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Question (B-I-W) : Fix 0 < α < 1, find an explicit polynomial
f : Fp × Fp → Fp, A,B ⊆ Fp, |B | ≍ |A| ∼ pα for some β = β(α) > α

|f (A,B)| > pβ.

f = f (x , y) is said to be expander polynomial
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Theorem (J. Bourgain (2005))

For all 0 < α < 1, there exists a δ > 0, s.t. |B | ≍ |A| ∼ pα the polynomial
f (x , y) = x2 + xy is an expander, i.e.

|f (A,B)| > pα+δ.
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Theorem (J. Bourgain (2005))

For all 0 < α < 1, there exists a δ > 0, s.t. |B | ≍ |A| ∼ pα the polynomial
f (x , y) = x2 + xy is an expander, i.e.

|f (A,B)| > pα+δ.

Remark :
1. In his proof δ is inexplicit.
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1. Is there an infinite family of

expanding maps of two variables ?

Theorem (H.-Hennecart)

Let k ≥ 1, f , g ∈ Z[x ]. Then

F (x , y) = f (x) + xkg(y)

is an expander, provided f (x) is affinely independent to xk .

Affinely independent :
no (u, v) ∈ Z2 s.t. f (x) = uh(x) + v or h(x) = uf (x) + v .
If u 6= 0, then

F (x , y) = (f (x) +
v

u
)(1 + ug(y)) − v

u
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For any pair (A,B) of subsets of Fp such that |A| ≍ |B | ≍ pα, α > 1/2

|F (A,B)| ≫ |A|1+
min{2α−1;2−2α}
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Theorem (H.-Hennecart)

For any pair (A,B) of subsets of Fp such that |A| ≍ |B | ≍ pα, α > 1/2

|F (A,B)| ≫ |A|1+
min{2α−1;2−2α}

2 .

Theorem (I. Shkredov)

For the Bourgain function G (x , y) = x2 + xy ,

|G (A,B)| ≥ (p − 1)− 40p5/2

|A||B |
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Corollary

If |A||B | > p3/2+ε, ε > 0, then G (A,B) covers almost all Fp.

It motivates the following

Definition

F (x , y) is said to be a complete expander according to α if for any positive
real numbers L1 ≤ L2, there exists a constant c = c(F , L1, L2) such that
for any prime number p and any pair (A,B) of subsets of Fp satisfying
L1p

α ≤ |A|, |B | ≤ L2p
α,

we have
|Fp(A,B)| ≥ cpmin{1;2α}.
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As a contrast

Theorem (H.-Hennecart)

Let f (x) and g(y) be non constant integral polynomials and
F (x , y) = f (x)(f (x) + g(y)). Then F is not a complete expander
according to α ≤ 1/2.

For the proof we need the following :

Lemma

Let u ∈ Fp, L be a positive integer less than p/2 and f (x) be any integral
polynomial of degree k ≥ 1 (as element of Fp[x ]). Then the number N(I )
of residues x ∈ Fp such that f (x) lies in the interval I = (u − L, u + L) of
Fp is at least L− (k − 1)

√
p.
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Proof

Let J be the indicator function of the interval [0, L) of Fp and let

T :=
∑

r∈Fp

Ĵ ∗ J(r)Sf (−r , p)ep(ru),
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where Sf (r , p) :=
∑

x∈Fp
ep(rf (x))

It is known |Sf (r , p)| ≤ (k − 1)
√
p for r 6= 0 (p is an odd prime)

Thus

T = pĴ ∗ J(0) +
∑

r∈F∗
p

Ĵ ∗ J(r)Sf (−r , p)ep(ru) ≥

≥ pL2 − k
√
p
∑

r∈F∗
p

|Ĵ ∗ J(r)| ≥ pL2 − kLp3/2.
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√
p).

On the other direction

T =
∑

r∈Fp

∑

y∈Fp

∑

z∈Fp

J(z)J(y + z)ep(r(y + u))
∑

x∈Fp

ep(−rf (x)) =

=
∑

x∈Fp

∑

y∈Fp

∑

z∈Fp

J(z)J(y + z)
∑

r∈Fp

ep(r(y + u − f (x))) =

p
∑

x∈Fp

dL(f (x)− u),

where dL(z) denotes the number of representations in Fp of z under the
form j − j ′, 0 ≤ j , j ′ < L.
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Proof of the Lemma

Using
dL(z) ≤ L for each z ∈ Fp, we get

T ≤ pLN(I ).

Combining the two bounds one can obtain the statement.

Furthermore we need a result of Erdős :

Lemma

There exists a positive real number δ such that the number of different
integers ab where 1 ≤ a, b ≤ n is O(n2/(ln n)δ).

(the best known δ is due to G. Tenenbaum)
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(Let p be large enough f (x) and g(y) are not constant polynomials
modulo p.)
Let L = k

√
p

Let A (resp. B) be the set of the residue classes x (resp. y) such that f (x)
(resp. g(y)) lies in the interval (0, 2L).
By the first lemma, one has |A|, |B | ≥ √

p.
Moreover for any (x , y) ∈ A× B , we have f (x) and f (x) + g(y) in the
interval (0, 4L).
By Erdős Lemma, the number of residues modulo p which can be written
as F (x , y) with (x , y) ∈ A× B , is at most

O(L2/(ln L)δ) = o(p),

(as p tends to infinity).
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Remark

1. Our result (F (x , y) = f (x) + xkg(y)) covers many special cases ;

bound on |A(A+ 1)|, f (x) = xk , k = 1, g(y) = y ,

or x(x + y) (Bourgain’s polynomial) e.t.c.

2. T. Tao obtained a very deep result on expander polynomials
(”expalining” the reason that a function F (x , y) is not an expander, and
giving bounds for the measure of expanding on certain range)
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Covering polynomials

Definition

A map F : Fp
k 7→ Fp is said to be covering polynomial respect to β if

f (A1,A2, . . . ,Ak) = Fp

provided
∏

i |Ai | > pβ.

Many other problems can be performed as a covering question :

If H < F∗
p, |H| > √

p, then what is the min{k : kH = Fp}?
For k ≤ 8 by Glibichuk Konyagin : For f (x1, . . . , x16) :=

∑8
i=1 xixi+1,

f (A,B , . . . ,A,B) = Fp,
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Covering polynomials

Definition

A map F : Fp
k 7→ Fp is said to be covering polynomial respect to β if

f (A1,A2, . . . ,Ak) = Fp

provided
∏

i |Ai | > pβ.

Many other problems can be performed as a covering question :

If H < F∗
p, |H| > √

p, then what is the min{k : kH = Fp}?
For k ≤ 8 by Glibichuk Konyagin : For f (x1, . . . , x16) :=

∑8
i=1 xixi+1,

f (A,B , . . . ,A,B) = Fp,

provided |A||B | > p. (reduced to k ≤ 6, by Shkredov)
Further central notion at Heisenberg groups (see later)
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Covering polynomials ; two examples

Remark

Note that for S(x , y , z ,w) := x + y + zw , S(A,B ,C ,D) = Fp provided
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Covering polynomials ; two examples

Remark

Note that for S(x , y , z ,w) := x + y + zw , S(A,B ,C ,D) = Fp provided
|A||B ||C ||D| > p3 and this bound is sharp.
In our functions H and K we can achieve |A||B ||C ||D| > p3−∆.
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Product sets in Heisenberg groups
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is a kind of ”sum-product function”

Definition

A subset B of Hn is said to be a cube if

B = [X ,Y ,Z ] := {[x , y , z ] such that x ∈ X , y ∈ Y , z ∈ Z}

where X = X1 × · · · × Xn and Y = Y1 × · · · × Yn with non empty-subsets
Xi ,Yi ⊂ F∗.
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every ε > 0, there exists a positive integer n0 such that if n ≥ n0,
B ⊆ Hn is a cube and |B | > |Hn|3/4+ε then there exists a non trivial
subgroup G of Hn, such that B · B contains a union of at least |B |/p
many cosets of G .

Proposition

Let n,m ∈ N,
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Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every ε > 0, there exists a positive integer n0 such that if n ≥ n0,
B ⊆ Hn is a cube and |B | > |Hn|3/4+ε then there exists a non trivial
subgroup G of Hn, such that B · B contains a union of at least |B |/p
many cosets of G .

Proposition

Let n,m ∈ N, X1,X2, . . . ,Xn,Y1,Y2, . . .Yn ⊆ F∗ = F \ {0}, Z ⊆ F. We
have

mZ+

n∑

j=1

Xj ·Yj :=
{
z1+· · ·+zm+

n∑

j=1

xjyj , zi ∈ Z , xj ∈ Xj , yj ∈ Yj

}
= F,

provided |Z |2 ∏n
i=1 |Xi |n

∏n
i=1 |Yi |n > pn(n+1)+2.
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A = {[x , y , z ] such that (x , y) ∈ U, z ∈ Z}.

Theorem (H.-Hennecart)

Let A = U ⋊ Z be a semi-cube in H. If |A| ≥ 2−1/3p8/3 then the four-fold
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Two other results

Theorem (H.-Hennecart)

The number of subsets X ⊂ H satisfying X = [A,B ,C ]2 with

A,B ,C ⊂ Fp
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Theorem (H.-Hennecart)

The number of subsets X ⊂ H satisfying X = [A,B ,C ]2 with

A,B ,C ⊂ Fp is a O(22p+p3/4).
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Two other results

Theorem (H.-Hennecart)

The number of subsets X ⊂ H satisfying X = [A,B ,C ]2 with

A,B ,C ⊂ Fp is a O(22p+p3/4).

Since the total number of arbitrary 3-cubes is K := 23p , the above upper
bound is a O

(
K2/3+o(1)

)
.
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{
x0 +

∑
1≤i≤d εiai

}
εi ∈ {0, 1, . . . , r}.

Hilbert cubes play an important role in the proof of Szemerédi’s celebrated
theorem, and many authors investigated in different context (Elsholtz,
Dietmann and C. Elsholtz, Conlon-Fox-Sudakov e.t.c.)
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Character Sums on Hilbert Cubes

An observation of Montgomery : Let U ⊆ Fp A ⊆ U for which
|A| < B log p, B > 0. Let A(x) be its characteristic function,

A(x) =

{
1 x ∈ A

0 x /∈ A
,

then for some c = c(B), maxr 6=0 |Â(r)| ≥ c |A|. As a contrast
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|A| < B log p, B > 0. Let A(x) be its characteristic function,

A(x) =
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1 x ∈ A

0 x /∈ A
,

then for some c = c(B), maxr 6=0 |Â(r)| ≥ c |A|. As a contrast Ajtai,
Iwaniec, Komlós, Pintz, and E. Szemerédi construct a set T ⊆ Zm for
which

|T | = O(logm(log∗m)c
′ log∗ m) c ′ > 0,

and maxr 6=0 |T̃ (r)| ≤ O(|T |/ log∗ m)
(where log∗ m is the multi-iterated logarithm) hold.
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Theorem (H.)

Let H(x0, a1 < a2 < · · · < ad ) be an arbitrary non-degenerate Hilbert

cube. For every ξ ∈ F∗
p there is a subset H ′ ⊆ H with |H ′| ≫ ec

√
log |H|,

such that
|Ĥ ′(ξ)| ≫ |H ′|.
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|Ĥ ′(ξ)| ≫ |H ′|.

(H is non-degenerate, if |H(x0, a1 < a2 < · · · < ad)| = 2d )

For the proofs we need some bound on energy of H ;
Let A ⊆ Fp. Its additive energy is defined by

E+(A) := {(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}
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|Ĥ ′(ξ)| ≫ |H ′|.

(H is non-degenerate, if |H(x0, a1 < a2 < · · · < ad)| = 2d )

For the proofs we need some bound on energy of H ;
Let A ⊆ Fp. Its additive energy is defined by

E+(A) := {(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4}
and its multiplicative energy is defined by

E×(A) := {(a1, a2, a3, a4) ∈ A4 : a1 · a2 = a3 · a4}.
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Note that the estimations above are nontrivial ; for example let |H| ≍ p2/3
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Let r > 1, r ∈ N and let H = Hr (x0, a1 < a2 < · · · < ad ) be an arbitrary
non-degenerate Hilbert cube. We have

E×(H) ≪
{
|H|γr p |H| < p2/3

|H|3+γr

p
|H| ≥ p2/3

where γr = logr+1(2r + 1).

Remark

Note that the estimations above are nontrivial ; for example let |H| ≍ p2/3

r is ”big”,then |H|γr p is close to |H|5/2, which is better than the trivial
bound |H|3.

The proof based on a Gowers version of Balog-Szemerédi theorem
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