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Acronyms and Abbreviations

3D Three-dimensional
ACCURATE Atmospheric Climate and Chemistry in the UTLS Region and

climate Trends Explorer
AEXPWIND Trace Gas Retrieval and Performance of Wind and Greenhouse Gas

Profiling in the Irdas-Exp/Accurate Context
ECEF Earth Centered Earth Fixed
EGOPS End-to-End Generic Occultation Performance Simulation and

Processing System
ESA European Space Agency
GNSS Global Navigation Satellite System
IR Infra-red
IRDAS-EXP SWIR Long Range Differential Absorption Experiment for Trace

Gas Measurements
LEO Low Earth Orbit
LIO LEO-LEO IR Laser Occultation
l.o.s. Line-of-sight
HITRAN High-resolution Transmission (molecular absorption database)
SWIR Short-Wave Infrared
TPH Tangent Point Height
UTLS Upper Troposphere Lower Stratosphere
WEGC Wegener Center for Climate and Global Change
xEGOPS Experimental EGOPS
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1 Introduction

The objective of this study is to develop, in line with the AEXPWIND proposal [1], an
Abel transform for the retrieval of the line-of-sight (l.o.s.) wind from future satellite-
to-satellite Infrared (IR) laser occultation measurements [2]. Theoretical considerations
are made in Section 2, and a couple of alternative transforms are developed and anal-
ysed. Assessment of errors and approximations are made using numerical simulations
in Section 3. Conclusions are drawn in Section 4.
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2 Theoretical considerations

2.1 Considerations about Doppler shifts

2.1.1 Doppler shift due to motion of the transmitter

A transmitter in a Low Earth Orbit (LEO) typically moves at a speed, vTx, of about
7500 m/s. For the frequencies of interest here (f ≈ 1.5×1014 Hz; wavelength λ ≈ 2 µm),
this gives rise to a relative Doppler shift of the transmitted signal on the order of

∆f

f
∼ vTx

c
≈ 2.5× 10−5, (2.1)

where c is the speed of light, and ∆f = f − fTx, fTx being the frequency generated
internally by the transmitter.

2.1.2 Doppler shift due to Earth’s rotation

Without any wind, it is the frequency in the ECEF (Earth Centered Earth Fixed) frame
that is relevant to the species absorption. Thus the rotation of Earth also induces a
Doppler shift depending on latitude and propagation direction of the signal. At the
Equator the speed of rotation, vΩ, is about 464 m/s, potentially giving rise to a relative
Doppler shift of about

∆f

f
∼ vΩ

c
≈ 1.5× 10−6. (2.2)

In practice, for a near polar orbit, the Doppler shift due to the Earth rotation would
be considerably smaller, but generally not negligible; it is always determined by the
projection of the local velocity of rotation onto the propagation direction.

2.1.3 Doppler shift due to wind

The part of the wind that would be measurable with LIO (LEO-LEO IR Laser Oc-
cultation) during an occultation event (mostly meridional component because of the
occultation geometry and near polar orbits) would have a maximum speed of several
10 m/s for which we can take 30m/s as a well representative speed [3; 2]. Such a
l.o.s. wind speed, vq, gives rise to a relative Doppler shift of about

∆f

f
∼ vq

c
≈ 1× 10−7. (2.3)

For comparison, the separation between the anticipated frequencies to be used for wind
measurements near the line center of the C18OO absorption line (line center at f/c =
4767.041455 cm−1) is about 1.6 × 10−6 [3; 2]. Thus, both the transmitter velocity and
the Earth’s rotation must be accounted for upon transmission of the signals such that

WEGC/TECHREP-ESA/01-2013 Abel transform for deriving wind profiles Fin.Version – June 2013



Page 8 of 26 2.2 Considerations about spherical symmetry

the effective frequency felt by the absorbing molecules are close to the desired ones.
In essence it is the velocity of the transmitter in the ECEF frame projected on to the
propagation direction (also in the ECEF frame) that is important, and the transmitter
would have to be able to adjust the internally generated frequencies on-the-fly based
on case-by-case geometry and transmitter velocity. This is foreseen as part of the LIO
mission design [4]. In the following it is assumed that it will be possible to shift the
internal transmitter frequency such that the desired frequency, f0, appears in the ECEF
frame. Neglecting relativistic effects (giving rise to an additional relative Doppler shift
on the order of 10−10), the internally generated frequency could be determined as

fTx = f0(1−
~uTx · (~vTx − ~vΩ)

c
), (2.4)

where ~uTx is a unit vector in the direction of the propagation at the transmitter, and
~vΩ could be the velocity vector of Earth’s rotation at the transmitter (for a straight
line originating at the transmitter in the direction of ~uTx, it can be shown that ~uTx ·~vΩ

is the same anywhere along the line although ~vΩ varies along the line). With this, the
wind-induced Doppler shift can be written as

∆fw = −f0
~u · ~vw

c
= −f0

~u · ~v
c

= −f0
vq
c

, (2.5)

where ~u is a unit vector along a ray path at a given point, ~vw is the 3D wind velocity
vector at this point, ~v is its projection into the occultation plane, and vq is the l.o.s. wind
speed introduced in (2.3).

2.2 Considerations about spherical symmetry

Adopting local spherical symmetry, we assume that the wind locally blows horizontally
along spherical shells, or more precisely that the projection of the wind velocity vec-
tor into the occultation plane follows a great circle, corresponding to a constant wind
speed, v, at any given altitude, z. In other words, in the neighborhood of the tangent
location of an occultation event, the wind is assumed to exhibit only a radial depen-
dence, v(r), where r is the distance from the center of local spherical symmetry (the
Earth’s ellipsoidal shape is disregarded here, since assumed rectified to spherical sym-
metry beforehand already by a suitable oblateness correction [5]). While in this case
the relation ~u ·~vw = vq = v will hold at the tangent point of a ray path, vq will otherwise

Figure 2.1 Illustration of a spherically symmetrical wind velocity, symbolized by ~v (here illustrated as
being constant with altitude, z, along spherical shells; blue-dashed), and its projection, ~vq, along a ray
path (red-dashed) between two LEO platforms.
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differ from v, and vary both along the ray path and along a given spherical shell. The
relation and difference between the vectors ~vq and ~v is illustrated in Fig. 2.1. While ~v
is the projection of ~vw into the occultation plane, ~vq is the projection of ~v (or ~vw) onto
the propagation direction (which in reality is slightly bended, though not illustrated as
such); vq = |~vq| and v = |~v|.

Although the variation of vq along a given spherical shell is small, and in practice
probably smaller than physical wind variations in general, it is a systematic variation
that needs to be accounted for, since we are interested in the vertical wind profile, v(z),
that is attributable to the tangent point trajectory of the occultation event. As we
will see below, the Abel transform that we can derive will be slightly different if we
directly assume vq (rather than v) to be spherically symmetrical. While the difference
is small, the direct solution for vq would be slightly biased, since it would be a solution
that implicitly assumes that the wind speed in the occultation plane is slightly smaller
at the tangent point than at other points on the great circle that includes the tangent
point.

For the sake of detailed understanding, we derive below formulae for both solutions, i.e.,
for the retrieval of v (the appropriate solution that we focus on) and for the retrieval
of vq (as a side check), respectively. We shall refer to both vq and v as the l.o.s. wind,
since their true values are identical at the tangent point to which we attribute their
solutions, but their different definitions should be kept in mind.

2.3 Formulae for retrieving the line-of-sight wind

The optical depth, τ , of a LIO measurement is theoretically given by

τ =
∫ Rx

Tx
kds, (2.6)

where k is the volume absorption coefficient and the integration is along the ray path.
The volume absorption coefficient is a function of frequency, pressure, temperature,
humidity, and trace gas species. For the wind retrieval, two frequencies, fw1 and fw2,
on each side of the line center of the C18OO absorption line, where the derivative with
respect to frequency is the largest, is envisaged to be used [2]. Inspired by the approach
of [3], we can write the volume absorption coefficient for a frequency f1 close to fw1 as

k(f1) = k(fw1) +
dk

df

∣∣∣
fw1

(f1 − fw1), (2.7)

and likewise for a frequency f2 close to fw2. If f1 and f2 are effective frequencies shifted
from fw1 and fw2, respectively, because of the wind-induced Doppler shift, we have

k(f1) = k(fw1)− fw1
dk

df

∣∣∣
fw1

vq
c

, (2.8)

and likewise for f2. Introducing ∆k0 = k(fw2) − k(fw1) and ∆χ0 = fw2
dk
df

∣∣
fw2

−
fw1

dk
df

∣∣
fw1

, the difference between the absorption coefficients becomes

∆k = k(f2)− k(f1) = ∆k0 −∆χ0
vq
c

, (2.9)
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and the optical depth difference can be written as

∆τ =
∫ Rx

Tx
∆k0ds− 1

c

∫ Rx

Tx
∆χ0vqds. (2.10)

Thus ∆k0 and ∆χ0 are differential parameters in the case of no wind, and in the
following these are assumed to be known, e.g., from independent measurements of the
C18OO concentration (using a frequency on the line center and a reference frequency
further away) and other parameters. Since fw1 and fw2 are very close, unwanted effects,
such as scintillations and defocusing, are removed to a very high degree in ∆τ from real
measurements.

2.3.1 Assuming v to be spherically symmetrical

The formulae in this section are based on the assumption that v = v(r) (besides the
assumption that n = n(r) and ∆k0 = ∆k0(r)), which is the physically appropriate
spherical symmetry assumption given that atmospheric dynamics at horizontal scales
larger than about 10 km closely fulfill hydrostatic conditions in the vertical, leading
to two-dimensional horizontal wind fields with comparatively negligble vertical wind
velocities [6]. Then, according to Bouguer’s law, vq = av(r)

rn(r) and ds = rn(r)dr√
r2n2(r)−a2

.

Making the substitution x = rn(r), we can write

∆τ(a) = 2
∫ ∞

a

x∆k0(x) dr
dxdx

√
x2 − a2

− 2
a

c

∫ ∞

a

∆χ0(x)v(x) dr
dxdx

√
x2 − a2

. (2.11)

Ignoring (for the moment only) ∆k0, we can solve for v using an Abel transform:

v(a) ≈ c

π∆χ0(a)
d
dr

∫ ∞

a

∆τ(x)dx√
x2 − a2

, (2.12)

where (as usual) r = a
n . Ignoring ∆k0 is justified if fw1 and fw2 is precisely located on

each side of the line center, but this might not be the case in practice [3]. If ∆k0 6= 0,
but known, we can define, and in principle compute

δ(a) = 2
∫ ∞

a

x∆k0(x) dr
dxdx

√
x2 − a2

, (2.13)

such that

v(a) =
c

∆χ0(a)
1
π

d
dr

∫ ∞

a

(∆τ(x)− δ(x))dx√
x2 − a2

. (2.14)

However, we can also write

δ(a) = 2
∫ ∞

a

a∆k0(x) dr
dxdx

√
x2 − a2

+ ε(a), (2.15)

where

ε(a) = 2
∫ ∞

a

√
x− a√
x + a

∆k0(x)
dr

dx
dx. (2.16)
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Since the first term on the right-hand-side of (2.15) is almost identical to that of (2.13)
(the difference being an a instead of the first x in the numerator of the integrand), ε(a)
is relatively small (and ∆k0 is already small by design). Ignoring ε(a), we can derive
an approximate expression for v(a) without having to compute δ(a), but instead use
directly the knowledge of ∆k0(a):

v(a) ≈ c

∆χ0(a)

[ 1
π

d
dr

∫ ∞

a

∆τ(x)dx√
x2 − a2

+ ∆k0(a)
]
. (2.17)

2.3.2 Side check: Assuming vq to be spherically symmetrical

The formulae in this section are based on the assumption that vq = vq(r). Then ∆k =
∆k(r) and

∆τ(a) = 2
∫ ∞

a

x∆k(x) dr
dxdx

√
x2 − a2

, (2.18)

with the inverse solution [7]:

∆k(a) = − 1
π

1
a

d
dr

∫ ∞

a

x∆τ(x)dx√
x2 − a2

. (2.19)

Applying (2.9), we arrive at

vq(a) =
c

∆χ0(a)

[ 1
π

1
a

d
dr

∫ ∞

a

x∆τ(x)dx√
x2 − a2

+ ∆k0(a)
]
. (2.20)

Comparing this to (2.17), we see a difference (x instead of a) similar to the one leading
to ε(a) (cf. (2.13) and (2.15)), which was ignored. However, whereas ∆k0 (in (2.13))
is presumably small by design, ∆τ (in (2.20)) can be appreciable when there is wind.
Thus, when the wind is blowing the difference between vq(a) and v(a) is likely to be
larger than the term that was ignored to get to v(a) in (2.17). Although the solution
for vq(a) is a useful side check, v(a) is the physically appropriate quantity as discussed
above. Thus, in the initial performance assessment below, we focus on analyzing the
accuracy and suitability of the formulation for v(a), with some comparisons to vq(a) as
given by (2.20).
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3 Numerical results

3.1 Absorption and transmission spectra

The volume absorption coefficient spectrum near the C18OO absorption line, for a
series of tangent point heights, is shown in the left panel of Fig. 3.1. The spectrum
is based on the HITRAN database (http://www.cfa.harvard.edu/hitran) [8] and the
information available at http://hitran.iao.ru. The line shape is the Voigt line shape,
which is the convolution between the Lorentz (pressure broadening) and the Gaussian
(Doppler broadening) line shapes [9]. It is here calculated numerically using a high
accuracy implementation of the Faddeeva function [10; 11] (using the expansion of [10],
Eq. 38(I), with N = 32 terms, together with Eq. 39 with M = 64). The atmosphere
was taken to be isothermal with a constant temperature of 240 K, a pressure scale height
of 7 km, a CO2 mixing ratio of 380 ppmv, and a C18OO abundance (relative to the CO2

content) of 0.42%. The line center is at 4767.041455 cm−1 and the two anticipated
wind retrieval channels are marked ±0.004 cm−1 on each side of the line center (vertical
lines in the figure). The right panel of Fig. 3.1 shows the corresponding transmission
spectrum (−10τ log(e); in dB) calculated by the Abel integral assuming straight-line
propagation (similar to (2.18), but for τ and k instead of ∆τ and ∆k, and with dr

dx = 1).
This can be compared to a similar figure in [3] and [4]. The differences to those works
are only noticeable for the lowest tangent point heights and can be attributed to the
straight-line propagation used here. Details on the numerical implementation of the
Abel integral to calculate the optical depths (as well as ε(a) in (2.16)) are described in
Appendix A.1.

Figure 3.2 shows the derivatives of the spectra in Fig. 3.1. For the transmission spec-
trum (right), this confirms the result from the earlier works mentioned above that the
inflection points, where the derivatives are maximum or minimum, are located close to
the anticipated wind retrieval channels, and more or less independent of tangent point
height (TPH). This should ensure maximum sensitivity to the wind-induced Doppler

Figure 3.1 Absorption coefficient spectrum around the C18OO absorption line (left), and the corre-
sponding transmission spectrum (right) for a series of tangent point heights between 5 and 35 km.
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Figure 3.2 First derivatives of the absorption coefficient spectrum (left) and the transmission spectrum
(right) based on the spectra in Fig. 3.1. Note that the units of the spectral derivatives of the absorption
coefficient and the transmission are [cm−1/cm−1]=[1] and [dB/cm−1]=[dBcm], respectively.

shift. However, for the volume absorption coefficient spectrum (left), the inflection
points depend on the TPH, and are only near the wind retrieval channels at the higher
altitudes. Thus, it becomes relevant to assess, not only the error we make if we ignore
ε(a) to get to v(a) in (2.17), but also the size of the higher order terms neglected in the
series expansion of ∆k in (2.9).

3.2 Wind retrieval error terms

Taking into account ε(a) as well as the second and third order derivatives in the series
expansion of ∆k, a quite accurate, iterative formula for the l.o.s. wind can be written
as

v(a) =
c

∆χ0(a)

[ 1
π

d
dr

∫ ∞

a

(∆τ(x)− ε(x))dx√
x2 − a2

+ ∆k0(a) (3.1)

+
(v(a)

c

)2
∆ζ0(a)−

(v(a)
c

)3
∆ξ0(a)

]
,

where ∆ζ0 = 1
2f2

w2
d2k
df2

∣∣
fw2

− 1
2f2

w1
d2k
df2

∣∣
fw1

and ∆ξ0 = 1
6f3

w2
d3k
df3

∣∣
fw2

− 1
6f3

w1
d3k
df3

∣∣
fw1

. Be-
sides even higher order derivative terms than the ones included here, very small terms
related to ∆ζ0 and ∆ξ0, somewhat akin to how ε is related to ∆k0 (cf. (2.16)), were
ignored to obtain (3.1). In order of appearance, the extra terms, when comparing this
to the approximate expression in (2.17), will be termed ε-term, ζ-term, and ξ-term.
These terms are measured in units of velocity (i.e., including the factor c

∆χ0(a)), and
they all contribute a little to the l.o.s. wind, or give rise to small systematic errors
in the retrieval if ignored. Likewise, c

∆χ0(a)∆k0(a) will be referred to as the k-term.

Since f2
w2

d2k
df2

∣∣
fw2

≈ f2
w1

d2k
df2

∣∣
fw1

, whereas f3
w2

d3k
df3

∣∣
fw2

≈ −f3
w1

d3k
df3

∣∣
fw1

, ∆ζ0(a) can be much
smaller than ∆ξ0(a), and the ζ-term and the ξ-term may be of the same order of magni-
tude. This depends on the precise location of fw1 and fw2 on each side of the absorption
line center. The extra terms could in principle be included in a solution without much
ado, and (3.1) could be solved iteratively with (2.17) as a first guess (possibly including
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the ε-term already), but it may not be worthwhile in practice since the error we make
by ignoring these terms is quite small. This was verified by numerical simulations shown
in the next section.

3.3 Residual error assessment

The results in this section are based on the absorption and transmission spectra with
the parameters and simplifications described in Section 3.1. To illustrate the possible
contribution of different terms in (3.1) to the error of a wind retrieval using (2.17), the
wave numbers (ν = f/c) corresponding to fw1 and fw2 were offset by 0.000045 cm−1

from the ideal values to get appreciable sizes of ∆k0 and ∆ζ0, i.e., νw1 = 4767.0375 cm−1

and νw2 = 4767.0455 cm−1. This corresponds to a relative shift of +10−8, comparable
to the knowledge and stability requirements of a possible future LIO mission [4; 2]. The
forward modeling of the optical depths were based on the Abel integral (again similar
to (2.18), but for τ and k, and with dr

dx = 1), taking into account the modification of
the absorption coefficient because of the wind-induced Doppler shift (via vq = a

xv(x)).
The integral in (2.17) (and the one for the ε-term in (3.1)) was solved numerically as
described in AppendixA.2.

The left panel of Fig. 3.3 shows the result of a simulation with a constant wind speed of
30 m/s, independent of altitude. The different terms are here plotted with the opposite
sign of that in (3.1) to illustrate the error made if they are ignored. The k-term is about
3 m/s (shown here as 1% of its total) and thus constitutes just about 10% of the total
wind in this case, whereas the other terms and the retrieval error we get by ignoring
them, are on the order of 0.1 m/s, i.e., ∼0.3%. The latter is truly negligible compared
to the k-term, which already would be close to the measurement resolution according to
the knowledge and stability requirements (more precisely, the measurement resolution
is ∼ 1 m/s given the stability requirement of 1 · 10−8(3σ) ≡ 1

3 · 10−8(1σ) specified in
[4]). The residual error if we include all of these small terms in the solution is less than

Figure 3.3 Residual errors in the retrieval of simple wind profiles. Left: for a constant wind velocity
of 30 m/s. Right: for a sinusoidal alternation of the wind with altitude (cf. Fig. 3.4). For reference, the
magenta vertical lines show 1% of the k-term, and the yellow curves are the residual errors if all the
other terms are accounted for in the retrievals.
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Figure 3.4 Modeled and retrieved wind profiles in the case of a sinusoidal alternation of the wind with
altitude.

0.01m/s (yellow curve) and is possibly due to the terms neglected in deriving (3.1). The
right panel of Fig. 3.3 shows the corresponding results for the sinusoidal wind profile in
Fig. 3.4 (inspired by the work of [3]). The ε-term is the same since it is independent
of the solution and depends only on ∆k0, whereas other residual terms depend on the
alternating wind with altitude. The residual error if we include all the terms in the
solution (yellow curve) is here about 0.1% of the true wind profile (with opposite sign),
and is mainly due to the discretization (100m intervals) in the numerical integration
and differentiation in (3.1). This was verified by increasing the vertical resolution by a
factor of two, which reduced the residual error by a factor of four.

Figure 3.5 shows the retrieval errors using either (2.17) (termed v-retrieval) or (2.20)
(termed vq-retrieval), for 30 and 5m/s constant winds, as well as the alternating wind
profile in Fig. 3.4. The left panel shows the results with the relative shift of νw1 and
νw2 being +10−8 as discussed above, whereas the right panel shows the results if νw1 =
4767.037 cm−1 and νw2 = 4767.045 cm−1, corresponding to a relative shift of −10−7.
With the channel offset at a magnitude of 10−8, we see that the retrieval error for
the vq-retrieval is significantly larger than that of the v-retrieval if the wind velocity is
30 m/s, especially below 20 km, but comparable to the v-retrieval if the wind velocity

Figure 3.5 Retrieval errors for different wind profiles using either (2.17) or (2.20). Left: for a relative
channel offset of +10−8. Right: for a relative channel offset of −10−7.
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is 5 m/s or alternating with altitude. With the channel offset at a magnitude of 10−7,
the v-retrieval always has a large error below 15 km, which is dominated by the ε-term
(being independent of the wind velocity, but proportional to the general size of the k-
term). This is comparable to the error of the vq-retrieval for a 30 m/s constant wind, but
as the wind becomes smaller, or alternating with altitude, the error of the vq-retrieval
is smaller below 15 km. However, as mentioned above, the ε-term could be taken into
account in the v-retrieval without much ado, significantly reducing the already small
error below 15 km, whereas the error in the vq-retrieval is more fundamental because
the vq-retrieval is based on the (on average) false assumption that vq is spherically
symmetrical (cf. Section 2.2).

In any case, the retrieval errors, even if the magnitude of the relative shift of the wind
retrieval channels is 10−7, is smaller than the error that we would face in practice
according to the knowledge and stability requirements (giving rise to an uncertainty in
the knowledge of the k-term of about 1 m/s).
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4 Conclusion

Different formulae involving Abel transforms have been developed and analysed for the
retrieval of the line-of-sight wind profile from future LEO-LEO IR laser occultation
measurements. The simplest formula is given by (2.17). Assuming spherical symme-
try, numerical simulations using the C18OO absorption line with the line center at
4767.041455 cm−1, show that the error using this formula is on the order of 0.1 m/s.
Details depend on the l.o.s. wind velocity and the shift of the two transmitted wind
retrieval channels with respect to their nominal values (the nominal values here taken
to be ±0.004 cm−1 on each side of the line center). The relative shift of the retrieval
channels were assumed to be 10−8. If the relative shift is instead 10−7, the maximum
retrieval error will be about 0.5m/s, which is still smaller than the error expected
according to the knowledge and stability requirements of a future instrument (being
about 1 m/s, corresponding to a relative shift of within 10−8 only). If needed in future
applications, a very accurate, but more elaborate formula is given by (3.1).

The next step will be an implementation of this new Abel transform-based wind re-
trieval in the EGOPS/xEGOPS software [12], in order to subsequently analyze the
performance of the LIO wind profiling in detail by way of quasi-realistic end-to-end
simulations.
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A Numerical solutions to Abel integrals

A.1 Forward Abel integral

Equation (2.18), with τ and k instead of ∆τ and ∆k, and with dr
dx = 1, reads:

τ(a) = 2
∫ ∞

a

xk(x)dx√
x2 − a2

. (A.1)

For accurate numerical implementation we can introduce the change of variable y =
exp(−

√
x2−a2

b ), where b is a constant (in units of length) to be determined below. Thus,
(A.1) can be written

τ(a) = 2b

∫ 1

0

k(x(y))
y

dy, (A.2)

where x(y) =
√

a2 + (b ln y)2. The upper limit (y = 1) corresponds to x = a where
the integrand has a finite value (as opposed to (A.1)). To show that the integrand,
with appropriate choice of b, also has a finite value (in fact 0) at the lower limit, we
can make the assumption that k(x) falls off exponentially with height for large x, i.e.,
k(x) ∼ exp(− x

H ), where H is a scale height at high altitudes. With this assumption,
we see that k(x)

y ∼ exp(
√

x2−a2

b − x
H ) → 0 for x → ∞, if b > H. In practice, most

accurate results are obtained if b is chosen such that the integrand is appreciable in a
considerable part of the interval between 0 and 1, but with a not too abrupt transition
to near zero for y → 0. In the numerical implementation here, b = 300 km. Setting
k(x)

y = 0 at the lower limit, (A.2) was solved numerically using the composite Simpson’s
rule with a sufficient number of subintervals between 0 and 1 (in the simulations in this
work, 1000 subintervals of size h = 0.001 was sufficient to ensure high enough accuracy
in all cases such that the discretization errors in the forward model were negligible in
the wind retrieval results; the discretization error of the composite Simpson’s rule is
proportional to h4).

For illustration, Fig. A.1 shows examples of the integrand of (A.2), with b = 300 km, for
four different values of the TPH. The volume absorption coefficient, k(x), was based on
the HITRAN database with the characteristics of the atmosphere given in Section 3.1,
and for a frequency corresponding to νw1 = 4767.037455 cm−1. The solid curves are for
a case without wind, whereas the dashed curves are for a case where the frequency, and
thereby the volume absorption coefficient, is modified due to a sinusoidal wind profile
(cf. Fig. 3.4). The numerical computation of the optical depth for each TPH (accurately
evaluating the forward Abel integral to infinity), amounts to finding the area under each
of the curves.

The same change of variable can be applied for the numerical integration involving other
functions than k(x), as long as the function approximately falls off exponentially with
altitude, e.g., in the numerical computations of bending angle from refractive index in
simulations of GNSS radio occultation measurements. In principle, the same change
of variable could also be applied in the so-called inverse Abel integral, solving for the
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Figure A.1 Examples of the integrand of (A.2) for four different values of the TPH.

wind profile and the absorption coefficient difference in equations (2.17) and (2.19),
or when deriving the refractive index from bending angle in GNSS radio occultation
measurements. However, simulated (or real) measurements are not available to infinite
altitudes, so one would have to augment the data with some analytical expression to
infinity, e.g., via statistical optimization or simple extrapolation. Such additional effort
was not made here. Instead, an alternative approach for solving the inverse Abel integral
is described in Appendix A.2.

A.2 Inverse Abel integral

Assuming ∆τ(x) = 0 at some high altitude (corresponding to x = atop) and above, we
define κ(a) as an approximation to the integral in (2.17):

κ(a) ≡
∫ atop

a

∆τ(x)dx√
x2 − a2

. (A.3)

Splitting up the integration into a sum of sub-integrals, we can write

κ(a) =
n∑

j=i

∫ aj+1

aj

∆τ(x)dx√
x2 − a2

, (A.4)
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where ai = a, an+1 = atop, and aj+1 > aj . Further, making the approximation that
∆τ(x) varies linearly with x in each sub-integral, they can be solved analytically. After
some effort (see [13]) we get:

κ(ai) = − 1
∆ai

[√
a2

i+1 − a2
i − ai+1 ln

(ai+1 +
√

a2
i+1 − a2

i

ai

)]
∆τ(ai)

+
n∑

j=i+1

{
1

∆aj−1

[√
a2

j − a2
i −

√
a2

j−1 − a2
i − aj−1 ln

( aj +
√

a2
j − a2

i

aj−1 +
√

a2
j−1 − a2

i

)]

− 1
∆aj

[√
a2

j+1 − a2
i −

√
a2

j − a2
i − aj+1 ln

(aj+1 +
√

a2
j+1 − a2

i

aj +
√

a2
j − a2

i

)]}
∆τ(aj),

(A.5)

where ∆aj = aj+1 − aj . As noted by [14], significant numerical precision may be lost
using such expression, because nearly equal terms are subtracted from each other. A
form that better preserves numerical precision is obtained by introducing εk = (ai+k−ai)

ai

for a given i (k = j − i; not to be confused with the volume absorption coefficient).
Equation (A.5) can then be written

κ(ai) = −ε−1
1

[√
ε1(2 + ε1)− (1 + ε1) ln

(
1 + ε1 +

√
ε1(2 + ε1)

)]
∆τ(ai)

+
n−i∑
k=1

{
(εk − εk−1)−1

[√
εk(2 + εk)−

√
εk−1(2 + εk−1)

− (1 + εk−1) ln
( 1 + εk +

√
εk(2 + εk)

1 + εk−1 +
√

εk−1(2 + εk−1)
)]

− (εk+1 − εk)−1

[√
εk+1(2 + εk+1)−

√
εk(2 + εk)

− (1 + εk+1) ln
(1 + εk+1 +

√
εk+1(2 + εk+1)

1 + εk +
√

εk(2 + εk)

)]}
∆τ(ai+k). (A.6)

This form was used to compute the integrals in (2.17) and (3.1) for a number of ai values
(the atmosphere was divided into n = 1000 layers of thickness h = 100m between 5 and
105 km; the discretization error of the approach is consistent with that of the following
derivative operation in those equations, which is proportional to h2). The same form
was also used to compute the integral in (2.20) just with x∆τ(x) replacing ∆τ(x) (i.e.,
assuming that x∆τ(x) varies linearly with x in each sub-integral).
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