H|7 p is close to |H|*/2, which is better than the trivial

bound |H3.

The proof based on a Gowers version of Balog-Szemerédi theorem
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