Character sum estimations for various problems in combinatorial number theory

Norbert Hegyvári

Budapest, Eötvös University

2016 January, 8
• Expander polynomials
Content

- Expander polynomials
- Covering polynomials,
• Expander polynomials
• Covering polynomials,
• Product sets in Heisenberg groups
• Expander polynomials
• Covering polynomials,
• Product sets in Heisenberg groups
• Character sums on Hilbert cubes
Expander polynomials
Expander polynomials

Starting a question in Computer Sciences – Barak, Impagliazzo, Wigderson (2004):
Expander polynomials

Starting a question in Computer Sciences – Barak, Impagliazzo, Wigderson (2004):

Sum-product type theorems a way of creating algebraically "pseudo-randomness" properties
Expander polynomials

Starting a question in Computer Sciences – Barak, Impagliazzo, Wigderson (2004):

Sum-product type theorems a way of creating algebraically "pseudo-randomness" properties

Question (B-I-W): Fix $0 < \alpha < 1$, find an explicit polynomial $f : \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p$, $A, B \subseteq \mathbb{F}_p$, $|B| \asymp |A| \sim p^\alpha$ for some $\beta = \beta(\alpha) > \alpha$

$$|f(A, B)| > p^\beta.$$
Expander polynomials

Starting a question in Computer Sciences – Barak, Impagliazzo, Wigderson (2004):

Sum-product type theorems a way of creating algebraically "pseudo-randomness" properties

Question (B-I-W): Fix $0 < \alpha < 1$, find an explicit polynomial $f : \mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p$, $A, B \subseteq \mathbb{F}_p$, $|B| \asymp |A| \sim p^\alpha$ for some $\beta = \beta(\alpha) > \alpha$

$$|f(A, B)| > p^\beta.$$

$f = f(x, y)$ IS SAID TO BE *expander polynomial*
Expander polynomials
Theorem (J. Bourgain (2005))

For all $0 < \alpha < 1$, there exists a $\delta > 0$, s.t. $|B| \asymp |A| \sim p^\alpha$ the polynomial $f(x, y) = x^2 + xy$ is an expander, i.e.

$$|f(A, B)| > p^{\alpha + \delta}.$$
Theorem (J. Bourgain (2005))

For all $0 < \alpha < 1$, there exists a $\delta > 0$, s.t. $|B| \asymp |A| \sim p^{\alpha}$ the polynomial $f(x, y) = x^2 + xy$ is an expander, i.e.

$$|f(A, B)| > p^{\alpha + \delta}.$$

Remark:
1. In his proof δ is inexplicit.
Expander polynomials
Questions:

1. Is there an infinite family of expanding maps of two variables?
Questions:

1. **Is there an infinite family of expanding maps of two variables?**

Theorem (H.-Hennecart)

Let $k \geq 1$, $f, g \in \mathbb{Z}[x]$. Then

$$F(x, y) = f(x) + x^k g(y)$$

is an expander, provided $f(x)$ is affinely independent to x^k.
Questions:

1. Is there an infinite family of expanding maps of two variables?

Theorem (H.-Hennecart)

Let $k \geq 1$, $f, g \in \mathbb{Z}[x]$. Then

$$F(x, y) = f(x) + x^k g(y)$$

is an expander, provided $f(x)$ is affinely independent to x^k.

Affinely independent:
Expander polynomials

Questions:

1. Is there an infinite family of expanding maps of two variables?

Theorem (H.-Hennecart)

Let $k \geq 1$, $f, g \in \mathbb{Z}[x]$. Then

$$F(x, y) = f(x) + x^k g(y)$$

is an expander, provided $f(x)$ is affinely independent to x^k.

Affinely independent:

No $(u, v) \in \mathbb{Z}^2$ s.t. $f(x) = uh(x) + v$ or $h(x) = uf(x) + v$.

Questions:

1. **Is there an infinite family of expanding maps of two variables?**

Theorem (H.-Hennecart)

Let \(k \geq 1, f, g \in \mathbb{Z}[x] \). Then

\[
F(x, y) = f(x) + x^k g(y)
\]

is an expander, provided \(f(x) \) is affinely independent to \(x^k \).

Affinely independent:

No \((u, v) \in \mathbb{Z}^2\) s.t. \(f(x) = uh(x) + v \) or \(h(x) = uf(x) + v \).

If \(u \neq 0 \), then

\[
F(x, y) = (f(x) + \frac{v}{u})(1 + ug(y)) - \frac{v}{u}
\]
Expander polynomials
Measure of expanding:
Theorem (H.-Hennecart)

For any pair \((A, B)\) of subsets of \(\mathbb{F}_p\) such that \(|A| \asymp |B| \asymp p^\alpha, \alpha > 1/2\)

\[
|F(A, B)| \gg |A|^{1+ \min\{2\alpha-1; 2-2\alpha\}/2}.
\]
Expander polynomials

Measure of expanding:

Theorem (H.-Hennecart)

For any pair \((A, B)\) of subsets of \(\mathbb{F}_p\) such that \(|A| \asymp |B| \asymp p^\alpha, \alpha > 1/2\)

\[|F(A, B)| \gg |A|^{1 + \frac{\min\{2\alpha - 1; 2 - 2\alpha\}}{2}}. \]

Theorem (I. Shkredov)

For the Bourgain function \(G(x, y) = x^2 + xy\),

\[|G(A, B)| \geq (p - 1) - \frac{40p^{5/2}}{|A||B|}. \]
Expander polynomials
Corollary

If $|A||B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.
Corollary

If $|A||B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.

It motivates the following
Corollary

If $|A||B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.

It motivates the following

Definition

$F(x, y)$ is said to be a complete expander according to α
Corollary

If $|A| |B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.

It motivates the following

Definition

$F(x, y)$ is said to be a complete expander according to α if for any positive real numbers $L_1 \leq L_2$,
Corollary

If $|A||B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.

It motivates the following

Definition

$F(x, y)$ is said to be a complete expander according to α if for any positive real numbers $L_1 \leq L_2$, there exists a constant $c = c(F, L_1, L_2)$
Corollary

If \(|A||B| > p^{3/2+\varepsilon}, \varepsilon > 0\), then \(G(A, B)\) covers almost all \(\mathbb{F}_p\).

It motivates the following

Definition

\(F(x, y)\) is said to be a complete expander according to \(\alpha\) if for any positive real numbers \(L_1 \leq L_2\), there exists a constant \(c = c(F, L_1, L_2)\) such that for any prime number \(p\) and any pair \((A, B)\) of subsets of \(\mathbb{F}_p\)
Corollary

If $|A||B| > p^{3/2+\varepsilon}$, $\varepsilon > 0$, then $G(A, B)$ covers almost all \mathbb{F}_p.

It motivates the following

Definition

$F(x, y)$ is said to be a complete expander according to α if for any positive real numbers $L_1 \leq L_2$, there exists a constant $c = c(F, L_1, L_2)$ such that for any prime number p and any pair (A, B) of subsets of \mathbb{F}_p satisfying $L_1p^{\alpha} \leq |A|, |B| \leq L_2p^{\alpha}$,
Corollary

If \(|A||B| > p^{3/2+\varepsilon}\), \(\varepsilon > 0\), then \(G(A, B)\) covers almost all \(\mathbb{F}_p\).

It motivates the following

Definition

\(F(x, y)\) is said to be a complete expander according to \(\alpha\) if for any positive real numbers \(L_1 \leq L_2\), there exists a constant \(c = c(F, L_1, L_2)\) such that for any prime number \(p\) and any pair \((A, B)\) of subsets of \(\mathbb{F}_p\) satisfying \(L_1 p^{\alpha} \leq |A|, |B| \leq L_2 p^{\alpha}\), we have

\[|F_p(A, B)| \geq cp^{\min\{1;2\alpha\}}. \]
Expander polynomials
Expander polynomials

As a contrast
As a contrast

Theorem (H.-Hennecart)

Let $f(x)$ and $g(y)$ be non constant integral polynomials and $F(x, y) = f(x)(f(x) + g(y))$. Then F is not a complete expander according to $\alpha \leq 1/2$.

Expander polynomials

As a contrast

Theorem (H.-Hennecart)

Let $f(x)$ and $g(y)$ be non constant integral polynomials and
$F(x, y) = f(x)(f(x) + g(y))$. Then F is not a complete expander
according to $\alpha \leq 1/2$.

For the proof we need the following:
As a contrast

Theorem (H.-Hennecart)

Let $f(x)$ and $g(y)$ be non constant integral polynomials and $F(x, y) = f(x)(f(x) + g(y))$. Then F is not a complete expander according to $\alpha \leq 1/2$.

For the proof we need the following:

Lemma

Let $u \in \mathbb{F}_p$, L be a positive integer less than $p/2$ and $f(x)$ be any integral polynomial of degree $k \geq 1$ (as element of $\mathbb{F}_p[x]$). Then the number $N(I)$ of residues $x \in \mathbb{F}_p$ such that $f(x)$ lies in the interval $I = (u - L, u + L)$ of \mathbb{F}_p is at least $L - (k - 1)\sqrt{p}$.
Proof
Proof

Let J be the indicator function of the interval $[0, L)$ of \mathbb{F}_p and let

$$T := \sum_{r \in \mathbb{F}_p} J \ast J(r) S_f(-r, p) e_p(ru),$$
Proof

Let J be the indicator function of the interval $[0, L)$ of \mathbb{F}_p and let

$$T := \sum_{r \in \mathbb{F}_p} J \ast J(r) S_f(-r, p) e_p(ru),$$

where $S_f(r, p) := \sum_{x \in \mathbb{F}_p} e_p(rf(x))$.
Proof

Let J be the indicator function of the interval $[0, L)$ of \mathbb{F}_p and let

$$T := \sum_{r \in \mathbb{F}_p} \widehat{J}(r)S_f(-r, p)e_p(ru),$$

where $S_f(r, p) := \sum_{x \in \mathbb{F}_p} e_p(rf(x))$

It is known $|S_f(r, p)| \leq (k - 1)\sqrt{p}$ for $r \neq 0$ (p is an odd prime)
Proof

Let J be the indicator function of the interval $[0, L)$ of \mathbb{F}_p and let

$$T := \sum_{r \in \mathbb{F}_p} \widehat{J} \ast J(r) S_f(-r, p) e_p(ru),$$

where $S_f(r, p) := \sum_{x \in \mathbb{F}_p} e_p(rf(x))$

It is known $|S_f(r, p)| \leq (k - 1)\sqrt{p}$ for $r \neq 0$ (p is an odd prime)

Thus

$$T = p\widehat{J} \ast J(0) + \sum_{r \in \mathbb{F}_p^*} \widehat{J} \ast J(r) S_f(-r, p) e_p(ru) \geq$$
Proof

Let J be the indicator function of the interval $[0, L)$ of \mathbb{F}_p and let

$$T := \sum_{r \in \mathbb{F}_p} \widehat{J * J}(r) S_f(-r, p) e_p(r u),$$

where $S_f(r, p) := \sum_{x \in \mathbb{F}_p} e_p(r f(x))$

It is known $|S_f(r, p)| \leq (k - 1) \sqrt{p}$ for $r \neq 0$ (p is an odd prime)

Thus

$$T = p \widehat{J * J}(0) + \sum_{r \in \mathbb{F}_p^*} \widehat{J * J}(r) S_f(-r, p) e_p(r u) \geq$$

$$\geq pL^2 - k \sqrt{p} \sum_{r \in \mathbb{F}_p^*} |\widehat{J * J}(r)| \geq pL^2 - kLp^{3/2}.$$
Proof of the Lemma

Hence
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]

On the other direction
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]

On the other direction

\[T = \sum_{r \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z)J(y + z)e_p(r(y + u)) \sum_{x \in \mathbb{F}_p} e_p(-rf(x)) = \]
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]

On the other direction

\[
T = \sum_{r \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z) J(y + z) e_p(r(y + u)) \sum_{x \in \mathbb{F}_p} e_p(-rf(x)) = \\
= \sum_{x \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z) J(y + z) \sum_{r \in \mathbb{F}_p} e_p(r(y + u - f(x))) =
\]
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]

On the other direction

\[
T = \sum_{r \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z)J(y + z)e_p(r(y + u)) \sum_{x \in \mathbb{F}_p} e_p(-rf(x)) =
\]

\[
= \sum_{x \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z)J(y + z) \sum_{r \in \mathbb{F}_p} e_p(r(y + u - f(x))) =
\]

\[
p \sum_{x \in \mathbb{F}_p} d_L(f(x) - u),
\]
Proof of the Lemma

Hence

\[T \geq pL(L - k\sqrt{p}). \]

On the other direction

\[
T = \sum_{r \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z)J(y + z)e_p(r(y + u)) \sum_{x \in \mathbb{F}_p} e_p(-rf(x)) =
\]

\[
= \sum_{x \in \mathbb{F}_p} \sum_{y \in \mathbb{F}_p} \sum_{z \in \mathbb{F}_p} J(z)J(y + z) \sum_{r \in \mathbb{F}_p} e_p(r(y + u - f(x))) =
\]

\[
p \sum_{x \in \mathbb{F}_p} d_L(f(x) - u),
\]

where \(d_L(z) \) denotes the number of representations in \(\mathbb{F}_p \) of \(z \) under the form \(j - j', 0 \leq j, j' < L \).
Proof of the Lemma

Using
Proof of the Lemma

Using
\[d_L(z) \leq L \] for each \(z \in \mathbb{F}_p \).
Proof of the Lemma

Using
\[d_L(z) \leq L \] for each \(z \in \mathbb{F}_p \), we get

\[T \leq pLN(I). \]

Combining the two bounds one can obtain the statement.
Proof of the Lemma

Using
\[d_L(z) \leq L \text{ for each } z \in \mathbb{F}_p, \]
we get
\[T \leq pLN(I). \]

Combining the two bounds one can obtain the statement.

Furthermore we need a result of Erdős:
Proof of the Lemma

Using
\[d_L(z) \leq L \] for each \(z \in \mathbb{F}_p \), we get

\[T \leq pLN(I). \]

Combining the two bounds one can obtain the statement.

Furthermore we need a result of Erdős :

Lemma

There exists a positive real number \(\delta \) such that the number of different integers \(ab \) where \(1 \leq a, b \leq n \) is \(O(n^2/(\ln n)^\delta) \).

(the best known \(\delta \) is due to G. Tenenbaum)
Proof of the Theorem
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)

Let $L = k \sqrt{p}$
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)

Let $L = k\sqrt{p}$

Let A (resp. B) be the set of the residue classes x (resp. y) such that $f(x)$ (resp. $g(y)$) lies in the interval $(0, 2L)$.
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)
Let $L = k\sqrt{p}$
Let A (resp. B) be the set of the residue classes x (resp. y) such that $f(x)$ (resp. $g(y)$) lies in the interval $(0, 2L)$.
By the first lemma, one has $|A|, |B| \geq \sqrt{p}$.
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)
Let $L = k\sqrt{p}$
Let A (resp. B) be the set of the residue classes x (resp. y) such that $f(x)$ (resp. $g(y)$) lies in the interval $(0, 2L)$.
By the first lemma, one has $|A|, |B| \geq \sqrt{p}$.
Moreover for any $(x, y) \in A \times B$, we have $f(x)$ and $f(x) + g(y)$ in the interval $(0, 4L)$.

Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)

Let $L = k\sqrt{p}$

Let A (resp. B) be the set of the residue classes x (resp. y) such that $f(x)$ (resp. $g(y)$) lies in the interval $(0, 2L)$.

By the first lemma, one has $|A|, |B| \geq \sqrt{p}$.

Moreover for any $(x, y) \in A \times B$, we have $f(x)$ and $f(x) + g(y)$ in the interval $(0, 4L)$.

By Erdős Lemma, the number of residues modulo p which can be written as $F(x, y)$ with $(x, y) \in A \times B$, is at most...
Proof of the Theorem

(Let p be large enough $f(x)$ and $g(y)$ are not constant polynomials modulo p.)

Let $L = k\sqrt{p}$

Let A (resp. B) be the set of the residue classes x (resp. y) such that $f(x)$ (resp. $g(y)$) lies in the interval $(0, 2L)$.

By the first lemma, one has $|A|, |B| \geq \sqrt{p}$.

Moreover for any $(x, y) \in A \times B$, we have $f(x)$ and $f(x) + g(y)$ in the interval $(0, 4L)$.

By Erdős Lemma, the number of residues modulo p which can be written as $F(x, y)$ with $(x, y) \in A \times B$, is at most

$$O(L^2/(\ln L)^{\delta}) = o(p),$$

(as p tends to infinity).
1. Our result \(F(x, y) = f(x) + x^k g(y) \) covers many special cases; bound on \(|A(A + 1)|\), \(f(x) = x^k \), \(k = 1 \), \(g(y) = y \), or
Remarks

Remark

1. Our result \(F(x, y) = f(x) + x^k g(y) \) covers many special cases; bound on \(|A(A + 1)|, f(x) = x^k, k = 1, g(y) = y \), or \(x(x + y) \) (Bourgain’s polynomial) e.t.c.
Remarks

Remark

1. **Our result** \(\left(F(x, y) = f(x) + x^k g(y) \right) \) covers many special cases; bound on \(|A(A + 1)|, f(x) = x^k, k = 1, g(y) = y, \) or \(x(x + y) \) (Bourgain’s polynomial) e.t.c.

2. **T. Tao obtained a very deep result on expander polynomials** (”explaining” the reason that a function \(F(x, y) \) is not an expander, and giving bounds for the measure of expanding on certain range)
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if
A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$
A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Norbert Hegyvári (Budapest, Eötvös University)
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_{i} |A_i| > p^\beta$.

Many other problems can be performed as a covering question:
A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^*$, $|H| > \sqrt{p}$, then what is the $\min\{k : kH = \mathbb{F}_p\}$?
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^\ast$, $|H| > \sqrt{p}$, then what is the $\min\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuk Konyagin:
A map $F : \mathbb{F}_p^k \rightarrow \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^*$, $|H| > \sqrt{p}$, then what is the min$\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuk Konyagin: For $f(x_1, \ldots, x_{16}) := \sum_{i=1}^8 x_i x_{i+1}$,

$$f(A, B, \ldots, A, B) = \mathbb{F}_p,$$
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^*$, $|H| > \sqrt{p}$, then what is the $\min\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuk Konyagin: For $f(x_1, \ldots, x_{16}) := \sum_{i=1}^{8} x_i x_{i+1}$,

$$f(A, B, \ldots, A, B) = \mathbb{F}_p,$$

provided $|A||B| > p$.

Norbert Hegyvári (Budapest, Eötvös Universi
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^*$, $|H| > \sqrt{p}$, then what is the min$\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuck Konyagin: For $f(x_1, \ldots, x_{16}) := \sum_{i=1}^{8} x_i x_{i+1}$,

$$f(A, B, \ldots, A, B) = \mathbb{F}_p,$$

provided $|A||B| > p$. (reduced to $k \leq 6$, by Shkredov)
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}^*_p$, $|H| > \sqrt{p}$, then what is the $\min\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuk Konyagin: For $f(x_1, \ldots, x_{16}) := \sum_{i=1}^{8} x_i x_{i+1}$,

$$f(A, B, \ldots, A, B) = \mathbb{F}_p,$$

provided $|A||B| > p$. (reduced to $k \leq 6$, by Shkredov)

Further central notion at Heisenberg groups (see later)
Covering polynomials

Definition

A map $F : \mathbb{F}_p^k \mapsto \mathbb{F}_p$ is said to be covering polynomial respect to β if

$$f(A_1, A_2, \ldots, A_k) = \mathbb{F}_p$$

provided $\prod_i |A_i| > p^\beta$.

Many other problems can be performed as a covering question:

If $H < \mathbb{F}_p^*$, $|H| > \sqrt{p}$, then what is the $\min\{k : kH = \mathbb{F}_p\}$?

For $k \leq 8$ by Glibichuk Konyagin: For $f(x_1, \ldots, x_{16}) := \sum_{i=1}^{8} x_i x_{i+1}$,

$$f(A, B, \ldots, A, B) = \mathbb{F}_p,$$

provided $|A||B| > p$. (reduced to $k \leq 6$, by Shkredov)

Further central notion at Heisenberg groups (see later)
Covering polynomials; two examples
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g^y$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g^y_p$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non constant polynomial.
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g^y$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u} y + x^{2-u} h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non constant polynomial.

Write $H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w)$
Covering polynomials; two examples

Let \(F_{p,v}(x,y) = x^{1+u}y + x^{2-u}g_p^y \) for any \(p \) where \(g_p \) generates \(\mathbb{F}_p^\times \) and \(v \in \{0,1\} \) is fixed,

\[G_u(x,y) = x^{1+u}y + x^{2-u}h(y) \] where \(u \in \{0,1\} \), \(h(y) \in \mathbb{Z}[y] \) is a non-constant polynomial.

Write \(H_{p,v}(x,y,z,w) := F_{p,v}(x,y) + p(z) + t(w) \) and

\(K_u(x,y,z,w) := G_u(x,y) + s(z) + r(w) \) (\(p, s, r, t \) are non-constant polynomials).
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g_p^y$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non-constant polynomial.

Write $H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w)$ and $K_u(x, y, z, w) := G_u(x, y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g^y_p$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non-constant polynomial.

Write $H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w)$ and $K_u(x, y, z, w) := G_u(x, y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers $0 < \delta, \delta' < 1$ s.t.
Covering polynomials; two examples

Let $F_{p,v}(x,y) = x^{1+u}y + x^{2-u}g_y^p$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0,1\}$ is fixed,

$G_u(x,y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0,1\}$, $h(y) \in \mathbb{Z}[y]$ is a non-constant polynomial.

Write $H_{p,v}(x,y,z,w) := F_{p,v}(x,y) + p(z) + t(w)$ and $K_u(x,y,z,w) := G_u(x,y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers $0 < \delta, \delta' < 1$ s.t. for any p
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g^y_p$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non constant polynomial.

Write $H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w)$ and $K_u(x, y, z, w) := G_u(x, y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers $0 < \delta, \delta' < 1$ s.t. for any p and for any sets $A, B, C, D \subseteq \mathbb{F}_p$
Covering polynomials; two examples

Let $F_{p,v}(x,y) = x^{1+u}y + x^{2-u}g_p^y$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x,y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non-constant polynomial.

Write $H_{p,v}(x,y,z,w) := F_{p,v}(x,y) + p(z) + t(w)$ and $K_u(x,y,z,w) := G_u(x,y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers $0 < \delta, \delta' < 1$ s.t. for any p and for any sets $A, B, C, D \subseteq \mathbb{F}_p$ with $|C| > p^{1/2-\delta}$, $|D| > p^{1/2-\delta}$, $|A||B| > p^{2-\delta'}$.
Covering polynomials; two examples

Let $F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g_p^y$ for any p where g_p generates \mathbb{F}_p^\times and $v \in \{0, 1\}$ is fixed,

$G_u(x, y) = x^{1+u}y + x^{2-u}h(y)$ where $u \in \{0, 1\}$, $h(y) \in \mathbb{Z}[y]$ is a non-constant polynomial.

Write $H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w)$ and $K_u(x, y, z, w) := G_u(x, y) + s(z) + r(w)$ (p, s, r, t are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers $0 < \delta, \delta' < 1$ s.t. for any p and for any sets $A, B, C, D \subseteq \mathbb{F}_p$ with $|C| > p^{1/2-\delta}$, $|D| > p^{1/2-\delta}$, $|A||B| > p^{2-\delta'}$, then

$$H_{p,v}(C, D, A, B) = \mathbb{F}_p$$
Covering polynomials; two examples

Let \(F_{p,v}(x, y) = x^{1+u}y + x^{2-u}g_p^y \) for any \(p \) where \(g_p \) generates \(\mathbb{F}_p^\times \) and \(v \in \{0, 1\} \) is fixed,

\[G_u(x, y) = x^{1+u}y + x^{2-u}h(y) \]

where \(u \in \{0, 1\}, h(y) \in \mathbb{Z}[y] \) is a non-constant polynomial.

Write \(H_{p,v}(x, y, z, w) := F_{p,v}(x, y) + p(z) + t(w) \) and \(K_u(x, y, z, w) := G_u(x, y) + s(z) + r(w) \) (\(p, s, r, t \) are non-constant polynomials).

Theorem (H.-Hennecart)

There exist real numbers \(0 < \delta, \delta' < 1 \) s.t. for any \(p \) and for any sets \(A, B, C, D \subseteq \mathbb{F}_p \) with \(|C| > p^{1/2-\delta} \), \(|D| > p^{1/2-\delta} \), \(|A||B| > p^{2-\delta'} \), then

\[
H_{p,v}(C, D, A, B) = \mathbb{F}_p
\]

\[
K_u(C, D, A, B) = \mathbb{F}_p.
\]
Covering polynomials; two examples
Covering polynomials; two examples

Remark
Remark

Note that for $S(x, y, z, w) := x + y + zw$, *
Covering polynomials; two examples

Remark

Note that for \(S(x, y, z, w) := x + y + zw \), \(S(A, B, C, D) = \mathbb{F}_p \) *provided*
Remark

Note that for $S(x, y, z, w) := x + y + zw$, $S(A, B, C, D) = \mathbb{F}_p$ provided $|A||B||C||D| > p^3$ and this bound is sharp.
Remark

Note that for \(S(x, y, z, w) := x + y + zw \), \(S(A, B, C, D) = \mathbb{F}_p \) provided \(|A||B||C||D| > p^3 \) and this bound is sharp.

In our functions \(H \) and \(K \) we can achieve \(|A||B||C||D| > p^{3-\Delta} \).
Product sets in Heisenberg groups
Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called *Heisenberg group*
Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called *Heisenberg group*

\[
[x, y, z] = \begin{pmatrix}
1 & x & z \\
0 & \ln & t \\
0 & 0 & 1
\end{pmatrix},
\]
Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called **Heisenberg group**

\[
[x, y, z] = \begin{pmatrix}
1 & x & z \\
0 & I_n & ty \\
0 & 0 & 1
\end{pmatrix},
\]

where \(x = (x_1, x_2, \ldots, x_n)\), \(y = (y_1, y_2, \ldots, y_n)\), \(x_i, y_i, z \in \mathbb{F}\), \(i = 1, 2, \ldots, n\), and \(I_n\) is the \(n \times n\) identity matrix.
Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called Heisenberg group

\[
[x, y, z] = \begin{pmatrix}
1 & x & z \\
0 & l_n & ty \\
0 & 0 & 1
\end{pmatrix},
\]

where \(x = (x_1, x_2, \ldots, x_n), \ y = (y_1, y_2, \ldots, y_n), \ x_i, y_i, z \in \mathbb{F}, \ i = 1, 2, \ldots, n, \) and \(l_n \) is the \(n \times n \) identity matrix.

and operations

\[
[x, y, z][x', y', z'] = [x + x', y + y', \langle x, y' \rangle + z + z'],
\]
Product sets in Heisenberg groups

Related to Freiman model in non-abelian groups pops up so called Heisenberg group

\[[x, y, z] = \begin{pmatrix} 1 & x & z \\ 0 & l_n & t y \\ 0 & 0 & 1 \end{pmatrix},\]

where \(x = (x_1, x_2, \ldots, x_n), \ y = (y_1, y_2, \ldots, y_n), \ x_i, y_i, z \in \mathbb{F}, \)
\(i = 1, 2, \ldots, n,\) and \(l_n\) is the \(n \times n\) identity matrix.

and operations

\[[x, y, z][x', y', z'] = [x + x', y + y', \langle x, y' \rangle + z + z'],\]

where \(\langle \cdot, \cdot \rangle\) is the inner product
The third coordinate
The third coordinate

\[\langle x, y' \rangle + z + z' \]
The third coordinate

\[\langle x, y' \rangle + z + z' \]

is a kind of "sum-product function"
The third coordinate

\[\langle x, y' \rangle + z + z' \]

is a kind of "sum-product function"
Product sets in Heisenberg groups

The third coordinate

$$\langle x, y' \rangle + z + z'$$

is a kind of ”sum-product function”

Definition

A subset B of H_n is said to be a cube if
The third coordinate
\[\langle x, y' \rangle + z + z' \]
is a kind of "sum-product function"

Definition

A subset \(B \) of \(H_n \) is said to be a cube if

\[B = [X, Y, Z] := \{ [x, y, z] \text{ such that } x \in X, \ y \in Y, \ z \in Z \} \]
The third coordinate

\[\langle x, y' \rangle + z + z' \]

is a kind of "sum-product function"

Definition

A subset \(B \) of \(H_n \) is said to be a cube if

\[B = [X, Y, Z] := \{ [x, y, z] \text{ such that } x \in X, \ y \in Y, \ z \in Z \} \]

*where \(X = X_1 \times \cdots \times X_n \)
The third coordinate
\[\langle x, y' \rangle + z + z' \]
is a kind of "sum-product function"

Definition

A subset B of H_n is said to be a cube if

\[B = [X, Y, Z] := \{ [x, y, z] \text{ such that } x \in X, y \in Y, z \in Z \} \]

where $X = X_1 \times \cdots \times X_n$ and $Y = Y_1 \times \cdots \times Y_n$ with non empty-subsets $X_i, Y_i \subseteq \mathbb{F}^*$.
Product sets in Heisenberg groups
Theorem (H.-Hennecart)
Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n.
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n.
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4+\varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4+\varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition

Let $n, m \in \mathbb{N}$,
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition

Let $n, m \in \mathbb{N}$, $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots Y_n \subseteq F^* = F \setminus \{0\}$, $Z \subseteq F$.
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition

Let $n, m \in \mathbb{N}$, $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots Y_n \subseteq F^* = F \setminus \{0\}$, $Z \subseteq F$. We have
Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition

Let $n, m \in \mathbb{N}$, $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n \subseteq F^* = F \setminus \{0\}$, $Z \subseteq F$. We have

$$mZ + \sum_{j=1}^{n} X_j \cdot Y_j := \left\{ z_1 + \cdots + z_m + \sum_{j=1}^{n} x_j y_j, \ z_i \in Z, \ x_j \in X_j, \ y_j \in Y_j \right\} = F,$$
Product sets in Heisenberg groups

Theorem (H.-Hennecart)

For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a cube and $|B| > |H_n|^{3/4 + \varepsilon}$ then there exists a non trivial subgroup G of H_n, such that $B \cdot B$ contains a union of at least $|B|/p$ many cosets of G.

Proposition

Let $n, m \in \mathbb{N}$, $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots Y_n \subseteq F^* = F \setminus \{0\}$, $Z \subseteq F$. We have

$$mZ + \sum_{j=1}^{n} X_j \cdot Y_j := \left\{ z_1 + \cdots + z_m + \sum_{j=1}^{n} x_j y_j, \; z_i \in Z, \; x_j \in X_j, \; y_j \in Y_j \right\} = \mathbb{F},$$

provided $|Z|^2 \prod_{i=1}^{n} |X_i|^n \prod_{i=1}^{n} |Y_i|^n > p^{n(n+1)+2}$.
Two other results
Two other results

Definition
Two other results

Definition

A set A is said to be semi-cube of H
Two other results

Definition

A set A is said to be semi-cube of H if

$$A = \{ [x, y, z] \text{ such that } (x, y) \in U, \ z \in Z \}.$$
Two other results

Definition

A set A is said to be semi-cube of H if

$$A = \{[x, y, z] \text{ such that } (x, y) \in U, \ z \in Z\}.$$

Theorem (H.-Hennecart)

Let $A = U \times Z$ be a semi-cube in H. If $|A| \geq 2^{-1/3} p^{8/3}$ then the four-fold product set $A \cdot A \cdot A \cdot A$ contains at least $|U| \left(1 - \frac{p^4}{\sqrt{2}|A|^{3/2}}\right)$ cosets of the type $[x, y, F]$.

Norbert Hegyvári (Budapest, Eötvös University)
Two other results

Definition

A set A is said to be semi-cube of H if

$$A = \{[x, y, z] \text{ such that } (x, y) \in U, \ z \in Z\}.$$

Theorem (H.-Hennecart)

Let $A = U \times Z$ be a semi-cube in H. If $|A| \geq 2^{-1/3} p^{8/3}$ then the four-fold product set $A \cdot A \cdot A \cdot A$ contains at least $|U| \left(1 - \frac{p^4}{\sqrt{2} |A|^{3/2}}\right)$ cosets of the type $[x, y, F]$.

We considered the question of counting the subsets X of H such that $X = [A, B, C]^2$ is a square of a 3-cubes.
Two other results

Definition

A set A is said to be semi-cube of H if

$$A = \{[x, y, z] \text{ such that } (x, y) \in U, \ z \in Z\}.$$

Theorem (H.-Hennecart)

Let $A = U \times Z$ be a semi-cube in H. If $|A| \geq 2^{-1/3} p^{8/3}$ then the four-fold product set $A \cdot A \cdot A \cdot A$ contains at least $|U| \left(1 - \frac{p^4}{\sqrt{2}|A|^{3/2}}\right)$ cosets of the type $[x, y, F]$.

We considered the question of counting the subsets X of H such that $X = [A, B, C]^2$ is a square of a 3-cubes.
Two other results
Two other results

Theorem (H.-Hennecart)

The number of subsets $X \subset H$ *satisfying* $X = [A, B, C]^2$ *with* $A, B, C \subset \mathbf{F}_p$
Two other results

Theorem (H.-Hennecart)

The number of subsets $X \subset H$ satisfying $X = [A, B, C]^2$ with $A, B, C \subset \mathbb{F}_p$ is $O(2^{2p} + p^{3/4})$.
The number of subsets $X \subset H$ satisfying $X = [A, B, C]^2$ with $A, B, C \subset \mathbb{F}_p$ is $O(2^{2p} + p^{3/4})$.

Since the total number of arbitrary 3-cubes is $K := 2^{3p}$, the above upper bound is $O(K^{2/3 + o(1)})$.

Hilbert cubes
In 1892 Hilbert defined an affine d-dimensional cube
In 1892 Hilbert defined an affine d-dimensional cube

$$H(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1\}.$$
Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube

$$H(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1\}.$$

or d-dimensional cube of order $r \geq 1$

$$H_r(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1, \ldots, r\}.$$
In 1892 Hilbert defined an affine d-dimensional cube

$$H(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1\}.$$

or d-dimensional cube of order $r \geq 1$

$$H_r(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1, \ldots, r\}.$$

Hilbert cubes play an important role in the proof of Szemerédi’s celebrated theorem, and many authors investigated in different context
Hilbert cubes

In 1892 Hilbert defined an affine d-dimensional cube
\[H(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1\}. \]

or d-dimensional cube of order $r \geq 1$
\[H_r(x_0, a_1, a_2, \ldots, a_d) = \left\{ x_0 + \sum_{1 \leq i \leq d} \varepsilon_i a_i \right\} \quad \varepsilon_i \in \{0, 1, \ldots, r\}. \]

Hilbert cubes play an important role in the proof of Szemerédi’s celebrated theorem, and many authors investigated in different context (Elsholtz, Dietmann and C. Elsholtz, Conlon-Fox-Sudakov e.t.c.)
Character Sums on Hilbert Cubes

An observation of Montgomery:
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$.
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$ $A \subseteq U$ for which $|A| < B \log p$, $B > 0$.
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,
An observation of Montgomery: Let \(U \subseteq \mathbb{F}_p \) \(A \subseteq U \) for which \(|A| < B \log p \), \(B > 0 \). Let \(A(x) \) be its characteristic function,

\[
A(x) = \begin{cases}
1 & x \in A \\
0 & x \notin A
\end{cases},
\]
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$ $A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,

$$A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases},$$

then for some $c = c(B)$, $\max_{r \neq 0} |\hat{A}(r)| \geq c|A|$.
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$, $A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,

$$A(x) = \begin{cases}
1 & x \in A \\
0 & x \notin A
\end{cases},$$

then for some $c = c(B)$, $\max_{r \neq 0} |\hat{A}(r)| \geq c|A|$. As a contrast
Character Sums on Hilbert Cubes

An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$, $A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,

$$A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases},$$

then for some $c = c(B)$, $\max_{r \neq 0} |\hat{A}(r)| \geq c|A|$. As a contrast Ajtai, Iwaniec, Komlós, Pintz, and E. Szemerédi construct a set $T \subseteq \mathbb{Z}_m$.

An observation of Montgomery: Let \(U \subseteq \mathbb{F}_p \) and \(A \subseteq U \) for which \(|A| < B \log p \), \(B > 0 \). Let \(A(x) \) be its characteristic function,

\[
A(x) = \begin{cases}
1 & x \in A \\
0 & x \notin A
\end{cases},
\]

then for some \(c = c(B) \), \(\max_{r \neq 0} |\hat{A}(r)| \geq c|A| \). As a contrast Ajtai, Iwaniec, Komlós, Pintz, and E. Szemerédi construct a set \(T \subseteq \mathbb{Z}_m \) for which

\[
|T| = O(\log m(\log^* m)^{c' \log^* m}) \quad c' > 0,
\]
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$, $A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,

$$A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases},$$

then for some $c = c(B)$, $\max_{r \neq 0} |\hat{A}(r)| \geq c|A|$. As a contrast Ajtai, Iwaniec, Komlós, Pintz, and E. Szemerédi construct a set $T \subseteq \mathbb{Z}_m$ for which

$$|T| = O(\log m (\log^* m)^{c' \log^* m}) \quad c' > 0,$$

and $\max_{r \neq 0} |\tilde{T}(r)| \leq O(|T|/ \log^* m)$.
An observation of Montgomery: Let $U \subseteq \mathbb{F}_p$ $A \subseteq U$ for which $|A| < B \log p$, $B > 0$. Let $A(x)$ be its characteristic function,

$$A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases},$$

then for some $c = c(B)$, $\max_{r \neq 0} |\hat{A}(r)| \geq c|A|$. As a contrast Ajtai, Iwaniec, Komlós, Pintz, and E. Szemerédi construct a set $T \subseteq \mathbb{Z}_m$ for which

$$|T| = O(\log m (\log^* m)^{c' \log^* m}) \quad c' > 0,$$

and $\max_{r \neq 0} |\tilde{T}(r)| \leq O(|T|/\log^* m)$

(where $\log^* m$ is the multi-iterated logarithm) hold.
Character Sums on Hilbert Cubes

A related result on Hilbert cubes:
Character Sums on Hilbert Cubes

A related result on Hilbert cubes:

Theorem (H.)

Let $H(x_0, a_1 < a_2 < \cdots < a_d)$ be an arbitrary non-degenerate Hilbert cube. For every $\xi \in \mathbb{F}_p^*$ there is a subset $H' \subseteq H$ with $|H'| \gg e^{c\sqrt{\log |H|}}$, such that

$$|\hat{H'}(\xi)| \gg |H'|.$$

(H is non-degenerate, if $|H(x_0, a_1 < a_2 < \cdots < a_d)| = 2^d$)
Character Sums on Hilbert Cubes

A related result on Hilbert cubes:

Theorem (H.)

Let $H(x_0, a_1 < a_2 < \cdots < a_d)$ be an arbitrary non-degenerate Hilbert cube. For every $\xi \in \mathbb{F}_p^*$ there is a subset $H' \subseteq H$ with $|H'| \gg e^{c \sqrt{\log |H|}}$, such that

$$|\hat{H}'(\xi)| \gg |H'|.$$

(H is non-degenerate, if $|H(x_0, a_1 < a_2 < \cdots < a_d)| = 2^d$)

For the proofs we need some bound on energy of H;
Let $A \subseteq \mathbb{F}_p$. Its *additive* energy is defined by

$$E_+(A) := \{(a_1, a_2, a_3, a_4) \in A^4 : a_1 + a_2 = a_3 + a_4\}$$
Character Sums on Hilbert Cubes

A related result on Hilbert cubes:

Theorem (H.)

Let $H(x_0, a_1 < a_2 < \cdots < a_d)$ be an arbitrary non-degenerate Hilbert cube. For every $\xi \in \mathbb{F}_p^*$ there is a subset $H' \subseteq H$ with $|H'| \gg e^{c\sqrt{\log|H|}}$, such that

$$|\hat{H}'(\xi)| \gg |H'|.$$

(H is non-degenerate, if $|H(x_0, a_1 < a_2 < \cdots < a_d)| = 2^d$)

For the proofs we need some bound on energy of H;
Let $A \subseteq \mathbb{F}_p$. Its *additive* energy is defined by

$$E_+(A) := \{(a_1, a_2, a_3, a_4) \in A^4 : a_1 + a_2 = a_3 + a_4\}$$

and its *multiplicative* energy is defined by

$$E_\times(A) := \{(a_1, a_2, a_3, a_4) \in A^4 : a_1 \cdot a_2 = a_3 \cdot a_4\}.$$
A related result on Hilbert cubes:

Theorem (H.)

Let \(H(x_0, a_1 < a_2 < \cdots < a_d) \) be an arbitrary non-degenerate Hilbert cube. For every \(\xi \in \mathbb{F}_p^* \) there is a subset \(H' \subseteq H \) with \(|H'| \gg e^{c \sqrt{\log |H|}} \), such that

\[|\hat{H}'(\xi)| \gg |H'|. \]

\((H \text{ is non-degenerate, if } |H(x_0, a_1 < a_2 < \cdots < a_d)| = 2^d)\)

For the proofs we need some bound on energy of \(H \); Let \(A \subseteq \mathbb{F}_p \). Its *additive* energy is defined by

\[E_+(A) := \{(a_1, a_2, a_3, a_4) \in A^4 : a_1 + a_2 = a_3 + a_4\} \]

and its *multiplicative* energy is defined by

\[E_\times(A) := \{(a_1, a_2, a_3, a_4) \in A^4 : a_1 \cdot a_2 = a_3 \cdot a_4\}. \]
Character Sums on Hilbert Cubes
Theorem

Let $r > 1$, $r \in \mathbb{N}$ and let $H = H_{r}(x_0, a_1 < a_2 < \cdots < a_d)$ be an arbitrary non-degenerate Hilbert cube.
Character Sums on Hilbert Cubes

Theorem

Let \(r > 1, \ r \in \mathbb{N} \) and let \(H = H_r(x_0, a_1 < a_2 < \cdots < a_d) \) be an arbitrary non-degenerate Hilbert cube. We have

\[
E_x(H) \ll \begin{cases}
|H|^\gamma r \frac{p}{p} & |H| < p^{2/3} \\
|H|^{3+\gamma r} & |H| \geq p^{2/3}
\end{cases}
\]
Character Sums on Hilbert Cubes

Theorem

Let \(r > 1, \ r \in \mathbb{N} \) and let \(H = H_r(x_0, a_1 < a_2 < \cdots < a_d) \) be an arbitrary non-degenerate Hilbert cube. We have

\[
E_x(H) \ll \begin{cases}
|H|^{\gamma_r} p & |H| < p^{2/3} \\
\frac{|H|^{3+\gamma_r}}{p} & |H| \geq p^{2/3}
\end{cases}
\]

where \(\gamma_r = \log_{r+1}(2r + 1) \).
Character Sums on Hilbert Cubes

Theorem

Let $r > 1$, $r \in \mathbb{N}$ and let $H = H_r(x_0, a_1 < a_2 < \cdots < a_d)$ be an arbitrary non-degenerate Hilbert cube. We have

$$E_{x}(H) \ll \begin{cases} |H|^{\gamma_r p} & |H| < p^{2/3} \\ \frac{|H|^{3 + \gamma_r}}{p} & |H| \geq p^{2/3} \end{cases}$$

where $\gamma_r = \log_{r+1}(2r+1)$.

Remark

Note that the estimations above are nontrivial; for example let $|H| \asymp p^{2/3}$, then $|H|^{\gamma_r p}$ is close to $|H|^{5/2}$, which is better than the trivial bound $|H|^3$.
Theorem

Let \(r > 1, \ r \in \mathbb{N} \) and let \(H = H_r(x_0, a_1 < a_2 < \cdots < a_d) \) be an arbitrary non-degenerate Hilbert cube. We have

\[
E_x(H) \ll \begin{cases}
|H|^\gamma_r p & |H| < p^{2/3} \\
\frac{|H|^{3+\gamma_r}}{p} & |H| \geq p^{2/3}
\end{cases}
\]

where \(\gamma_r = \log_{r+1}(2r + 1) \).

Remark

Note that the estimations above are nontrivial; for example let \(|H| \asymp p^{2/3} \) \(r \) is ”big”, then \(|H|^{\gamma_r} p \) is close to \(|H|^{5/2} \), which is better than the trivial bound \(|H|^3 \).

The proof based on a Gowers version of Balog-Szemerédi theorem