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1 Introduction 

With his seminal paper “On the Pricing of Corporate Debt: The Risk Structure of 
Interest Rates” Robert C. Merton laid the foundation for the valuation and analysis of 
risky debt. The approach has become known as the Merton model and is nowadays 
widely used when analyzing and pricing risky corporate debt. 
 
The Merton model applies the insights of the well-known Black and Scholes (1973) 
option pricing model to the valuation of corporate debt. It focuses primarily on the 
analysis of zero-coupon debt and is based on a few general assumptions. First of all, 
it is assumed that the value of the firm (i.e., the total assets), !", merely consist of two 
classes of claims. On the one hand, the firm has a single, homogenous class of debt 
in the shape of a zero-coupon discount bond where the payment of the nominal value #$% is promised at maturity &. On the other hand, it has equity which is seen as a 
residual claim. The total assets are distributed logarithmically normally and can be 
described by the diffusion-type stochastic process 
 '!! = )*'+ + -*'. 

 
where )* refers to the drift. -* is the volatility of the return on the firm per unit time 
which is assumed to be constant. It is assumed that the term structure is flat, so also 
the risk-free interest rate / is constant. There are no taxes, transaction costs, or 
dividends, and the investors are price takers. Furthermore, securities are freely 
divisible and trading in the assets takes place continuously in time. 
 
Under these assumptions, the firm’s equity at maturity can be seen as a European call 
option written on the underlying asset !" with exercise price #$% and maturity & 
 0" = 10																			45	!" < #$%!" − #$%	45	!" ≥ #$%9 
 
Since the value of the debt can be written as the value of the total assets less the 
value of the equity, it follows that 
 :" = 1!" 											45	!" < #$%#$%						45	!" ≥ #$%9. 
 
This implies that the value of the firm’s debt can be seen either as a long position in 
the firm’s asset in combination with a short position in a call on the same, or as a long 
position in a risk-free zero-coupon bond combined with a short put on the assets. 
 
Following Merton (1974), the firm’s equity and debt at time + = 0 can be expressed as 
 0< = !< ∙ #('?) − #$% ∙ ABC∙" ∙ #('D) 
 
and 
 

 :< = !< ⋅ [1 − #('?)] + #$% ∙ ABC∙" ∙ #('D), (1) 
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respectively, where 
 

'? = JK !<#$% + L/ + -*D2 N&-* ∙ √& , 
 

'D = JK !<#$% + L/ − -*D2 N&-* ∙ √& = '? − -* ∙ √&, 
 
and #(∙) denotes the standard normal cumulative distribution function 
 
We rearrange equation (1) to better illustrate the composition of the debt. 
 

 :< = #$% ∙ ABC∙" − P#$% ∙ ABC∙" − !< ∙ #(−'?)#(−'D)Q ⋅ #(−'D) (2) 

 
The first term on the righthand side of equation (2) is the long position in the risk-free 
bond while the second term is equal to the expected discounted loss. The latter can 
be expressed as the product of the discounted loss given default (term in parenthesis) 
and the risk-neutral probability of default, 
 R: = #(−'D). 
 
The probability of default is the probability that the firm will be unable to satisfy some 
or all of the requirements specified in the debt specifications (i.e., the bond indenture).  
 
Since its publication in the 1970s, the Merton model has had significant influence on 
the scientific literature as well as in practice. In practical applications, however, the 
value of the assets, !<, and the volatility of assets, -*, must be proxied from observable 
variables, since they themselves are not directly observable. Instead, they are 
estimated iteratively using the value of the equity and the equity volatility which are 
both observable for listed firms. The value of the equity is derived from the share price, S<, multiplied by the number of shares issued. The equity volatility, -T,  is determined 
historically or implied from the market. 
 
The traditional Merton framework has a number of limitations, many of which have 
been addressed in various refinements and extensions.3 One shortcoming of the 
Merton model is, for example, the unrealistic assumption that the firm can only default 
at its debt maturity date. In reality, firms can default long before their assets are 
exhausted. Black and Cox (1976) were the first to develop a model with a more 
realistic default condition by allowing default to occur prior to the debt’s maturity. Their 
model uses methods for pricing barrier options and default occurs when the value of 
the firm’s assets falls below a specified time-dependent threshold. Additionally, they 

 
3 For a survey of the Merton model and its extensions see Bohn (2000) or Sundaram and Das (2009), 
for instance. 
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provide an analysis of the effects of subordination arrangements and restrictions on 
the financing of interest and dividend payments on the valuation process. In the Black 
and Cox (1967) approach the threshold (i.e., the bankruptcy trigger or killing price) is 
determined exogenously. Leland (1994) and Anderson and Sundaresan (1996), who 
also study the valuation of multiperiod debt contracts under uncertainty, endogenize 
the lower reorganization boundary, on the other hand. In our approach we follow the 
latter and determine the killing prices endogenously. 
 
A second limiting aspect of the Merton model is the assumption that the interest rate 
is constant. In reality, the value of debt is significantly influenced by interest rate risk. 
As a result, models with stochastic interest rates have been developed in an attempt 
to improve the quality of the valuations generated.4 Kim et al. (1993) develop a 
contingent claims valuation models with stochastic interest rates for corporate bonds 
that additionally incorporates the possibility of early default. Like Merton they model 
the firm’s debt as a single issue of debt outstanding and set a constant default 
boundary. Longstaff and Schwartz (1995) also provide a simple approach to valuing 
risky corporate debt that incorporates both default risk and interest rate risk. They 
derive simple closed-form valuation expressions for fixed and floating rate debt and 
assume a constant default boundary. The corporate bond valuation model by Briys 
and de Varenne (1997) also takes both early default and interest rate risk into account. 
However, they incorporate a stochastic default boundary. In this paper, we follow the 
original Merton (1974) approach and assume the interest rate is constant.  The term 
“risky” is therefore restricted to mean possible gains or losses owing to (unanticipated) 
changes in the probability of default. The definition does not encompass gains or 
losses resulting from (unanticipated) changes in interest rates. 
 
Furthermore, the assumption that the debt of the firm can be described by a single 
risky zero-coupon bond can be seen as a shortcoming of the Merton model. This 
assumption significantly reduces its relevance to pricing actual corporate debt, since 
firms will generally have more specific contractual features regarding their debt. When 
a firm’s debt incorporates interest payments and specific, potentially even 
complicated, repayment agreements, the valuation poses more of a challenge. This is 
due to the fact that if the firm defaults on a single interest payment, all subsequent 
payments (interest and principal repayment) are also defaulted on. Geske (1977)5 
proposes an extension of the Merton model that enables pricing single risky discrete 
coupon bonds with finite maturity using the multivariate normal distribution. The model 
is based on a technique for valuing compound options. Fischer et al. (2000) present a 
model based on Geske (1977, 1979) that allows for the valuation of loan guarantees 
regardless of the terms and conditions of interim payments. Similarly, our model allows 
for the valuation of any kind of debt instrument, irrespective of its interest payment 
structure and the specified redemption agreement. 
 
Finally, in the Merton framework as well as its extensions the firm’s debt is generally 
given in the shape of a single debt instrument. In reality, firms will often have a debt 
portfolio consisting of multiple different debt instruments. Since the default of the 
debtor in one debt instrument has immediate consequences for all other debt 

 
4 For a detailed overview on articles that incorporate both default risk and interest rate risk see Longstaff 
and Schwartz (1995). 
5 See also Geske and Johnson (1984). 
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instruments in the debtor’s portfolio, the instruments cannot be valued independently. 
We propose a technique for valuing single debt instruments when multiple debt 
instruments are present within the same firm that takes into account these 
interdependencies. 
 
In summary, we address all aforementioned limitations of the standard Merton model 
and provide a comprehensive model for the valuation of single debt instruments as 
well as debt portfolios irrespective of the interest and repayment modalities specified 
in the instruments’ indentures. Additionally, our model enables the incorporation of 
continuous dividend payments into the valuation. 
 
The paper is organized as follows. Section 2 describes our model for the valuation of 
single debt instruments depending on their different repayment agreements. We also 
provide a general closed-form valuation formula that can be used to value debt 
instruments with any kind of interest payment structure and repayment agreement. 
In Section 3, we adapt our valuation model to include the scenario where a single firm 
has multiple debt instruments. We show how the presence of other debt instruments 
influences the valuation of each respective debt instrument. Section 4 extends the 
multiple debt instrument scenario to incorporate continuous dividend payments to the 
equity holders. We conclude the paper in Section 5, which summarizes the main 
findings and suggests some avenues of further research. 

2 Different Repayment Agreements 

As mentioned above, the Merton (1974) analysis is simplified considerably by the 
assumption that the firm holds only one zero-coupon debt. This reduces its 
applicability to valuing actual debt which often resembles bonds with more 
complicated payback agreements. Geske (1977) derives closed-form valuation 
expressions to determine the value of a firm when the debt takes on the shape of risky 
coupon bonds. We generalize his coupon bond approach in order to be able to value 
risky debt for any kind of arrangement regarding the principal repayment, lump sum 
repayment, annuity repayment, and constant principal repayment. 
 

2.1 Valuation Setup 

Our considerations are based on a range of assumptions following Merton (1974) and 
Geske (1977). We assume that the firm has two classes of claims; debt and equity. In 
our first extension of the basic model we assume the firm has exactly one debt 
instrument in addition to its equity. This debt instrument can have any kind of interest 
and principal payment structure. Also, each payment to the debtholders is refinanced 
through new external capital, either using equity from existing or new equity holders 
or using debt. Additionally, we assume that changes in the value of the firm follow a 
stationary random walk, that the firm pays no dividends, and that investors agree about 
the volatility of assets, -*. 
 
Under these assumptions, if the face value of a risky debt instrument at + = 0 is #$%, 
then the outstanding debt at + = 1, 	 … , 	& − 1 is 
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#$%V = #$%VB? − RV = #$% − WRXV
XY?  

 
where RV is the proportion of the nominal value repaid at time +, #$%" = 0, and R" =#$%"B?. For a fixed nominal interest rate, 4Z[\	, the interest payments in each period + = 1, 	 … , 	& are  
 ]V = 4Z[\ ∙ #$%VB?. 
 
Since principal repayments reduce the value of the outstanding debt, the Merton 
formulas in their original form cannot be used to price the equity or the risky debt of 
the firm. This is the case because the equity must now be interpreted as a compound 
option rather than a simple European call option. The equity holders have two options 
in each period +. They can either pay the interest and principal repayments due (which 
is equivalent to buying a new option), or they can refuse to make the required 
payments and declare bankruptcy (which is equivalent to letting the option expire 
worthlessly).  
 

2.2 Valuation Basics 

The value of the equity at maturity & is zero if the interest and principal payments 
cannot be made. Otherwise, it equals the value of total assets less the interest 
payments and the principal repayments.  
 0" = 1 0 !" ≤ ]" + R"!" − (]" + R") !" > ]" + R" 

 
This is analogous to a call on the value of the firm, !", with ]" + R" as the strike price.  
 

At time (& − 1)`, momentarily after the final interest and principal payments, the value 
of the equity can be derived using the Black/Scholes formula 
 

 0("B?)a = !"B? ∙ #(ℎ?) − (]" + R") ∙ ABC ∙ #(ℎD) (3) 

 
where 
 

ℎ? = JK !"B?]" + R" + / + -*D2-*  

 
and 
 ℎD = ℎ? − -* . 
 
In consequence, the value of the risky debt at time (& − 1)` is 
 

 :("B?)a = !"B? ⋅ c1 − #(ℎ?)d + (]" + R") ∙ ABC ∙ #(ℎD). (4) 

 
The value of the equity just before the final payment is  
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 0("B?)e = 1 0 !"B? ≤ !"B?∗0("B?)a − (]"B? + R"B?) !"B? > !"B?∗  

 

where 0("B?)a is taken from equation (3). When it is assumed that all payments are 

refinanced with equity this is analogous to issuing new equity. !"B?∗  represents the 

killing price, or bankruptcy trigger, which is the critical value of the firm at + = & − 1 
where the value of the equity at	(& − 1)B is just as large as the interest and principal 

payments that are due at + = & − 1. 
 0"B?(!"B?∗ ) = ]"B? + R"B? 
 
This killing price is set by the equity holders in such a way that it is ensured that the 
value of the equity remains non-negative immediately after the promised interest and 
principal payments are made (i.e., at time	(& − 1)`). If the value of the equity does 
become negative, the shareholders will declare bankruptcy and transfer the value of 
the total assets to the debtholders. 
 
One period earlier still, at time (& − 2)`, the value of the equity is 
 

 
0("BD)a = !"BD ∙ #D(ℎ??, ℎ?D; hD) − (]" + R") ∙ ABD∙C ∙ #D(ℎD?, ℎDD; hD) − (]"B? + R"B?) ∙ ABC ∙ #(ℎD?) (5) 

 
where #D(. ) is the bivariate cumulative standard normal distribution, 
 

ℎ?? = JK !"BD!"B?∗ + / + -*D2-* 	ℎD? = ℎ?? − -* 	
ℎ?D = JK !"BD]" + R" + (/ + -*D2 ) ∙ 2	-* ∙ √2 	
ℎDD = ℎ?D − -* ∙ √2 

 
and 

 

iD = j1 k1 2l0 1 m 

 
is the correlation matrix. 
 
In general, the value of the equity at (& − n)` for n = 1, 	 … , 	& as a function of the total 
assets !"Bo can be calculated using 
 

 0("Bo)a = !"Bo ∙ #o(ℎ??, 	 … , ℎ?o; ho)						 (6) 

										−W(]"BV + R"BV) ∙ ABC∙(oBV) ∙ #oBV(ℎD?, 	 … , ℎDoBV; hoBV)oB?
VY<  
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where #o(. ) is the cumulative standard normal distribution of dimension s and p =1, 	 … , 	&, 
 

ℎ?X = ln L !"Bo!"Bo`X∗ N + (/ + -*D2 ) ∙ p-* ∙ √p  ℎDX = ℎ?X − -* ∙ √p 

 
and 
 

ho = shXt,Xu	v = w1																		45	p? = pD, 	p? = 1, 	 … , 	p, 	pD = 1, 	 … , pkp? pDl 							45	p? < pD, p? = 1, 	 … , 	p, 	pD = 1, 	 … , p0																																																																															AJnA.  

 
When n = &, equation (6) reflects the value of the equity at + = 0.  
 

The killing prices, !X∗, are determined following Fischer et al. (2000) using a reverse 
bootstrapping technique from + = & to + = 1 by ensuring that the value of the equity 
immediately after the interest and principal payments fulfills the following condition for 
each p = 1,… , &: 
 0Xa(!X∗) = ]X + RX  

 
where 
 !"∗ = ]" + R" . 
 
As mentioned above, the equity can be interpreted as a +-dimensional compound 
option. This is the case because the equity holders have the option either to pay the 

interest and principal repayment and buy a (& − 1)-dimensional option or to forfeit the 
firm to the debtholders at each interest payment and repayment date (see also Geske 
(1979)).  
 
Finally, the value of the risky debt of the firm can be derived using 
 

 

:< = !< − 0<	= !<[1 − #"('??, … , '?"; h")] + W(]V + RV)ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV). 6 (7) 

 
The debtholders can be seen as holders of risk-free debt and writers of a put option 
on the total assets while the equity holders can be viewed as the holders of this specific 
put option. Bankruptcy is analogous to the execution of the option. 
 

 
6 See Fischer et al. (2000) 
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2.3 Repayment-Specific Formulas 

We present the formulas for valuing a firm’s debt for four different types of principal 
repayment arrangements. First, take the case that the risky debt is present in the 
shape of a zero-coupon bond. No interest or principal payments occur during the term 
of the bond. The only payment occurs at maturity when the face value is paid to the 
debtholder. In this case, the value of the risky debt at + = 0 can be calculated using 
the Merton (1974) formula 
 

 
:< = !< − 0<	= !< ⋅ [1 − #('?)] + #$% ∙ ABC∙" ∙ #('D). (8) 

 
Second, the debt of the firm may be present in the shape of a coupon bond with lump 
sum repayment. This means that interest payments are due periodically according to 
the time interval specified in the bond indenture (e.g., annually, semi-annually) and 
that the face value of the debt has to be repaid at maturity. It follows that 
 ] = 4Z[\ ∙ #$% 
 
and the value of the risky debt can be calculated as  
 

 

:< = !< − 0<	= !<[1 − #"('??, … , '?"; h")] + W]V ⋅ ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV) + 

	#$% ∙ ABC∙" ∙ #"('D?, … , 'D"; h"). 7 
(9) 

 
Third, the specifications of the firm’s debt may state annuity repayment. This implies 
that a constant annuity, which is composed of both interest as well as principal 
repayment, is due at periodic payment dates. The annuity can be calculated using 
 zKK = z{|}~�," ∙ #$% 

 
where 
 

z{|}~�," = 	 c1 + 4Z[\,"d" ⋅ 4Z[\,"c1 + 4Z[\,"d" − 1 . 
 

In this setting, the interest in each period depends on the outstanding nominal value 
at the beginning of the corresponding period 
 ]V = 4Z[\ ∙ #$%VB? 
 
where 
 #$%V = #$%VB? − RV 
 

 
7 See Fischer et al. (2000) 
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and 
 

WRV
"

VY? = #$%<. 
 
The principal repayment at time + is 
 RV = zKK − ]V = R? ∗ (1 + 4Z[\)(VB?) 

 
and the value of the risky debt at + = 0 is 
 

 

:< = !< − 0<	= !<[1 − #"('??, … , '?"; h")] + WzKK ⋅ ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV). (10) 

 
Fourth, the debt may specify constant principal repayments, R. In this case, the value 
of the risky debt is 
 

 

:< = !< − 0<							= [1 − #"('??, … , '?"; h")] + W(]V + RV) ⋅ ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV). 8 (11) 

 

2.4 Interpretation and Analysis 

For a more detailed interpretation of the components of the value of the risky debt at 

time + = 0, the generic equation for any kind of repayment specification can be written 
as 
 

									:< = W(]V + RV) ⋅ ABC∙V"
VY? 	 

 

(12) 

 

−WP(]V + RV) ⋅ ABC∙V − !< ∙ #VB?('??, … , '?VB?; hVB?) − #V('??, … , '?V ; hV)#VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)Q
"

VY? ⋅ [#VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)] 
 
where 
 R/$ÅÇ(#$	:A5ÉÑJ+	ÑK+4J	+) = #V('D?, … , 'DV ; hV) 
 
is the cumulative risk-neutral survival probability until time + and conversely 
 

 R/$ÅÇ(:A5ÉÑJ+	ÑK+4J	+) = 1 − #V('D?, … , 'DV ; hV) (13) 
 
represents the risk-neutral default probability until time +. 
 

 
8 See Fischer et al. (2000) 
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From equation (12) it can be seen that the value of the risky debt can be interpreted 
as the value of a riskless bond (first term on the righthand side) less the present value 
of the expected losses for all periods (summation term). The latter is the sum over the 
product of two components – the discounted loss given default and the risk-neutral 

total probability of default – at each period +. 
 
The total risk-neutral probability of default at time + is calculated using 
 

 

R/$ÅÇ(#$	:A5ÉÑJ+	ÑK+4J	+ − 1	ÉK'	:A5ÉÑJ+	É+	+)= #VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)= #VB?('D?, … , 'DVB?, −'DV ; 	hVÇ)	 (14) 

 
where 
 #<: = 1 
 
and 
 

	hVÇ = shXt,	XuÇ v =
⎩⎪
⎨
⎪⎧ 1																		45	p? = pD, 	p? = 1, 	 … , 	p, 	pD = 1, 	 … , pkp? pDl 												45	p? < pD, p? = 1, 	 … , 	p, 	pD = 1, 	 … , p − 1

−kp? pDl 									45	pD = p	, p? = 1, 	 … , 	p																														0																		AJnA																																																																							
. 9 

 
Equation (12) can therefore be simplified to 
 
  

	:< = W(]V + RV) ⋅ ABC∙V"
VY? 	 

				−Wã(]V + RV) ⋅ ABC∙V − !0 ∙ #+−1 å'11, … , '1+−1, −'1+ ; 	h+′é#+−1 å'21, … , '2+−1, −'2+ ; 	h+′éè
"

VY? ⋅ ê#+−1 å'21, … , '2+−1, −'2+ ; 	h+′éë 
 

(15) 

 
Besides the cumulative and the total risk-neutral default probabilities, also the 
conditional risk-neutral probability of default can be calculated  
 

 

R/$ÅÇ(:A5ÉÑJ+	É+	+|#$	:A5ÉÑJ+	ÑK+4J	+ − 1)= R/$ÅÇ(:A5ÉÑJ+	ÑK+4J	+) − R/$ÅÇ(:A5ÉÑJ+	ÑK+4J	+ − 1)R/$ÅÇ(#$	:A5ÉÑJ+	ÑK+4J	+ − 1)= #VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)#VB?('D?, … , 'DVB?; hVB?) . (16) 

 
Using these insights, the risk-neutral recovery rate equals 
 

 
9 For the proof see Fischer et al. (2000), Appendix A. 
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ììVÇ = 	 !< ∙ AC∙V]V + #$%VB? ∙ #VB?('??, … , '?VB?; hVB?) − #V('??, … , '?V ; hV)#VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)	= 	 !< ∙ AC∙V]V + #$%VB? ∙ #VB?('??, … , '?VB?, −'?V ; 	hVÇ)#VB?('D?, … , 'DVB?, −'DV ; 	hVÇ). 
(17) 

 
The continuous (expected) yield to maturity of debt for risk-neutral investors, 0<Ç(î"), 
can be derived from 
 :< = W 0<′(ïÉnℎ	{J$ñV) ∙ ABTóÇ(òô)∙V"

VY?  (18) 

 
using the expected risk-neutral cash flow for each period. 
 0<Ç(ïÉnℎ	{J$ñV) = (]V + RV) ∙ R/$ÅÇ(#$	:A5ÉÑJ+	ÑK+4J	+)	+	0<′(!V|#$	:A5ÉÑJ+	ÑK+4J	+ − 1	ÉK'	:A5ÉÑJ+	É+	+) 
 0<′(!V|#$	:A5ÉÑJ+	ÑK+4J	+ − 1	ÉK'	:A5ÉÑJ+	É+	+)= ììÇ ⋅ (#$%VB? + ]V)	 ⋅	 [#VB?('D?, … , 'DVB?; hVB?) − #V('D?, … , 'DV ; hV)]= !< ∙ AC∙V ⋅ [#VB?('??, … , '?VB?; hVB?) − #V('??, … , '?V ; hV)]. 
 
Consequently, the value of the debt at + = 0 is 

 

 :< = W {!< ∙ AC∙V ∙ [#VB?('??, … , '?VB?; hVB?) − #V('??, … , '?V ; hV)]"
VY?  

(19) 

																																	+(]V + RV) ∙ #V('D?, … , 'DV ; hV)} 	 ∙ ABTóú(òô)∙V . 
 

2.5 Risk Aversion 

It has been shown that in reality the assumption of risk-neutrality, which is often made 
in theoretical models, rarely holds. Typical investors are risk-averse and not willing to 
invest at the risk-free interest rate. Instead, they require compensation for bearing risk 
and are therefore more interested in the risk-adjusted yield rather than the risk-neutral 
yield. We therefore additionally outline the calculation of the risk-averse probabilities 
as well as the risk-adjusted yield to cater to this preference.  
 
In the risk-neutral setting, the risk-free interest rate / is used to calculate the risk-
neutral yield based on the promised interest and principal payments. In the risk-averse 
setting, / can no longer be used. Instead the instantaneous drift of the total assets, )*, 
must be calculated in order to determine the risk-adjusted yield based on the risk-
averse expected interest and principal payments. This is done based on the 
intertemporal CAPM by Merton (1973) 
 )* = / + ()ù − /) ∙ û* 
 
where )ù 	is the drift of the market of unlevered assets and û* 	is the beta factor of the 
firm’s assets. The market drift is given exogenously, whereas the asset beta factor can 
either be exogenously given or determined iteratively from 
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ûT = üT ∙ !<0< ∙ û* 

where 
 üT = #"('??, … , '?"; h") 
 
if the equity beta ûT is estimated empirically. )* is then used to calculate the risk-

averse survival probability until time + 
 R/$Å(#$	:A5ÉÑJ+	ÑK+4J	+) = #V(†D?, … , †DV ; hV) 
 
where 
 

†?X = ln å!<!X∗é + ()* + -*D2 ) ∙ p-* ∙ √p  

 
and 
 †DX = †?X − -* ∙ √p. 
 
Conversely the risk-averse cumulative default probability until time + is 
 

 R/$Å(:A5ÉÑJ+	ÑK+4J	+) = 1 − #V(†D?, … , †DV ; hV). (20) 

 
The risk-averse total default probability at time + is 
 

 

R/$Å(#$	:A5ÉÑJ+	ÑK+4J	+ − 1	ÉK'	:A5ÉÑJ+	É+	+)= #VB?(†D?, … , †DVB?; hVB?) − #V(†D?, … , †DV ; hV)= #VB?c†D?, … , †DVB?, −†DV ;  hV′ d. (21) 

 
Finally, the conditional risk-averse probability of default at time + is 
 

 

R/$Å(:A5ÉÑJ+	É+	+|#$	:A5ÉÑJ+	ÑK+4J	+ − 1)= R/$Å(:A5ÉÑJ+	ÑK+4J	+) − R/$Å(:A5ÉÑJ+	ÑK+4J	+ − 1)R/$Å(#$	:A5ÉÑJ+	ÑK+4J	+ − 1)= #VB?(†D?, … , †DVB?; hVB?) − #V(†D?, … , †DV ; hV)#VB?(†D?, … , †DVB?; hVB?) . (22) 

 
The risk-averse recovery rate is  
 

 ììV = !< ∙ A°¢∙V]V + #$%VB? ∙ #VB?(†??, … , †?VB?; hVB?) − #V(†??, … , †?V; hV)#VB?(†D?, … , †DVB?; hVB?) − #V(†D?, … , †DV ; hV). (23) 

 
The continuous (expected) yield to maturity of debt for risk-averse investors, 0<(î"), 
is derived from 
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 :< = W 0<(ïÉnℎ	{J$ñV) ∙ ABTó(òô)∙V"
VY?  (24) 

 
where the expected cash flows at each payment date are 
  																				0<(ïÉnℎ	{J$ñV) = (]V + RV) ∙ #V(†D?, … , †DV ; hV) 																																																				+	!< ∙ A°¢∙V ∙ [#VB?(†D?, … , †DVB?; hVB?) − #V(†D?, … , †DV ; hV)]. 
 
It follows that the market value of debt at + = 0 is 
 

 
:< = W {!< ∙ A°¢∙V ∙ [#VB?(†??, … , †?VB?; hVB?) − #V(†??, … , †?V; hV)]"

VY? + (]V + RV) ∙ #V(†D?, … , †DV ; hV)} ∙ ABTó(òô)∙V (25) 

 

It is then possible to calculate the instantaneous volatility of debt, -£, and equity, -T, 
 

 -£ = ü£ ∙ !<:< ∙ -* (26) 

 

 -T = üT ∙ !<0< ∙ -* (27) 

 
where 
 ü£ = [1 − #"('??, … , '?"; h")] 
 
and 
 üT = #"('??, … , '?"; h") 
 
as well as the debt and equity betas 
 

 û£ = ü£ ∙ !<:< ∙ û* (28) 

 

 ûT = üT ∙ !<0< ∙ û*. (29) 

 
Furthermore, it may be of interest to calculate the distance to default. The distance to 
default shows how many standard deviations of the return of the asset lie between the 
value of the asset and its bankruptcy point (i.e., the killing price !V∗).  
 #"(::?′, … , 	::"′; h") = #"('D?, … , 'D"; 	h") 
 
Since 
 R/$Å′(SÑ/§4§A	ÑK+4J	+) = #V('D?, … , 'DV ; hV), 
 

for risk-neutral investors the distance to default for each period +, ::VÇ, is 
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 	::VÇ	 = JK !<!V∗ + L/ − -*D2 N +-*√+ . (30) 

 
For risk-averse investors the derivation applies analogously.  
 #"(::?, … , 	::"; h") = #"(†D?, … , †D"; 	h") 
 
Again, since 
 R/$Å(SÑ/§4§A	ÑK+4J	+) = #V(†D?, … , †DV ; hV) 
 
the risk-adjusted distance to default for each period +, ::V, is 
 

 	::V	 = JK !<!V∗ + L)* − -*D2 N +-*√+ . (31) 

 

2.6 Numerical Example 

We present a numerical example to illustrate our formulas for the coherent valuation 
of the debt. We value the debt of a firm whose total assets consist of non-dividend 
paying equity and a single debt instrument, namely a loan with lump sum repayment. 
The basic parameters are shown in Table 1. The value of the total assets of the firm 
amounts to 100, the volatility of the assets is 15%, and the beta of the firm’s assets is 
1. The nominal value of the debt instrument is 70 and the maturity of the debt is five 
years. Furthermore, the risk-free rate of interest is 2% p.a. and the drift of the market 
of unlevered assets is 4% p.a. 
 

Term T  5 

Asset value !< 100.00 

Face value #$%< 70.00 

Risk-free rate /	 2.00% 

Asset volatility -* 15.00% 

Asset beta û* 1.00 

Drift of the market of 

unlevered assets )ù 

4.00% 

Table 1: Parameters of a Single Debt Instruments 

 
As can be seen from Table 2, the firm pays annual interest at a nominal interest rate 
of 2.5% on its loan. This corresponds to a risk premium of 50 bp over the risk-free rate 
of interest. The value of the risk-free debt at + = 0, which is the present value of the 
promised payments discounted with the risk-free interest rate, amount to 70.58. This 
corresponds to the first term on the righthand side of equation (12). The value of the 
risky debt at + = 0 is 70.24. As mentioned in Section 2.4, this corresponds to the value 
of the risk-free debt less the present value of the expected losses for all future periods. 
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Time t 0 1 2 3 4 5 

Risk premium RP	 50 bp      

Nominal interest rate p.a. i®©™ 2.50%       

Value of risk-free debt D<̈≠ÆØ∞±ÆÆ 70.58      

Value of risky debt D<̈≠ÆØ≤ 70.24       

Killing prices V¥∗   60.08   60.91   62.18   64.45   71.75  

Cumulative PD¥Ç  0.03% 0.79% 2.95% 6.51% 14.17% 

Cumulative PD¥	   0.02% 0.46% 1.70% 3.80% 8.56% 

Total PD¥Ç  0.03% 0.76% 2.16% 3.56% 7.66% 

Total PD¥	   0.02% 0.45% 1.24% 2.10% 4.75% 

Conditional PD¥Ç  0.03% 0.76% 2.18% 3.67% 8.19% 

Conditional PD¥	   0.02% 0.45% 1.25% 2.13% 4.94% 

Recovery rate RR¥Ç   80.65% 79.42% 78.14% 83.58% 89.57% 

Recovery rate RR¥	   80.74% 79.67% 80.27% 81.90% 91.71% E<Ç (Cash	Flow¥)   1.77   2.17   2.91   3.77   66.51  E<	 (Cash	Flow¥)   1.76   2.00   2.43   2.92   68.74  

Distance to default DD¥Ç   3.46   2.42   1.93   1.58   1.12  

Distance to default DD¥	    3.59   2.61   2.16   1.85   1.42  
Table 2: Valuation Results for Firm with Single Debt Instrument (Lump Sum) 

Table 2 also gives an overview of the killing prices for each period which are 
monotonically increasing. While the cumulative probabilities of the default (PD) 
increase over time by definition, it can be seen that also the total as well as the 
conditional probabilities increase over time. Both the risk-neutral as well as the risk-
averse default probabilities increase more strongly with longer maturity. The risk-
adverse probabilities are uniformly lower than their risk-neutral counterparts. The 
recovery rates (RR) also increase towards maturity. However, the risk-adjusted 
recovery rates exceed the risk-neutral rates in all periods. Table 2 also shows the 
expected cash flows in comparison with the expected risk-neutral cash flows for each 
period. The risk-neutral cash flows exceed their risk-adjusted counterparts in all 
periods except + = 5 when the repayment is expected to take place. The distance to 
default (DD) for the lump sum loan decreases with time which the risk-averse distance 
exceeding the risk-neutral values. 
 
Next, we compare the valuation results for the lump sum loan with three other 
scenarios. We again value the same firm as mentioned above using the parameters 
specified in Table 1. For each valuation, we replace the firm’s debt with a different debt 
instrument. The nominal value of the debt in each scenario remains 70, merely the 
interest payment structure and the repayment modalities change. The results are 
summarized in Table 3. The first numerical column shows the results for the firm with 
the lump sum loan which we valued at the beginning of this section. Columns 2 shows 
the results when the loan is equipped with annuity repayment instead. Column 3 
depicts the case where constant principal repayments are specified for the debt 
instruments. Finally, column 4 shows the results when the debt instrument is present 
in the shape of a zero bond that is redeemed at its nominal value at maturity. As can 
be seen from Table 3, in the first three scenarios the debt pays annual interest of 2.5%. 
The zero-bond naturally does not pay any periodical interest. 
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Form of Repayment  Lump 
Sum 

Annuity Constant 
Principal 

Zero 
Coupon 

Nominal interest rate p.a. i®©™ 2.50% 2.50% 2.50% - 

Value of risk-free debt D<̈≠ÆØ∞±ÆÆ 71.58 70.98 70.96 63.34 

Value of risky debt D<̈≠ÆØ≤ 70.24   70.92   70.91   62.29  

Instantaneous debt volatility σø 1.71% 0.21% 0.21% 1.68% 

Instantaneous equity volatility σ¿ 46.36% 51.07% 51.06% 37.00% 

Debt beta βø  0.11   0.01   0.01   0.11  

Equity beta β¿  3.09   3.40   3.40   2.47  

Debt drift µø 2.23% 2.03% 2.03% 2.22% 

Equity drift µ¿ 8.18% 8.81% 8.81% 6.93% 

Promised continuous yield to maturity yƒ 2.40% 1.87% 2.03% 2.33% 

Expected risk-neutral continuous yield to 

maturity E<Ç (yƒ) 2.00% 2.00% 2.00% 2.00% 

Expected risk-averse continuous yield to 

maturity E<	 (yƒ) 2.17% 2.01% 2.01% 2.17% 

Table 3: Valuation Results for Firm with Single Debt Instrument (Different Repayment Scenarios) 

As above, the value of the risk-free and risky debt instrument is calculated for each 
scenario. For the lump sum loan, the annuity loan, and the loan with constant principal 
repayments this is done using the formulas presented in Section 2.3. The present 
value of the zero-coupon debt is derived using the Merton formula (equation (1)). 
 
The results show that the instantaneous volatility of debt is much higher for the lump 
sum repayment and the zero bond because the repayment of both debt instruments 
occurs late in the debt instruments’ lifetime. The promised continuous yield to maturity 
is the maximum yield that can be achieved via these debt instruments. Naturally, the 
expected continuous yields to maturity lie below the promised yields and the expected 
risk-neutral yield corresponds to the risk-free interest rate for each debt instrument. 
The expected risk-averse continuous yields to maturity lie below the promised but 
above the expected risk-neutral yields. They are highest for the lump sum and zero-
coupon scenarios. 

3 Multiple Debt Instruments 

In many cases, a firm’s debt will consist not only of a single debt instrument but of 
multiple debt instruments. When a firm’s debt consists of a portfolio of different 
instruments, the valuation of each specific debt instrument needs to be modified since 
the recovery rates in the event of bankruptcy change at each point in time. The 

valuation of the equity and the determination of the trigger values for bankruptcy, !V∗, 
do not change and can be carried out as described in the previous section. 
 

3.1 Valuation Setup 

In our second extension of the basic model we assume the firm has multiple debt 
instruments in addition to equity. We again base our formulas on a few simple 
assumptions. First, it is assumed that all debt securities will mature at time & and that 
they are all of the same rank. Furthermore, the nominal value of the entire debt at time +, #$%V, is the sum of the specific debt instrument under consideration, #$%V≈, and 

the remaining miscellaneous debt instruments, #$%Vù. 
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#$%V = 	#$%V≈ + #$%Vù 
 
The total interest and principal payments are in turn the sum of the respective specific 
and miscellaneous parts. 
 ]V = 	]V≈ + ]Vù RV = 	RV≈ + RVù 

 
In consequence, the claims of the creditors of the specific debt capital to be valued at 
time + are 
 

 ∆V = #$%VB?≈ + ]V≈#$%VB? + ]V . (32) 

 

3.2 Valuation 

The value of a specific debt instrument at maturity is 
 

 :"≈ = « ∆" ∙ !" 																			45	!" < #$%"B?≈ + ]"≈#$%"B?≈ + ]"≈								45	!" ≥ #$%"B?≈ + ]"≈». (33) 

 
At time (& − 1)B	, momentarily before the final interest and principal payments, the 
value of the debt can be expressed as 
 

                          :("B?)e≈ =	 1 ∆"B? ∙ !"B?  5ÉJJn !"B? < !"B?∗0                   5ÉJJn !"B? ≥ !"B?∗ 9 (34) 

                                              +10                   45 !"B? < !"B?∗∆" ∙ !"B?      45 !"B? ≥ !"B?∗ 9 
                                              −«0                                                     45 !"B? < !"B?∗∆" ∙ 0("B?)a − (R"B?≈ + ]"B?≈ )														 45 !"B? ≥ !"B?∗ ». 

 
The first term and the middle term on the righthand side of equation (34) can be seen 
as a short put and a long call, respectively, on ∆"B? parts of the total assets against a 
payment of zero. The third term is a short call on ∆" 	parts of the equity against a 

payment of R"B?≈ + ]"B?≈ . This short call is virtually a compound option since the equity 

itself represents an option on the total assets. 
 
One period earlier still, at time (& − 2)`, momentarily after the interest and principal 
payments, the value of the debt is 
 

 
:("BD)a≈ = !"BD ∙ 	[∆"B? + (∆" − ∆"B?) ∙ #(ℎ??) − ∆" ∙ #D(ℎ??, ℎ?D; hD)]+ (]"B?≈ + R"B?≈ ) ∙ ABC ∙ #(ℎD?) + (]"≈ + R"≈) ∙ ABD∙C ∙ #D(ℎD?, ℎDD; hD) 

(35) 

 
with 
 

ℎ?? = ln L!"BD!"B?∗ N + / + -*D2-* 	ℎD? = ℎ?? − -* 
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and 
 

ℎ?D = ln L !"BD]"≈ + R"≈N + L/ + -*D2 N ∙ 2
-* ∙ √2 	

ℎDD = ℎ?D − -* ∙ √2. 
 
Analogous to the value of the equity, the market value of the specific debt instrument 
at + = 0 is obtained	using 
 

 

:<≈ = !< …∆? + W(∆V`? − ∆V) ∙ #V('??, … , '?V ; hV)"B?
VY? − ∆" ∙ #"('??, … , '?"; h") 	

+W(]V≈ + RV≈)ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV). (36) 

 
In the special case that ∆V is constant, the market value of the specific debt instrument 
is 

 

:<≈ = ∆ ∙ !<[1 − #"('??, … , '?"; h")]	+W(]V≈ + RV≈)ABC∙V"
VY? ∙ #V('D?, … , 'DV ; hV). (37) 

 

3.3 Default Clause Regulations 

Bondholders may call their bonds prematurely if the firm fails to service interest or 
principal payments on time. When a firm has multiple debt instruments outstanding, 
bondholders may even call their bonds prematurely if the firm fails to pay interest or 
principal repayments on time on any of the other debt instruments issued. This is 
regulated under the international default clause, which grants creditors the right to 
demand the immediate repayment of their bond or loan amount outstanding as soon 
as the debtor shows certain signs of a potential default (e.g., insolvency). 
 
Similar regulations can be found under Anglo-American law in the so-called cross 
default clause. This is a clause in loan agreements and bond indentures according to 
which the default of a debtor in another credit relationship entitles the creditor to 
demand the early termination of his own obligation towards that debtor without there 
being any direct reason for termination. This is often referred to as acceleration. 
 

3.4 Practical Implementation 

In practical implementations the data for the valuation of the different debt instruments 
is obtained from a range of sources. For example, data is drawn from the plan balance 
sheets and the plan profit and loss statements as well as the firm’s interest and 
redemption schedule. Data from the firm’s strategic investment plan and its financial 
plan is also used in order to ensure that planned future borrowings can be taken into 
account. In addition to the firm-specific information the forecasts of the future interest 
rate levels play an important role. 
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The procedure for practically implementing the calculations presented above is 

straightforward. When the present value of the assets, !<, and the volatility of the 
assets, -*, are known, first, the interest and redemption schedules for all debt 
instruments are drawn up. From these schedules the claims of each creditor of the 
debt instrument to be priced at time +, ∆V, can be calculated. Using the reverse 
bootstrapping procedure mentioned in section 2.2, the equity capital is priced 
recursively from & − 1, 	& − 2, 	 … , 	1, 	0 and the killing prices !V∗ for each case are 

determined. Finally, each specific debt instrument can be valued at + = 0 using the 
formulas presented above. 
 
The more realistic situation is that !< and -* are unknown. In this case !< and -* must 
be calibrated from the present value of the equity, 0<, and its corresponding volatility, -T, which are known for listed firms. Again, in the first step, the interest and redemption 
schedules for all debt instruments must be drawn up. Next the reverse bootstrapping 
procedure is carried out to recursively value the equity capital from & − 1, 	& −2, 	 … , 	1, 	0 and to determine the killing prices !V∗ for each period.10 
 -T = ∆T ∙ !<S< ∙ Ã ∙ -* 

 
where 
 ∆T 	 = #"('??, … , '?"; h"). 
 
This simultaneously leads to !V∗, !<, and -*. Finally, each specific debt instrument and 

the total debt capital can be valued at + = 0 using the formulas presented above. 
 

3.5 Numerical Example 

We again present a numerical example to illustrate our formulas for the valuation of 
specific debt instruments out of a firm’s debt portfolio. We build on the example 
presented in the previous section. Recall that we analyzed one firm with one single 
debt instrument in different interest and repayment modality scenarios (i.e., lump sum, 
annuity, constant principal, zero coupon). Here, we value one single firm but make the 
assumption that the firm’s assets consist of two independent debt instruments in 
addition to its non-dividend paying equity. To be precise, the debt portfolio of the firm 
under consideration consists of a lump sum loan and a zero-coupon bond. The 
parameters from Table 1 are still valid, merely the total asset value is now changed to 
200 as can be seen from Table 4. Each debt instrument has a nominal value of 70. 
This ensures that the debt-to-assets ratio is identical to that of the previous example. 
The lump sum loan again pays annual interest of 2.5% while the zero-coupon debt 
pays no interest but is redeemed at par at maturity. 
 
 

 
10 This approach was first employed within Moody’s KMV model, a structural default prediction model 
frequently used in practice. For a detailed description of the derivation see Saunders and Allen (2010). 



 20 

Form of Repayment Specific Debt Lump Sum Zero Coupon 

Asset Value !< 200.00 

Face value specific debt Nom<œ 70.00 70.00 

Nominal interest rate p.a. i®©™ 2.50% - 

Share on total debt γ¥ = γ 50.62% 49.38% 

Value of riskless debt D<̈≠ÆØ∞±ÆÆ 70.58 63.34 

Value of risky debt D<̈≠ÆØ≤  70.35   62.23  

Instantaneous debt volatility σø 2.98% 3.37% 

Instantaneous equity volatility σ¿ 41.39% 41.39% 

Debt beta βø  0.20   0.22  

Equity beta β¿  2.76   2.76  

Debt drift µø 2.40% 2.45% 

Equity drift µ¿ 7.52% 7.52% 

Promised continuous yield to maturity yƒ 2.37% 2.35% 

Expected risk-neutral continuous yield to 

maturity E<Ç (yƒ) 2.00% 2.00% 

Expected risk-averse continuous yield to 

maturity E<	 (yƒ) 2.17% 2.16% 

Table 4: Valuation Results for Firm with Two Debt Instrument (Lump Sum & Zero-Coupon) 

 
We use our formulas to value each specific debt instrument. The results are also given 
in Table 4. The main insight from the valuation can be taken from the second numerical 
column which contains the results for the zero-coupon bond. Take the value of the 
riskless debt and the value of the risky debt, which are 63.32 and 62.23, respectively. 
Recall the valuation results for the zero-coupon debt in the single debt instrument case 
in Section 2.6. Same is here in the multiple debt instrument scenario, the value of the 
riskless debt was 63.34. The value of the risky debt, however, was 62.29 in the single 
debt scenario. This clearly demonstrates that the Merton formula can no longer be 
used to value zero-coupon debt in situations where a firm’s debt consists of a portfolio 
of different debt instruments. This is due to the fact that, as mentioned in Section 3.3, 
the default of one instrument in a debt portfolio has a direct impact on the other debt 
instruments in the portfolio and thus diminishes the value of the other instruments. 
This interdependency is also reflected in the expected risk-averse continuous yield to 
maturity which is 2.16 for the zero-coupon debt in the multi-debt scenario and 2.17% 
in the single-debt scenario. 
 
Table 4 also shows that the structure of the debt is irrelevant for the valuation of the 
equity. The instantaneous equity volatility, the equity beta as well as the equity drift 
are identical for both the lump sum and the zero-coupon debt. 

4 Multiple Debt Instruments with Continuous Dividends 

The previous sections were based on the assumption that the firm pays no dividends 
to its equity holders. In our third and final extension of the basic Merton model we 
extend the previous considerations to incorporate continuous dividends. These 
dividends have a constant return of —. They reduce the value of the firm and are thus 
accounted for in the stochastic process of the firm’s value via 
 '!V!V = ()* − —)'+ + -*'.. 
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The equity holders receive continuous dividend payments of — ∙ !V from + = 0 until 

bankruptcy or + = &, whichever comes first. 
 

4.1 Valuation 

As shown by Galai and Wiener (2015), the present value of the expected continuous 
dividends under the classical Merton model is  
 

 

!:< = “ 0<Ç(:4§V)ABCV'+ ="
< “ — ∙ 0<Ç(!X)ABCV'+ ="

< “ — ∙ !< ∙ A(CB”)∙V ∙ ABCV'+"
<= “ — ∙ !< ∙ AB”∙V'+ ="

< !< ∙ (1 − AB”∙")  (38) 

 
and the ex-dividend value of the total assets is 
 

 !<‘’ = !< − !:< = !< − !< ∙ (1 − AB”∙") = !< ∙ AB”∙" . (39) 

 
When the firm’s debt is present in the shape of a zero bond, the value of the risky debt 
is calculated as 
 

 :< = !<‘’ ∙ [1 − #('?‘’)] + #$% ∙ ABC∙" ∙ #('D‘’) (40) 
 
where  
 

'?‘’ = JK !<#$% + L/ − — + -*D2 N&-* ∙ √&  

 
and 
 

'D‘’ = JK !<#$% + L/ − — − -*D2 N &-* ∙ √& = '?‘’ − -* ∙ √&. 
 
The value of the equity can again be derived as a residual value 
 0< = !< − :<. 
 
When allowing for different repayment agreements, the present value of the expected 
dividends is 
 

 

!:< = W“ 0<Ç(:4§X)Ve
VB?

"
VY? ∙ ABC∙X'p

= W“ — ∙ 0<Ç(!X|#$	:A5ÉÑJ+	ÑK+4J	+ − 1)Ve
VB?

"
VY? ∙ ABC∙X'p 

(41) 
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This can be simplified to 
 

 !:< = !< ∙ (A” − 1)W÷AB”V ∙ #VB?c'?‘’,?, … , '?‘’,	VB?; hVB?d◊"
VY?  (42) 

 
where 
 

'?‘’,X = ln L !<!"BX∗ N + (/ − — + -*D2 ) ∙ p-* ∙ √p  

 
and 

 'D‘’,X = '?‘’,X − -* ∙ √p. 
 

The killing prices !X∗ for each period are calculated recursively ensuring that the 
boundary 
 0Xa(!X∗) = ]X + RX 
 
where 
 !"∗ = ]" + R" 
 
is fulfilled (see previous sections).  

 
 

The value of the firm ex dividend, !<‘’, is again the difference between the value of the 

firm without dividend payments, !<, and the present value of the expected dividends. 
 

 

!<‘’ = !< − !<(A” − 1)WAB”V ∙ #VB?c'?‘’,?, … , '?‘’,	VB?; hVB?d"
VY?  

= !< …1 − (1 − AB”)WAB”(VB?) ∙ #VB?c'?‘’,?, … , '?‘’,	VB?; hVB?d"
VY?   (43) 

 

The value of the firm’s overall debt at + = 0 is 
 

 
:< = !<‘’÷1 − #"c'?‘’,?, … , '?‘’,"; h"d◊ + W(]V + RV)ABC∙V"

VY? ∙ #V('D‘’,?, … , 'D‘’,V; hV)		
 

(44) 

 = !< …1 − (1 − AB”)WAB”(VB?) ∙ #VB?c'?‘’,?, … , '?‘’,	VB?; hVB?d"
VY?  ∙ ÷1 − #&('1Aÿ,1, … , '1Aÿ,&; h&)◊  

																						+W(]V + RV)ABC∙V"
VY? ∙ #V('D‘’,?, … , 'D‘’,V; hV) 
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4.2 Multiple Debt Instruments 

Since we allow not only for different payback agreements but also for multiple debt 
instruments within one firm, we are also interested in determining the value of a 
specific debt instrument. For this, we once again use ∆ to express the relation between 
the specific debt instrument under consideration and the total debt. The value of the 
specific debt instrument when the firm pays continuous dividends to the equity holders 
is 
 

 

												:<≈ = !<‘’ …∆? + W(∆V`? − ∆V) ∙ #Vc'??,‘’ , … , '?V,‘’; hVd"B?
VY? − ∆" ∙ #"c'??,‘’ , … , '?",‘’; h"d 

+ W(]V≈ + RV≈)ABC∙V"
VY? ∙ #Vc'D?,‘’ , … , 'DV,‘’; hVd	

= !< …1 − (1 − AB”)WAB”(VB?) ∙ #VB?c'?‘’,?, … , '?‘’,	VB?; hVB?d"
VY?  ⋅	

																												…∆? + W(∆V`? − ∆V) ∙ #V('??,‘’ , … , '?V,‘’; hV)"B?
VY? − ∆" ∙ #"('??,‘’ , … , '?",‘’; h") . 

(45) 

															+W(]V≈ + RV≈)ABC∙V"
VY? ∙ #Vc'D?,‘’ , … , 'DV,‘’; hVd 

 

4.3 Numerical Example 

We present a final numerical example illustrating the influence of dividends on the 
valuation of debt. For this, we once again use the firm we initially introduced in Section 
2.6. The total assets amount to 100 and consist of a single debt instrument as well as 
equity. As in the initial example, the debt instrument is a lump sum loan with a nominal 
value of 70, annual interest payments of 2.5%, and a maturity of five years. In contrast 
to the first example, however, the equity holders now receive continuous dividends on 
the equity capital. All other parameters remain unchanged (see Table 1). 
 

Continuous dividend payment rate q  0% 1% 2% 3% 

Value of risk-free debt D<̈≠ÆØ∞±ÆÆ 70.58 70.58 70.58 70.58 

Value of risky debt D<̈≠ÆØ≤ 70.24 69.79  69.25  68.60  

Table 5: Valuation Results for Firm with Single Lump Sum Debt Instrument (Different Dividend Scenarios) 

 
Table 5 provides and overview on how different continuous dividend payment rates 
influence the value of risky debt. The value of the risk-free debt at + = 0 is not 
influenced by the dividend payments since the calculation assumes that there is no 
risk of default. As can be seen from the table, the present value of the risky debt 
decreases with an increase in the continuous dividend payment rate. This is due to 
the fact that the dividends are paid out of the assets of the firm. The higher the 
dividend, the higher is the reduction of the asset and, in consequence, the lower is the 
value available to the debtholders in case of bankruptcy. 
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5 Summary and Concluding Remarks 

In this paper, we contribute to the literature on the valuation of risky debt by providing 
three multivariate extensions of the standard Merton model. First, we lay forth an 
approach to pricing risky debt irrespective of its interest payment structure and the 
specified redemption agreement. We provide repayment-specific closed-form 
solutions as well as a generic formula with which debt instrument with any kind of 
interest payment structure and repayment specification can be valued. Furthermore, 
we provide formulas for the derivation of the cumulative, total, and conditional 
probabilities of default, the recovery rate, as well as the distance to default. We provide 
all insights for the risk-neutral investor as well as for risk-averse investors. 
 
Second, we propose a technique for valuing multiple debt instruments within the same 
firm. We show that existing formulas for the valuation of debt cannot be applied to 
single debt instruments if the debt instrument is part of a debt portfolio. This is due to 
the fact that the default of one instrument in a debt portfolio has a direct impact on the 
other debt instruments in the portfolio. This interdependency diminishes the value of 
the other instruments and must therefore be incorporated into the valuation. 
 
Third, we provide an approach for pricing one or more debt instruments with 
continuous dividend payments. We extend our generic formula for the valuation of 
debt instruments irrespective of their indenture specifications to account for the effect 
of continuous dividend payments to the equity holders. In this paper, we follow a 
nested approach in the sense that each subsequent model contains the preceding 
model as a special case. 
 
We complement each section with a numerical example in order to make the 
theoretical model more tangible and highlight the easy-of-use of our model for practical 
applications. We generally advise financial practitioners to use our adapted formulas 
when valuing debt or for the calculation of default and recovery rates. The standard 
Merton model, whose application is still widespread in practice, can lead to inaccurate 
results, thus compromising the informative value of a valuation. Based on the formulas 
presented here, the accuracy of the valuation results can be improved. 
 
Obviously, the model can be extended in several further dimensions. One potential 
avenue for future work could be the incorporation of a non-flat term structure as 
opposed to a constant risk-free interest rate. In this paper, we assume that the firm 

decides on the structure of its debt portfolio at + = 0 and does not alter its composition 
until maturity. However, as Fischer and Wöckl (2019) suggest, it is meaningful for firms 
to evaluate the potential prepayment of existing debt instrument and refinance into 
new loans or bonds in order to take advantage of changes in the interest rate 
environment. The incorporation of such an evaluation into the models proposed here 
would require the departure from our assumption of a constant interest rate. Other 
models might instead incorporate a non-flat term structure to take such considerations 
into account. Another possible model extension is the inclusion of stochastic interest 
rates into the model. In this paper, we limit the constituents of the firm’s debt portfolio 
to fixed-interest debt instruments by assuming a constant deterministic interest rate. 
However, Fischer and Kampl (2019) show that under certain circumstances, firms 
should prefer variable-rate debt instruments to fixed-rate debt. Other models may 
therefore incorporate stochastic interest rates to enable the valuation of variable-rate 
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loans and bonds. Finally, other studies could investigate the effects of subordination 
arrangements on our formulas for the valuation of debt. 
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