

Umweltbewertung im Wandel: von der Produktbewertung zum digitalen Produktpass

Claudia Mair-Bauernfeind

Institute of Systems Sciences, Innovation, and Sustainability Research

Moritz Kettele

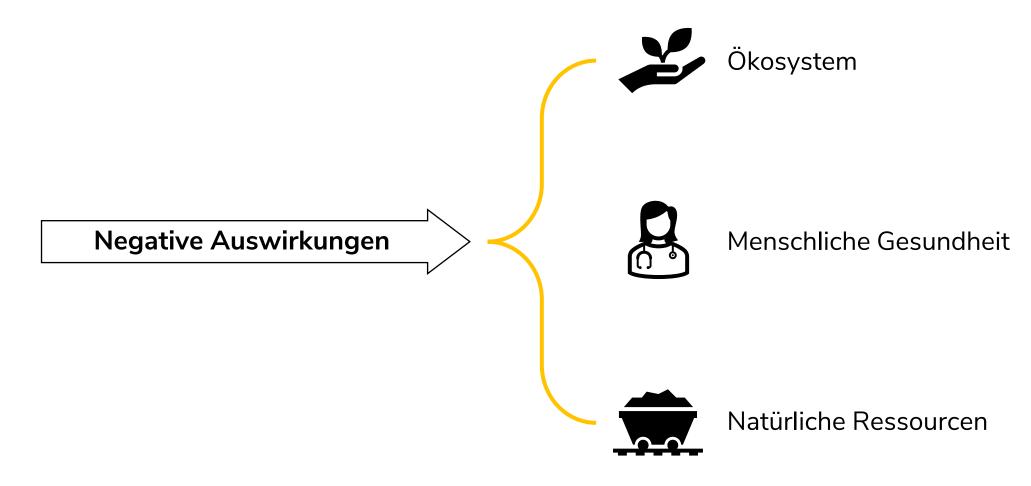
Institute of Systems Sciences, Innovation, and Sustainability Research

Josef-Peter Schöggl

Christian Doppler Laboratory for Sustainable Product Management

Hintergrund und Relevanz

Globale ökologische Herausforderungen



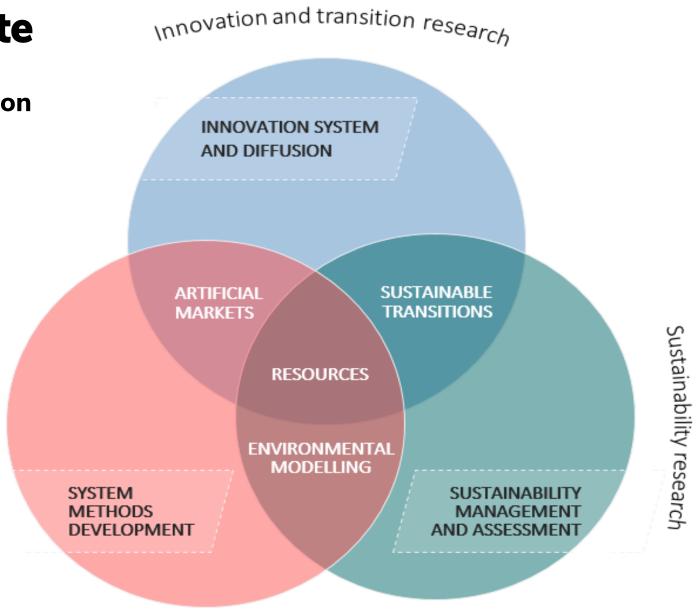
Hintergrund und Relevanz

Globale ökologische Herausforderungen

Was wird benötigt um diese Auswirkungen zu reduzieren?

Maßnahmen von Politik, Wirtschaft und Gesellschaft

Sicherstellung / Messung von Maßnahmen



Robuste Methoden und holistische Analysen

Forschungsschwerpunkte

Institute of Systems Sciences, Innovation and Sustainability Research (SIS)

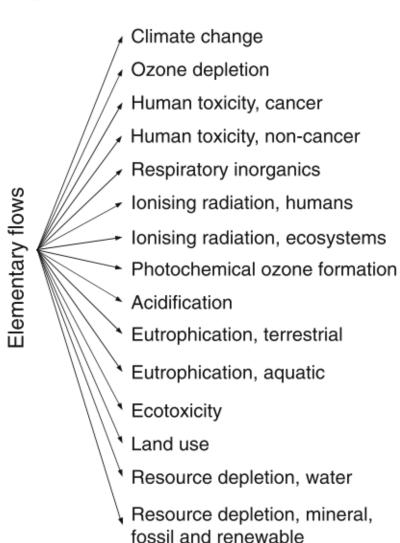
- Innovations- undTransitionsforschung
- Nachhaltigkeitsforschung
- Systemwissenschaften

Systems science

Life Cycle Assessment

Lebenszyklusanalyse, Ökobilanz oder Cradle-to-Grave-Analyse

UNI

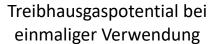

- Methode zur Bewertung von Umweltauswirkungen
- Standardisiert nach ISO14040/14044
- Lebenszyklusperspektive

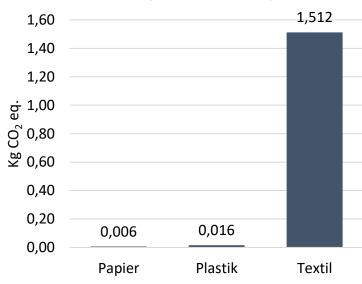
Mehr als CO₂ Fußabdruck

Inventory results Midpoint

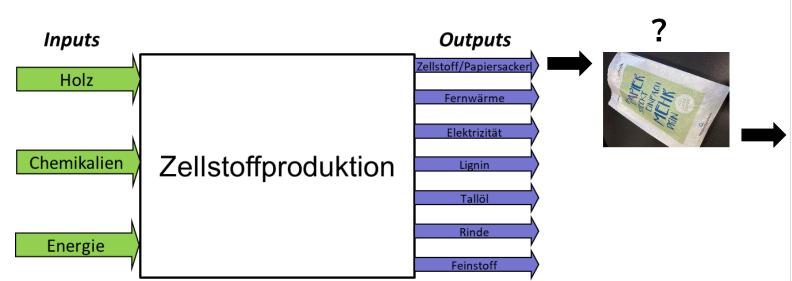
Endpoint Area of protection

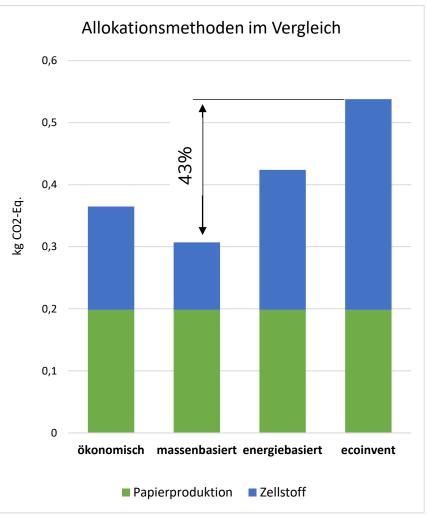
Umweltbewertung am Beispiel der Brotverpackung


Papier versus Plastik


Anwendungsbeispiel: Brotverpackung

Verpackungs-	Material	Gewicht (gesamt)	Darstellung
variante			
Bäckerbeutel	Papier:	~ 9,1g	
100%	Starkraft		
Starkraft	Bags		
			Quelle: eigene Aufnahme
Brotbeutel	Kunststoff:	~ 4,1g	
genadelt	PP genadelt		
			Quelle: eigene Aufnahme
Stoffbeutel	Textil: Baumwolle	~ 100g	
			Quelle: eigene Aufnahme


Textilbeutel muss **245 mal** wiederverwendet werden um die gleichen Umweltauswirkungen wie ein **Einweg-Papiersackerl** zu verursachen!


Einfluss von Allokationsmethoden

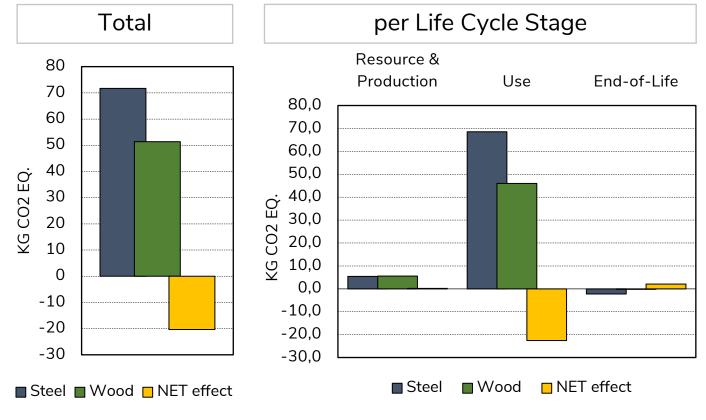
Anwendungsbeispiel: Brotverpackung

- Wahl der Allokationsmethode hat hohen Einfluss auf die Umweltwirkungen eines Produktes.
- Derzeit existieren keine klaren Empfehlungen zur Wahl der Allokationsmethode.

Holz im Fahrzeugbau: tatsächlich nachhaltiger?

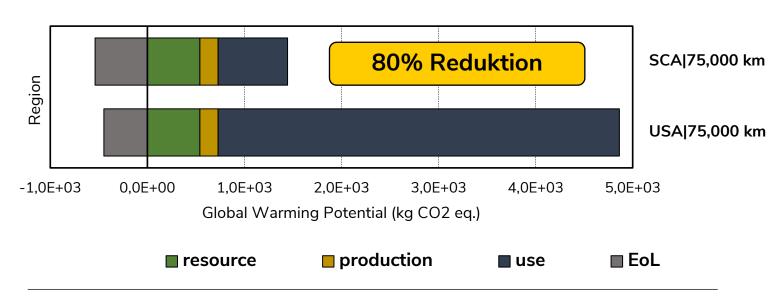
3. Mai 2022

Holz im Fahrzeugbau WoodC.A.R.



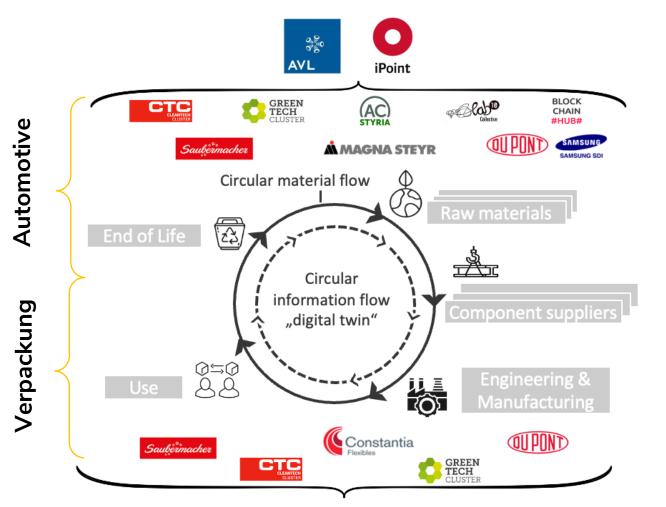
Anwendungsbeispiel: Seitenaufprallträger von einem PKW

- Reduktion von THG möglich
- Hotspot Nutzungsphase
- Einsparungen durch Gewichtsreduktion
- **Gewicht** von Fahrzeugkomponenten hat größeren Finfluss als die Rohstoffbasis


Holz im Fahrzeugbau WoodC.A.R.

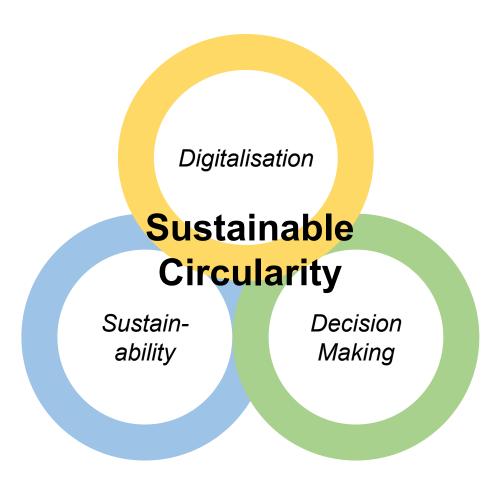
Anwendungsbeispiel: Chassis von einem elektrobetriebenen All-Terrain Vehicle

- Nutzungsphase größten Einfluss auf THG Emissionen.
- Energiemix ausschlaggebend
 - **USA:** hoher Anteil an fossilen Energieträgern
 - Skandinavische Länder: hoher Anteil an erneuerbarer Energie



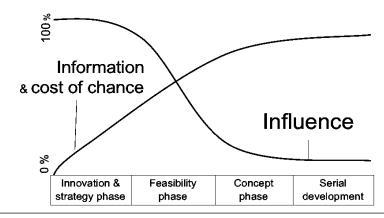
Wie kann sich die Umweltbewertung von Produkten weiterentwickeln?

Christian Doppler Labor für nachhaltiges Produktmanagement in einer Kreislaufwirtschaft



Wie kann sich die Umweltbewertung von Produkten weiterentwickeln?

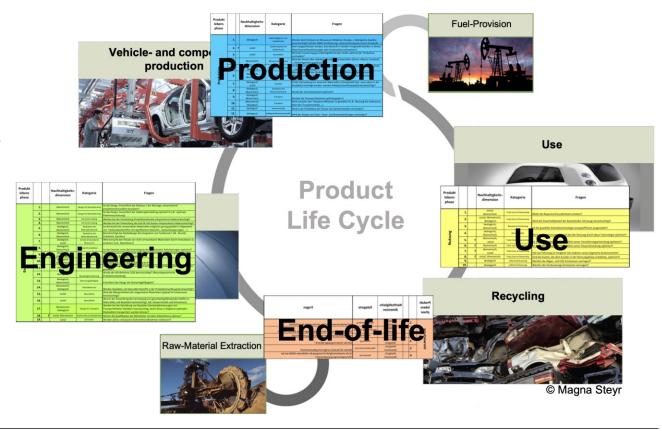
- Nutzung neuer digitaler Technologien (z.B. Al, IoT, Blockchain) zur Sammlung von Daten aus und der Analyse von (zirkulären) Produktions- und Konsumsystemen
- Verbesserung der Entscheidungsrelevanz von Umweltbewertungen
- Entwicklung von integrativen Ansätzen der Nachhaltigkeitsbewertung, welche die Abschätzung von negativen Umweltfolgen um eine soziale- und eine Kreislaufwirtschaftsperspektive erweitern


Umweltbewertung in frühen Produktentwicklungsphasen

UNI GRAZ

- ○Ökodesign-Paradoxon
 - Begrenzte Informationen, Unsicherheit
 - Aber großes Verbesserungspotenzial
 - -> bis zu 80 % der Kosten und Umweltauswirkungen in frühen Phasen determiniert
- Begrenzte Anwendbarkeit von quantitativen Bewertungsinstrumenten

© Magna Steyr



Chebaeva, Natalia, Miriam Lettner, Julia Wenger, Josef-Peter Schöggl, Franziska Hesser, Daniel Holzer, and Tobias Stern. "Dealing with the Eco-Design Paradox in Research and Development Projects: The Concept of Sustainability Assessment Levels." Journal of Cleaner Production 281 (January 2021): 125232. https://doi.org/10.1016/j.jclepro.2020.125232.

Checkliste für nachhaltige Produktentwicklung

- Qualitatives Tool zur
 Entscheidungsunterstützung in frühen
 Produktentwicklungsphasen
- erlaubt eine ganzheitliche Bewertung der Nachhaltigkeitsaspekte eines Produkts/Bauteils
- und den Vergleich zwischen Varianten
- Bildet die Grundlage für kreative
 Lösungsfindung von Entwickler:innen
- Fördert intra- und interorganisationale
 Zusammenarbeit

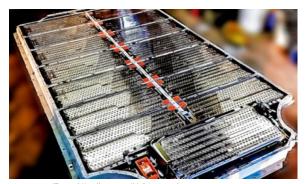
Schöggl, Josef-Peter, Rupert J. Baumgartner, and Dietmar Hofer. "Improving Sustainability Performance in Early Phases of Product Design: A Checklist for Sustainable Product Development Tested in the Automotive Industry." Journal of Cleaner Production 140 (January 2017): 1602–17. https://doi.org/10.1016/j.jclepro.2016.09.195.

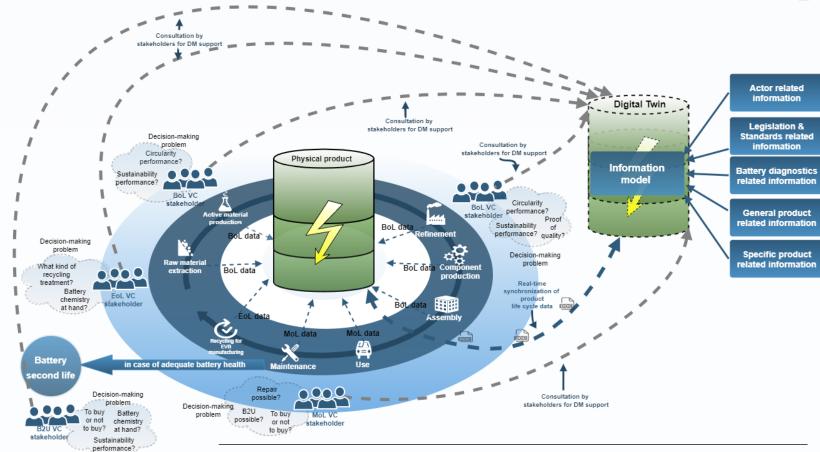
Umwelt-optimale Auslegung von alternativen Antriebssträngen für Nutzfahrzeuge

- Quantifizierung in frühen Entwicklungsphasen durch Beschränkung auf die zu erwarteten Haupttreiber der Umweltauswirkung
- 1. Schritt modulares Bewertungstool
- 2. Schritt "Lebenszyklus Energie Optimierung" (O'Reilly et al. 2017, Bouchourieb et al. 2021)

Antriebsstrang Architekturen Transmission Tank Transmission Tank Transmission Tank Transmission Tank Transmission Total Total Total Transmission Total Tot

(Bildquelle: Andrew Smallbone, Boru Jia, Penny Atkins, Anthony Paul Roskilly, The impact of disruptive powertrain technologies on energy consumption and carbon disrible emissions from beaux-duty vehicles. Energy Conversion and Management X, Volume 6, 2020, 100030, ISSN 7590-1741.


Modellierung der Nutzungsphase



Konzept eines digitalen Produktpasses (DPP) für Batterien von Elektrofahrzeugen

- Konzept und
 Prototypentwicklung eines
 Produktpasses für Batterien
- Fokus auf der Nutzung des vollen Potentials der Technologie
- EU plant die umfassende Einführung von DPPs für den Großteil von Produkten

Berger, Katharina, Josef-Peter Schöggl, and Rupert J. Baumgartner. "Digital Battery Passports to Enable Circular and Sustainable Value Chains: Conceptualization and Use Cases." Journal of Cleaner Production in press (2022). https://doi.org/10.31235/osf.io/e3pmg.

Zusammenfassung / Key Messages

- ODie Ökobilanz ist ein leistungsfähiges Bewertungstool mit einem breiten Anwendungsbereich
- Ergebnisse werden von verschiedenen Faktoren beeinflusst (z.B. Qualität der Daten (primär, sekundär), Annahmen, Bezugssystem, methodischen Entscheidungen Allokation, ...)
- Schafft Bewusstsein für Faktoren mit hohem ökologischem Einfluss (z.B. Energiemix)
- Wird weiter an Bedeutung gewinnen (für Unternehmen und Konsument:innen)
- Weiterer Forschungsbedarf hinsichtlich der Nutzung neuer digitaler Technologien und der Entscheidungsunterstützung

References

- Asada R, Cardellini G, Mair-Bauernfeind C, Wenger J, Haas V, Holzer D, Stern T (2020) Effective bioeconomy? A MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations. Technol Forecast Soc Chang 153
- Berger K. (2020). Use of unconventional materials to achieve environmentally conscious vehicle designs: influential factors of the environmental impact of a wood-based vehicle component. Masterarbeit, Karl-Franzens-Universität Graz.
- Berger, Katharina, Josef-Peter Schöggl, and Rupert J. Baumgartner (2022) "Digital Battery Passports to Enable Circular and Sustainable Value Chains: Conceptualization and Use Cases." *Journal of Cleaner Production* in press https://doi.org/10.31235/osf.io/e3pmq.
- Chebaeva, Natalia, Miriam Lettner, Julia Wenger, Josef-Peter Schöggl, Franziska Hesser, Daniel Holzer, and Tobias Stern. "Dealing with the Eco-Design Paradox in Research and Development Projects: The Concept of Sustainability Assessment Levels." *Journal of Cleaner Production* 281 (January 2021): 125232. https://doi.org/10.1016/j.jclepro.2020.125232.
- Mair-Bauernfeind, C., Zimek, M., Asada, R., Bauernfeind, D., Baumgartner, R. J., & Stern, T. (2020). Prospective sustainability assessment: The case of wood in automotive applications. The International Journal of Life Cycle Assessment, 25(10), 2027-2049.
- McManus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. Biomass and bioenergy, 82, 13-26.
- Schöggl, Josef-Peter, Rupert J. Baumgartner, and Dietmar Hofer. "Improving Sustainability Performance in Early Phases of Product Design: A Checklist for Sustainable Product Development Tested in the Automotive Industry." *Journal of Cleaner Production* 140 (January 2017): 1602–17. https://doi.org/10.1016/j.jclepro.2016.09.195.
- Zimek, M., Schober, A., Mair, C., Baumgartner, R. J., Stern, T., & Füllsack, M. (2019). The third wave of LCA as the "decade of consolidation". Sustainability, 11(12), 3283.

KARL-FRANZENS-UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

Moritz Kettele, MSc PhD Candidate

Institute of Systems Sciences, Innovation, and Sustainability Research, University of Graz Merangasse 18/1 8010 Graz, AUSTRIA

Tel.: +43 (0) 316 380 7337

Email: moritz.kettele@uni-graz.at web: http://circular.uni-graz.at/

PostDoc Researcher

Institute of Systems Sciences, Innovation, and Sustainability Research, University of Graz

Merangasse 18/1 8010 Graz,

AUSTRIA

Tel.: +43 (0) 316 380 7346 Fax: +43 (0) 316 380 9585

Email: claudia.mair@uni-graz.at

web: http://sis.uni-graz.at/

PostDoc Researcher

Christian Doppler Laboratory for Sustainable Product Management, University of Graz

Merangasse 18/1

8010 Graz, AUSTRIA

Tel.: +43 (0) 316 380 7345

Email: josef.schoeggl@uni-graz.at web: http://circular.uni-graz.at/