Convection permitting climate simulations (CPCS)
Lessons learned at the Wegener Center

H. Truhet, A. Prein, and A. Gobiet

University of Graz, Wegener Center for Climate and Global Change (WEGC), Graz, Austria

3rd Lund RCM Workshop @ Elite Hotel Ideon, Lund, Sweden, June 16 – 19 2014

email: heimo.truhetz@uni-graz.at Tel.: +43-316-380-8442
1. Improvements in convective precipitation in the Alpine region

2. Increased global radiation at surface

3. Resolution of 1 km enables nighttime inversions

4. Resolution of 1 km adds some (minor) value in extreme precipitation
Models and data

- Models: MM5 3.7.4, WRF 2.2.1 (WEGC)
 CCLM 4.8 (BTU Cottbus)

- Driving data: IFS (ECMWF) (Bechtold et al., 2008)

- Grid spacing: 10 km → 3 km → (1 km)

- Evaluation periods: JJA 2007 (DJF 2007/08)

- Reference data (gridded) nowcasting system INCA (ZAMG) (Haiden et al., 2011)
 hourly precipitation & global radiation, 1 km grid spacing

(from Prein et al., Clim. Dyn., 2013)
Effects due to 3 km resolution

- **Selected results** *(from Prein et al., Added value of convection permitting seasonal simulations, Clim. Dyn., 2013)*

 - **Diurnal cycle is delayed** → better timing of the onset and peak
 - **Precipitation areas become smaller and more intense**

JJA 2007

10 km

- **CCLM**
 - **4.8**

3 km

- **MM5**
 - **3.7.4**

Structure-Amplitude-Location (SAL) JJA 2007 *(Wernli et al., 2008)*
Effects due to 3 km resolution

- **Selected results** *(from Prein et al., Added value of convection permitting seasonal simulations, Clim. Dyn., 2013)*

 - Increase of global radiation (+20% in JJA; CCLM 4.8) as a **geometric effect**, but also as a consequence of the **shift in the diurnal cycle**

Funding: Austrian Science Fund (FWF) projects **NHCM-1** and **NHCM-2** *(www.nhcm-2.eu)*
1. Improvements in convective precipitation in the Alpine region

2. Increased global radiation at surface

3. Resolution of 1 km enables nighttime inversions

4. Resolution of 1 km adds some (minor) value in extreme precipitation
Nighttime inversions

WegenerNet (www.wegenernet.org) in operation since 2007 (Kirchengast et al., BAMS, 2013)

- 151 stations ➔ 1 station per 2 km²
- temperature, rel. humidity, precipitation
- 12 wind & soil parameters
- 1 net radiation & pressure
- 5 min interval
July 2007

Spatial anomalies of temperature from sunrise +/- 2 h

Compare with MM5, WRF, CCLM
Nighttime inversions

Mean anomalies

10 km

Mean: -0.0 Stand.Dev.: 1.2 Max: 4.2 Min: -2.4

3 km

Mean: 0.0 Stand.Dev.: 0.5 Max: 1.2 Min: -0.7

1 km

Mean: -0.0 Stand.Dev.: 0.6 Max: 1.4 Min: -1.0

MM5 3.7.4

WRF 2.2.1

CCLM 4.8
Overview

1. Improvements in convective precipitation in the Alpine region

2. Increased global radiation at surface

3. Resolution of 1 km enables nighttime inversions

4. Resolution of 1 km adds some (minor) value in extreme precipitation
Assessing Climate impacts on the Quantity and Quality of Water (ACQWA) **www.acqwa.ch**

funded by EU FP7

(from Prein et al., Project report, 2013)

- **Applicability of convection permitting RCMs for capturing extreme precipitation events in the Alpine region**

 - **Model:** CCLM 4.8 (WEGC)
 - **Driving data:** ERA-Interim (ECMWF)
 - *(Dee et al., 2011)*
 - *(ERA-40) (Uppala et al, 2006)*
 - **Grid spacing:**
 - 5 x 50 km → 7 x 12.5 km
 - 4 x 3 km → 4 x 1 km
 - **Evaluation period:** September 19 to 21, 1999
 - *(~MAP IOP 2b)*
 - *(Rotunno & Houze, 2007)*
 - **Reference data (gridded)**
 - RhiresD (MeteoSwiss) *(Wüst et al., 2010)*
 - daily precipitation, 2 km grid spacing
Effects due to even higher resolutions

- Two day sum of precipitation (September 19, 06:00 UTC to 21, 06:00 UTC)

- 12.5 km necessary to capture the location of the maxima
- 3 km: major improvements
- 1 km: structural improvements
Effects due to even higher resolutions

- Spatial Taylor diagram of two day sum of precipitation (September 19, 06:00 UTC to 21, 06:00 UTC)
Effects of 3 km grid spacing:

- Convective precipitation (in JJA) in the Alpine region get improved
- Biases are not necessarily reduced
- Global radiation is increased in JJA due to
 - changes in liquid cloud water
 - geometric effect (smaller clouds, larger cloud free areas)
 - shift in the diurnal cycle

⇒ effect in long-term simulations is unclear

Further increase of the resolution to 1 km grid spacing:

- nighttime inversions emerge
- added value to some extent in extreme precipitation events
Thank you very much!