A Software for Asset Market Experiments

Stefan Palan

June 13, 2014

Subsequently published as:

An electronic version of the paper may be downloaded from:
University of Graz: sowi.uni-graz.at/de/forschen/working-paper-series/
RePEc: ideas.repec.org/s/grz/wpsses.html
A Software for Asset Market Experiments

Stefan Palana,b,*

June 13, 2014

Abstract
In this article we lay out requirements for an experimental market software for financial and economic research. We then discuss existing solutions. Finally, we introduce an open source market software which is characterized by extensibility and ease of use, while offering nearly all of the required functionality.

\textbf{JEL codes:} C81, C92, C88, D47

\textbf{Keywords:} Asset market experiments, software

\textbf{Subsequently published as:}

a Institute of Banking and Finance, Karl-Franzens-University Graz, Universitaetsstrasse 15/E3, 8010 Graz, AUSTRIA
b Department of Banking and Finance, University of Innsbruck, Universitaetsstrasse 15/4, 6020 Innsbruck, AUSTRIA
* Corresponding author. Tel.: +43(512)507-7564, Fax: +43(512)507-2846, E-Mail stefan.palan@uibk.ac.at.
A Software for Asset Market Experiments

STEFAN PALAN

Department of Banking & Finance, University of Innsbruck, Austria, and
Institute of Banking & Finance, Karl-Franzens-University Graz, Austria
stefan.palan@uibk.ac.at, +43(512)507-7564

ABSTRACT

In this article we lay out requirements for an experimental market software for financial and eco-
nomic research. We then discuss existing solutions. Finally, we introduce an open source market
software which is characterized by extensibility and ease of use, while offering nearly all of the
required functionality.

JEL classification: C81, C92, C88, D47

Experimental Asset Market Software

A Software for Asset Market Experiments

ABSTRACT

In this article we lay out requirements for an experimental market software for financial and economic research. We then discuss existing solutions. Finally, we introduce an open source market software which is characterized by extensibility and ease of use, while offering nearly all of the required functionality.

JEL classification: C81, C92, C88, D47

Since the beginning of human history, trade has been an essential part of the lives of the human race and has played an important role in the development of civilization. Very early, centralized places of exchange were established to facilitate trade, promote competition, and thereby reap efficiency gains. Tremel (1969) for example writes about trade as early as in the neolithic (~10000-3000 BC), and mentions fortified marketplaces in the bronze age (~3000-1000 BC). The earliest comprehensive written records date from 11th century Europe (Casson and Lee, 2011).

Today, our globalized society is unimaginable without international trade. This is particularly evident in capital markets, where the greatest proportion of overall trading volume is handled by centralized marketplaces, with international traders. The value of the world’s stock capitalization alone amounts to $54.57tn.¹ Recent years have underlined the relevance of well-functioning markets. Crises like the crash in 2000, following the bubble in prices of new economy stocks, and the real estate and banking crisis of 2007 through 2012, were accompanied by severe impacts on global economic activity and prosperity. These and other crises thus showcased the interconnected nature of asset markets and the real economy.

Despite the great relevance and enormous volume of trade handled by centralized exchanges, however, the economics discipline still lacks a thorough understanding of all the factors and processes driving market activity. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for 2013 constitutes a fresh and apt metaphor for this observation: While all three laureates contributed to the understanding of how asset prices form, at least two hold diametrically opposed views of how well real-world financial markets fulfill their function of revealing “correct” prices. Eugene Fama is a proponent of the Efficient Market Theory, positing that markets instantaneously, fully and correctly aggregate new information, such that market prices can at all times be seen as the best estimate of the assets’ true underlying values. Robert Shiller on the other hand argues that market prices are intrinsically biased and driven by human behavior, which causes systematic deviations from the benchmark of informational efficiency.

¹ Data as of 2012; see World Federation of Exchanges (2013).
Such diametrically opposed points of view can only persist in a world where joint tests of market efficiency and a given asset pricing model are difficult, if not impossible (see for example Roll’s critique in Roll, 1977). This difficulty in judging the degree of market efficiency from empirical observations called for new scientific tools. Starting in the second half of the last century, experimental economics has begun to fill this gap. Using experiments where the researcher controls the market design, including the fundamental value of the asset being traded, the discipline has made substantial progress in identifying factors which inhibit and promote the correct functioning of markets. In particular, a multi-period asset market design introduced in Smith, Suchanek and Williams (1988) has sparked a long line of publications extending our knowledge about the factors driving informational market efficiency. See Noussair and Tucker (2013) for an overview of the most important results from experimental asset market research in general, and Palan (2013) for a survey of the literature based on the Smith, Suchanek and Williams (1988) paradigm. Overall, the literature of experimental asset market research has continued to grow for many years – a development which furthermore appears to be accelerating over time.

Nearly all of the papers studying experimental asset markets share their reliance on computer software to provide the market infrastructure. It is the aim of this paper to lay out the requirements for a high-quality experimental market software to cover a broad range of research questions, and to then propose a new software solution to address these requirements.

The paper is structured as follows: We start by laying out the requirements for a general-use software solution for asset market experiments in section 1. Section 2 then gives a concise overview of existing software packages intended to serve this purpose. Section 3 presents a new package which, we will argue, addresses most of the requirements outlined in section 1. Section 4 concludes, and the appendix in section 5 contains auxiliary information.

1 Requirements for experimental asset market software

We begin the body of this paper by laying out requirements for a general-use software solution for conducting asset market experiments. As such, we refrain from diving deep into the discussion of very specific solutions for one particular research question and instead outline a software which would be able to cover the bulk of the research done in this area. Nonetheless, one of the most important features of any research tool must be its comprehensive customizability, which alone renders it suitable to address not only current but also future research questions.
1.1 General requirements

1.1.1 Complete, time-stamped data record

It is important for any scientific software to ensure that no data is ever overwritten or lost. Most experimental software packages save data in real time or at least multiple times during an experiment, thus reducing the risk of data loss due to e.g. power outages or hardware problems. Nonetheless, in many implementations of experimental markets, data is overwritten or not recorded. Frequently, precise times of events in the experiment are not recorded. As an example, take the case of the partial execution of a multi-unit limit offer in a market. It is important to ensure that both the original offer (including the original offer volume) and all transactions resulting therefrom (with their respective volumes) are saved and connected such that the mapping from original offer to subsequent transaction is clear.

1.1.2 Customizability and extensibility

Software for economic experiments is subject to an important tradeoff: that between the ease of using and customizing it versus the degree of customizability and extensibility itself. A wide range of market software solutions are being employed by researchers. Together they cover all of the ground on the continuum between these two dimensions. On the one end are solutions like Charlie Holt’s VeconLab (veconlab.econ.virginia.edu), which is very easy to use and where parameters can be set with a few clicks, while at the same time offering only minimal customizability (essentially limited to the number of traders, initial endowments and value and cost functions). On the other end are solutions custom-programmed for a specific research question. In between, there are a handful of solutions which feature some non-modifiable background components (e.g. networking, data management, etc.), while leaving the most important aspects of the programming open to modification.

1.1.3 Reliability and lifetime

Since branches of scientific research frequently remain of interest for many years, it is desirable for a software solution to have a similar potential life. This criterion is more likely to be fulfilled by software platforms which are in widespread use and continuous development outside of the institution developing the specific research application. The list of discontinued software platforms, and of discontinued software solutions custom-built for market experiments, is long.

2 Take for example z-Tree (Fischbacher, 2007), probably the most widely used experimental software platform in economics. z-Tree automatically records the times when subjects click buttons in an experiment. However, it does so with a precision of only 1 second, and it automatically records only the last time a button was pressed on a given screen of an experiment. Furthermore, it does not record events like subjects’ movement from one stage of the experiment to another. While it offers the possibility of programming routines to record these events, hardly any of the programs underlying published papers make use of it, thereby limiting researchers’ scope of analysis.

3 Note that we suppress the initial “http://” for all internet links in this paper in the interest of conserving space.
A second important criterion is the reliability of the software in daily use. Solutions which are prone to hang or crash are of little use in a research laboratory. Furthermore, it is highly desirable for the software to have the ability to recover from the loss of connection to, or crashes of, client computers. It is also not detrimental if the software’s execution can be resumed after a server crash, even though the impact on the experimental session of such an event usually renders this capability moot. In any case, the software should continuously write all collected data to the disk, such that in the event of a malfunction at least partial data from the current session (up until the crash event) can be recovered.

1.1.4 Non-standard hardware and experiment designs

While the majority of economic market experiments are run in dedicated laboratories, with between 6 and 14 student subjects, taking no more than 2-3 hours, some researchers have conducted studies deviating significantly from this outline. Teaching experiments nowadays frequently allow students to use their own hardware (i.e., to access the market via web browsers on laptops, tablets or smartphones). Other experiments run over the internet, without the need for traders to be physically present in the same room or building. Some experimenters have furthermore conducted markets running for several weeks at a time, or employing more than 100 traders. See for example Williams (2008) for experiments running for nearly two months, conducted over the internet, using more than 300 traders in one market. An experimental software should therefore ideally be capable of running both in an experimental laboratory, where all subjects are physically present within the same room and the hardware is standardized, and over the internet, where subjects may be distributed globally and may use a wide variety of different devices. Furthermore, it should offer the possibility of comfortably running relatively short experiments (less than one hour, with periods lasting less than one minute) as well as considerably longer ones (multiple weeks, with periods lasting several days).

1.1.5 Cost

Any software for research should be as affordable as possible in order to enable even scarcely endowed research institutions to participate in the scientific dialogue. This speaks for e.g. open source software. An even bigger factor than the cost of purchasing software, however, frequently is the cost of its customization for a specific research question. Here, software which is based on a widely employed platform, where programmers and support are broadly available, is to be recommended. Also, it is desirable that the software run in existing labs with minimal necessity of configuration (e.g., purely browser-based software which can be run without any prior on-site

4 The delay caused by “repairing” a problem to the server computer or the server-end of a market software solution is usually in the order of several minutes, even if it consists only of restarting the software or computer. It thus causes an uncontrollable effect on subjects’ behavior in the experiment. For this reason, most experimenters prudently choose to discard data from such disrupted sessions.
installation). Finally, it helps when the output from experiments can be easily imported and manipulated by statistics packages once it comes to analyzing the generated data.

1.2 Requirements regarding the market mechanism

1.2.1 User-friendly interface

The interface is one of the most important elements of an experimental software, yet at the same time it is difficult to make general statements for a broad range of research applications about what constitutes good interface design. Generally speaking, it is beneficial for an interface to be as uncluttered and clear as possible in order to facilitate subjects’ understanding of the interface, as well as their grasp of the goings-on in the market. Relevant information should at any time be clearly visible, while additional, less relevant information may be concealed until requested by the subject (e.g. in the form of a pop-up window which the subject can turn on or off, or by allowing subjects to filter long lists of data) in order to lighten the on-screen information load. In the case of applications where subjects’ response time is critical, it is furthermore important that the interface be optimized for speed. Finally, the interface should scale well to different screen resolutions, since laboratories frequently differ in the hardware and settings used.

1.2.2 Choice between single- and multi-unit trading

The market mechanisms employed in experiments reported in the literature fall into two categories - those which allow subjects to submit only single-unit and those which allow subjects to submit multi-unit orders to trade. A large part of the literature following the paradigm introduced in Smith, Suchanek and Williams (1988) for example uses single-unit trading, mainly in an effort to simplify order submission. Other experiments allow multi-unit order submission with the intention of allowing subjects to trade more “realistic” amounts of cash and assets.

1.2.3 Single or multi-period trading with or without wealth carryover

Depending on the experimental research question, researchers use single period or multi-period experiments. For the latter, there is a distinction between setups with a fixed ending period and ones where the latter is determined during the course of the experiment (e.g., by coin flip at the end of every period). Furthermore, in multi-period experiments, some designs require asset and cash balances to be reset from one period to the next (see e.g., Palfrey and Wang, 2012, Hauser and Huber, 2012, and Comerton-Forde and Putniņš, 2011), while others require them to carry over from one period to the next (see for example the literature following Smith, Suchanek and Williams, 1988).
1.2.4 **Possibility to trade in multiple markets**

While most asset market experiments are limited to trading in a single asset, some offer subjects the possibility to trade in more than one asset (e.g., Kleinlercher, Huber and Kirchler, 2014, Ackert et al., 2009, Childs and Mestelman, 2006). When such a functionality to trade in multiple markets is present, interface design becomes even more relevant than for a single market design. In some experiments, multiple markets are displayed side-by-side on the trading screen, while in others subjects can switch between different markets. In addition to trading in multiple markets of simple assets, some experiments (e.g., Porter and Smith, 1995, Noussair and Tucker, 2006, Palan, 2010) allow subjects to trade derivatives on the main market’s asset.

1.2.5 **Parameter specification**

Asset market experiments differ in how parameters like the initial endowments, possible dividend amounts or signals about the fundamental value of the traded asset are specified. While some designs call for these parameters to be randomly drawn by the software, others require the option to let the experimenter pre-specify them. Furthermore, in the case of complex parameter structures (e.g. different, pre-specified signal sets for different treatments; or parameters derived from the outcomes of a previous experiment), it is helpful if the experimental software allows for importing individual parameter values or entire sets of parameter values.

1.2.6 **Designated trader roles**

Some experiments assign designated trader roles to their subjects. Instead of subjects being allowed to both buy and sell within the same period, designated buyer (seller) subjects are allowed only to buy (sell). See Smith (1962) for one of the most famous examples of such a design.

1.2.7 **Order validation**

The area where, in our experience, a great number of experimental asset market software solutions are lacking is in order validation. Some programs allow the submission of crossing orders, i.e. submission of a bid (ask) with a price higher than the price of the best outstanding ask (bid). Others allow subjects to accept other than the best bid and ask offers. Some do not even rule out churning, i.e. the practice of subjects trading with themselves. The latter drives up trading volume and carries the risk that subjects – by trading with themselves at off-equilibrium prices – try to manipulate others into submitting orders with biased prices. In contrast to these examples, experimental asset market software should optimally enforce the following rules:

- Subjects may not spend more than their cash plus any margin available to them.
- Subjects may not sell units of the asset exceeding their inventory plus any short-selling capacity available to them.
• The price of a new bid (ask) shall not exceed (be lower than) the price of the lowest (highest) outstanding ask (bid) price.
• Subjects may not accept bids (asks) with prices lower (higher) than that of the highest (lowest) priced bid (ask) currently outstanding.
• Subjects may not trade with themselves.

Furthermore, some markets implement a bid-ask-improvement rule, i.e. a rule that any new bid (ask) must have a price higher (lower) than the best outstanding bid (ask). Finally, it may be desirable to limit the number of bids and asks any individual subject has outstanding, if only to conserve screen space.

1.2.8 Order types and priority

The minimum requirement for any market software is to admit limit orders. Apart from this, it is common to permit the submission of market orders in continuous double auction markets, while less so in sealed bid-ask call auction markets. Furthermore, some research questions require more advanced order types, like stop loss or iceberg orders.

Markets also differ with regard to the order priority when it comes to price determination and settlement. In continuous double auction markets, price-time priority is usually sufficient to establish a clear order of trade execution and settlement. In call auction markets, the situation is more complex. While it is common for international exchanges to commence the price determination by finding the price which maximizes trading volume (i.e., number of assets traded), the subsequent steps in the case where multiple prices fulfill this first criterion differ between exchanges. Most choose the volume maximizing limit price which minimizes the demand-supply imbalance. Yet some orient the price at a reference price, e.g., the previous closing price. In the next step, some exchanges choose the highest (lowest) volume maximizing limit price with minimum order imbalance if there is a bid (ask) surplus for all such prices. Table 1 presents the price determination mechanisms at a sample of international exchanges which publish their price determination mechanisms.

[Insert Table 1 about here.]

For most asset market experiments, the precise determination of priority in price setting and order execution is not part of the assumptions underlying the research question(s). Nonetheless, we consider it important to clearly report the precise mechanisms used.\footnote{Unfortunately, papers frequently fail to do so, although reporting such technical details of the design should be done as a matter of course in our opinion.} Of greater importance may be the speed of price determination and order settlement in experimental call auction markets. It is vital that this procedure be fast.
enough to ensure fluid operation of the market, without unduly interrupting the flow of the experiment.

2 A brief overview of existing solutions

Most researchers conducting asset market experiments program proprietary markets, using for example the z-Tree platform (Fischbacher, 2007). Due to missing data about these types of programs, and their unavailability to the wider research community, it is neither possible nor desirable to discuss each of them. We therefore limit ourselves to discussing publicly available solutions which have already been used in multiple published experiments. Unfortunately, at the time of our writing, development of a number of software platforms which had been or still are publicly available has ceased, such as in the case of Aton (www.aton.com.au/activeexperiments.html), JessX (jessx.ec-lille.fr), Marketscape (marketscape.caltech.edu), Regate (www.gate.cnrs.fr/perso/zeiliger/regate/regate.htm), Weblab (github.com/tomrutter/WebLab) and Zocalo (prediction markets, zocalo.sourceforge.net). For other platforms which are still under active development, we were unable to find any mention of an asset market application: BoXS (boxs.uni-bonn.de), Coral (code.google.com/p/coral-econ), jars (github.com/s-plum/jars), Multistage (multistage.ssel.caltech.edu:8000/multistage) SWiEE (swiee.econ.unito.it) and Willow (econwillow.sourceforge.net). Finally, a few asset markets out there are unsuitable for research due to their extremely limited customizability: EconPlay (www.econplay.fr), Moblab (www.moblab.com) and Veconlab (veconlab.econ.virginia.edu). We are left with four publicly marketed experimental asset market software solutions which are still under active development. We present them in the following sections.

2.1 EconPort MarketLink

MarketLink was developed at the University of Arizona and is currently being supported from Georgia State University. It is based on Java and experiments can be run over the internet. The software allows for conducting continuous double auction and sealed bid-ask call auction experiments with limit and (optionally) market orders. Subjects can be assigned to a fixed role – either buyer or seller – or can be allowed to both buy and sell. Trading can either be restricted to a single unit of the asset per order, or can be set to allow for multi-unit transactions. The costs and values of the asset can be induced per trader, or can be set equal for all market participants. Additional options are:

- Up to three simultaneous markets, with individual traders acting in all or in a subset of the available markets.
- Possibility to add taxes, subsidies, price controls and externalities.
- Possibility to visualize results using tables and graphs.

6 Information from EconPort (2006) and from an email exchange with the developers.
• Possibility to implement a bid-ask improvement rule.
• Periods can be independent or cash and asset balances can be carried over to the subsequent period.
• Optionally, traders can be granted the possibility to invest into changing their future marginal cost structure.

2.2 jMarkets

Developed by the Social Science Experimental Laboratory at Caltech, jMarkets is open-source software based on Java. It features support for multiple simultaneous markets using a continuous double auction or sealed bid-ask call auction institution. The order book can be either open or closed, and traders can be either buyers, sellers, or both. jMarkets supports customized payoff and bankruptcy handling and allows for short-sales constraints and bankruptcy cutoffs. Cash and assets can be carried over from one period to the next, or the can be converted into profits for the traders and re-initialized in new periods. It is optimized for large markets and supports experimentation over the internet. Additional features include:

• Client side real-time market updates: The color of a price-level cell flickers and changes or an arrow appears on either side of the market bar, depending on which trading interface one chooses, to reflect trading activities in real time. Security and cash holdings are updated automatically on client interfaces.
• Client re-authentication: A client can re-join a running session at any time by logging in again, whereupon holdings and standing offers are automatically restored.
• Client orderbook: The screen displays a table showing all the standing orders submitted by the client for each security in the current period.
• Client transaction table: The screen displays a table showing the transactions with which the client was involved in the current period.
• Client earnings table: The screen displays a table showing how much the client has earned in each period on each security, including the total payoffs.
• Real-time price chart: A price chart on the client interface displays price movements of each security in real time.
• Best price buttons: Best buy/sell buttons for each security allow traders to quickly hop to the best offers on either side of the market in order to conserve time.
• Past order and transaction caching: Both order and transaction panels can optionally retain past trading period data.

2.3 Rotman Interactive Trader

Developed by the Rotman School of Management at the University of Toronto, the Rotman Interactive Trader offers a highly customizable interface for both sealed bid-
ask call auction and continuous double auction trading. It is structured as a cli-
ent/server application and intended for use over the internet. The software supports
various order types and offers facilities for implementing transaction costs. It also
allows traders to link data to Microsoft Excel™ in real time and offers a built-in risk
management system. The software is set up to allow for the simulation of equities,
fixed income securities, options, futures and commodities, and it allows for the im-
plementation of computerized agents filling the roles of noise traders, liquidity trad-
ers, informed traders and option traders. Finally, the Rotman Interactive Trader can
announce – to all or only a subset of traders – news based on a predetermined time-
table, or input by the experimenter. Note that the software platform and associated
simulation cases are available under a campus license.

2.4 SoPHIE Labs Double Auction Asset Market

Based on the SoPHIE platform (Hendriks, 2012), the asset market add-on developed
by SoPHIE Labs allows for conducting double auction experiments with a single as-
set. It offers an open order book, a list of transactions and a price chart displaying
offers and transactions. All of these display elements are optional. Traders can submit
and cancel bids and asks for a single unit of the asset, limited only by their budget of
experimental cash and units of the asset. Finally, the software supports multiple lan-
guages. It is pre-configured for English and German, but other languages can be
added by modifying a single text file. Since the solution is based on common web
infrastructure like PHP/MySQL, it is highly extensible, and there is a deep pool of
programmers available nearly worldwide. Furthermore, it is well-suited for conduct-
ing internet experiments and offers a direct integration of Amazon Mechanical Turk.

3 The Graz-Innsbruck Market System

The Graz-Innsbruck Market System (GIMS) is open-source software, developed to
offer an extensively customizable infrastructure for conducting market experiments.
It runs on the z-Tree platform of version 3.4.2 and later (Fischbacher, 2007) and
requires a minimum screen resolution of 1024x768 pixels, although it looks better
and is optimized for wide-screen displays. The following sections give an overview
of its built-in features and characteristics. Note that the current version of the
software, including detailed documentation, can be downloaded from academic.
palan.biz/downloads/gims.

3.1 General features

GIMS offers pre-programmed facilities for conducting continuous double auction and
sealed bid-ask call auction market experiments. In addition, it allows for the elicita-
tion of several types of subject characteristics. In particular, experimenters can run

9 Information from SoPHIE Labs (2014) and from an online presentation by the developers.
the cognitive reflection test (CRT) of Frederick (2005) and elicit the Holt and Laury (2002) risk aversion measure before or after the market phases. Furthermore, the software can be set to require subjects to answer financial literacy questions from van Rooij, Lusardi and Alessie (2011) at the end of the experiment. Finally, the software package includes a questionnaire eliciting subjects’ addresses, socioeconomic data, risk-attitudes, problems encountered during the experiment, and any other comments subjects might want to make (see Appendix 5.1).

The following features characterize the entire software package:

Multi-language support The software is currently capable of supporting experiments in English and German. Extending it to other languages requires the translation and entry of the new texts into all elements of the software required for a given experiment.

Complete record In line with requirement 1.1.1, the timing of every event in the experiment is recorded with millisecond precision. The program logs every event (subjects’ movement through the experiment, subject input, etc.) in a single, unified timelog table. This timelog functionality can be extended to any part of the software modified or added for a specific research purpose. Furthermore, no data is ever overwritten. However, due to limitations of the z-Tree platform, data is written to disk only at the end of a period. While rare, this does admit the risk of losing the data of the current period due to e.g. the loss of electrical power or a hardware problem on the server computer. Nonetheless, the platform offers the possibility of exporting the state of play into tab-delimited files on disk at any point during the experiment.

Experimenter screen Throughout the entire experiment, the experimenter can view market proceedings and can at all times (i) move all subjects to the next stage of the experiment, (ii) move subjects to the next period, or (iii) terminate the experiment. This feature is especially valuable for programming and testing, as it significantly cuts down on the time required. Furthermore, due to this inbuilt support for experimenter supervision, it is easy to program experimenter interventions where desired. For example, it would be straightforward to allow the experimenter to enter the result of a random draw conducted with an offline randomization device like e.g., a die or bingo cage.

Non-standard hardware and experiment designs In line with z-Tree’s capabilities, GIMS’ suitability for non-standard hardware and experimental designs is limited. It requires a Microsoft Windows™ desktop or server operating system (Windows NT 3.51, NT 4.0, 2000, XP, Vista, 7, 8) on both the server and the client computers and can thus not be run on e.g., smartphones. Furthermore, while z-Tree can be run over the internet, each subject has to start the z-Tree client (z-Leaf) on his or her computer and point it at the server IP address, making sure that the computer’s firewall does

10 Strictly speaking, z-Tree continuously records interim data in a so-called gamesafe file. Since this file is not designed to be human-readable, however, retrieving the data from it in the event of a crash is difficult.
not interfere with the connection. This is certainly possible, but not as straightforward as logging in to a market through a simple browser interface. Finally, since z-Tree is intended as a platform for laboratory experimentation, experiments running over longer time periods (multiple days) are not feasible using GIMS.

Cost GIMS is both free and open-source software. Furthermore, most economics laboratories are already set up to allow for experimentation in z-Tree, since this is the programming language most frequently used in economic experimentation. Note that the paper by Urs Fischbacher describing the software (Fischbacher, 2007) has already been cited more than 3700 times according to Google Scholar, and more than 1200 times according to IDEAS, making it the most frequently cited article in *Experimental Economics*. Many universities teach z-Tree as part of their curriculum, and there are summer schools and workshops for students (and faculty) of universities which do not. The community has also created a number of free tools facilitating the import and/or analysis of z-Tree output in statistics packages like Microsoft Excel™, Stata™, and R.

Lifetime GIMS is built on the z-Tree platform, which has been under continuous development since 1995 and continues to be developed at the University of Zurich. GIMS itself is the product of several years of market experimentation by the groups in Graz and Innsbruck and currently plans are to continue developing and supporting it indefinitely. Even if development at the universities of Graz and Innsbruck should at some point in the future be discontinued, the open source license\(^\text{11}\) allows practically unlimited development by any interested third party and ensures that all future versions of the software will in turn be provided under the same open source license. Furthermore, in the spirit of open source software development, the developers will include selected modifications and new features developed by third parties if so desired and if they are of broader interest to the GIMS user base.

3.2 Market mechanisms

This section describes the functionality of the market mechanisms implemented in GIMS. It starts out by describing functionality and characteristics common to both the continuous double auction and the sealed bid-ask call auction institutions, before discussing elements specific to each.

Designated trader roles and multi-market trading GIMS currently does not offer the option of designated trader roles or of trading in multiple markets. The reason is parsimony of the code in light of the relatively small number of recent experiments implementing these design features. Nonetheless, it would be easy to implement different roles by simply changing the role-dependent screen layout such that buyers (sellers) simply would not see the requisite buttons and fields to enter offers to buy (sell) or accept offers to sell (buy). Similarly, it is possible to implement multiple

\(^{11}\) See Palan (2014).
market trading by changing the screen layout and using market IDs for all orders and
trades (the latter is already preconfigured), thereby separating activity in the different
markets. This includes the possibility to allow trading in derivative securities.

Automatic validation of orders GIMS offers all of the order validation features out-
lined in section 1.2.7. They are implemented as follows: The software permits all
individually valid orders to be entered. After each transaction, all existing outstanding
orders are evaluated and, in case that they (again, each individually) can no longer be
(fully) filled by the submitting subject, their volume is optionally reduced (multi-unit
setting) or the order invalidated (single- and multi-unit setting). In other words, a
subject can have orders outstanding which he or she could not all fill jointly, but every
single outstanding order viewed in isolation is always feasible. The bid-ask improve-
ment rule can be turned on or off by the experimenter, as can the feature to limit the
number of concurrent outstanding bids and asks by any one subject.

Other features Apart from the points listed above, GIMS also offers the following
features which require little additional explanation:

- Choice between single unit trading or multi-unit trading. In the former, the volume
 of each order and trade is one unit, without need for (or even possibility to) enter
 a desired trading volume.

- Free choice of the number of periods. Even a random ending period is easy to
 implement given the pre-configured implementation of an experimenter screen,
 where the experimenter can enter, in every period, whether or not the experiment
 continues.

- Possibility to reset or carry over subjects’ assets and cash from one period to the
 next.

- Possibility to pay subjects based on the cash balance at the end of every period or
 only for the cash balance at the end of the final period.

- Dividends, subject endowments and signals (e.g. signals about the asset’s funda-
 mental value) can either be randomly drawn from a freely specifiable distribution,
 or can be imported from file.¹²

- The interface is designed such that the buttons and fields for order submission are
 grouped close together to accelerate order entry. When scaling beyond the mini-
 mum resolution of 1024x768 pixel, the software is designed to make optimal use
 of the additional screen space (e.g., scaling up the size of the chart, while holding
 constant the size of screen elements with fixed space requirements). The different
 screen elements are color-coded to help subjects’ orientation and facilitate the pro-
 cess of explaining the screen interface.

- The order book can optionally be set to display only the \(n \) best offers (according
to price-time priority), where \(n \) is any non-negative integer. A trader’s own offers
 are always being displayed.

¹² Neither dividends nor signals need to be implemented.
Finally, the software offers the choice between a continuous double auction and a sealed bid-ask call auction mechanism, or the use of both in succession in the same period. The following subsections provide more details on the features of these two institutions.

3.2.1 Continuous double auction

[Insert Figure 1 about here.]

Figure 1 displays a screenshot of the continuous double auction interface.

- Submission of limit and market orders is possible. Execution occurs according to price-time priority. Stop loss, iceberg and other order types are currently not implemented.
- The best orders on both the bid and ask sides of the order book are always selected automatically to permit faster order acceptance.
- In a history window, every subject can display, for all non-open orders in the current period she either originated or accepted: (i) all of her orders, or only (ii) her trades, (iii) her cancelled orders, or (iv) her orders which were invalidated by the computer because the subject’s cash or asset balance would have been insufficient to fill the order in case another trader had accept it.
- Transaction prices can optionally be displayed in the form of a table and/or a chart. The chart’s vertical axis rescales automatically to best accommodate the magnitude of the prices being displayed, while the horizontal axis rescales to accommodate the period length.
- The order book can be set to be emptied automatically after every trade.
- Each subject’s own offers to buy and sell are printed in blue font.
- Subjects can be given the option to vote for ending the period early. If enabled, subjects can continue trading – even if they have voted – until the period ends due to all subjects having voted for an early end, or due to timeout.

3.2.2 Call auction

[Insert Figure 2 about here.]

Figure 2 in the appendix displays a screenshot of the sealed bid-ask call auction interface.

Order types and priority GIMS allows for submitting limit and (optionally) market orders. The latter can be thought of as entering the price determination at very high (low) prices in the case of bids (asks). Note that allowing market orders introduces the risk of subject bankruptcy, since the finally resulting market price (at which market orders are executed) is unknown at the time of order submission, which is also the time for order validation.
GIMS performs the following steps to determine the uniform auction price:

- **Step 0:** If the highest buy offer limit price is lower than the lowest sell offer limit price, no trade is possible. This extends to market orders. In this case, stop the price determination. Otherwise, continue.
- **Step 1:** If there is a single price which maximizes the feasible trading volume, set the auction price equal to this price and stop the price determination. Otherwise, continue.
- **Step 2:** If there is a single volume maximizing price which minimizes the absolute oversupply, set the auction price equal to this price and stop the price determination. Otherwise, continue.
- **Step 3:** If there is a surplus of buy (sell) volume at all volume maximizing and absolute oversupply minimizing prices, set the auction price equal to the highest (lowest) of these prices and stop the price determination. Otherwise, continue.
- **Step 4:** Calculate the average of the highest and lowest volume maximizing and absolute oversupply minimizing prices and set the auction price equal to this average, rounded to the nearest tick. In the case of equal distance, round down to the nearest tick.

This mechanism replicates the price determination mechanism of NASDAQ. Steps 0-1 are the same for all markets listed in Table 1, and Step 2 is used by all markets except for the NYSE. At some point, most exchanges (except for NASDAQ) use a reference price (e.g., the previous closing price) in case earlier steps do not lead to a unique price. However, this is impractical in an experimental market, where there is no such price in the first period, and where – depending on the experiment - periods may be designed to be independent. It is for this reason that we have chosen to model the NASDAQ mechanism.

For trade settlement, GIMS features two price-order type-time priority rules – one in which limit orders whose price equals the auction price take precedence over market orders, and one in which the opposite is the case. The first is the procedure used at, for example, the National Stock Exchange of India’s “Emerge” market (NSE, 2014), while the second is employed by, for example, NASDAQ (NASDAQ OMX Nordic, 2013). Trade settlement thus proceeds as follows:

- **Step 0:** If no trade is possible, stop settlement. Otherwise, continue.
- **Step 1:** Sort orders by priority.
 - If set to give market orders priority, then priority is: Better than equilibrium limit orders, market orders, at equilibrium limit orders.
 - If set to give limit orders priority, then priority is: Better than equilibrium limit orders, at equilibrium limit orders, market orders.
 - Within better than equilibrium limit orders, priority is by price; within all categories, final priority is by order of submission (earliest submission time equals highest priority).
• Step 2: Transact orders against each other in order of their priority until no trans-
actable bid-ask pairings remain.

Other features Apart from the points discussed above, the sealed bid-ask call auction
module in GIMS also offers the following features which require little additional ex-
planation:

• Possibility to let subjects submit a single bid and ask pair, or entire bid and ask
schedules with or without limits on the number of individual bids and asks.
• Possibility to display the indicative price (i.e., the price which would obtain if the
auction were closed immediately), updated at freely specifiable intervals.
• Relatively fast execution; price determination and order settlement for a 24-seat
lab takes less than a second.13

3.3 Elicitation of subject characteristics

Experimenters can optionally elicit measures of subjects’ willingness to reflect before
providing answers to mathematical/logical questions, of their risk preferences, and of
their financial knowledge and skills. Far from developing new instruments for these
tasks, GIMS offers tests which have previously been employed (and developed) for
this purpose in experimental economic research.14

3.3.1 Cognitive reflection test

The CRT of Frederick (2005) is an unincentivized test consisting of three mathemat-
ical/logical questions, each of which has one obvious, but wrong, answer, and a cor-
rect answer which for most subjects requires some extra cognitive attention. It has
been employed in many economic studies and high scores on this test (i.e., a higher
number of correct answers) have been linked, among other things, to better perfor-
ance in markets (Breaban and Noussair, 2014). In GIMS, the CRT can be adminis-
tered before or after trading.

3.3.2 Risk aversion test

The lottery choice task of Holt and Laury (2002) presents subjects with ten pairs of
lotteries (one each relatively safer, and one relatively more risky) with increasing ex-
pected values. It records the pair at which subjects switch from the relatively safer to
the relatively riskier option as a measure of subjects’ risk aversion. The version im-

13 Assumptions: three limit bids and asks, respectively, and one market bid and ask, respectively, per trader. Each price
between 1 and the number of limit bids/asks (72) is used once; each order’s volume is randomly drawn from the integers
in the interval [1,100]; submission times randomly drawn from the interval [0,1]. Run on an Intel® Mobile Core™i7-
2630QM.

14 Note that GIMS can easily be extended in this regard. Several academics freely provide ready-made elicitation tasks
programmed in z-Tree. Recent examples include the “Bomb” Risk Elicitation Task (Crosetto and Filippin, 2013) and
the Social Value Orientation measure (Crosetto, Weisel and Winter, 2012).
plemented in GIMS enforces a single crossing point, thus ruling out inconsistent behavior. The lottery choice task can be administered before or after the market phases. Subjects’ payoff is determined by randomly selecting an option pair and then playing out the lottery selected by the subject for this pair. The possible payoffs are by default set to equal the nominal payoffs in the baseline of Holt and Laury (2002), using whatever unit of real currency is employed in the experiment. Naturally, these can be modified.

3.3.3 Financial literacy test

The financial literacy questionnaire of van Rooij, Lusardi and Alessie (2011) consists of 16 questions of varying difficulty. They test the basic understanding of interest compounding and inflation, as well as subjects’ knowledge of common financial instruments like savings accounts, bonds, stocks and mutual funds. In GIMS, subjects can be required to answer all 16 questions, or a freely specifiable subset thereof (Cheung and Palan, 2012 and Cheung, Hedegaard and Palan, 2014 for example use a 10-question subset). The task can be left un incentivized, subjects can be paid a fixed amount for every correct answer, or they can be paid a fixed amount in case they have correctly answered a question randomly chosen after they have finished the test.

3.3.4 Exit questionnaire

The exit questionnaire is provided in German and English. It elicits subjects’ addresses, socioeconomic data (gender, age, nationality, employment status, education), problems encountered during the experiment (typos, problems in understanding the instructions), and any other comments subjects might want to make. Furthermore, it elicits two additional sets of risk items. The first, taken from Dohmen et al. (2011), consists of a question regarding the subject’s general risk attitude plus six questions regarding his or her risk attitude in specific contexts (the German translation is taken from Infratest Sozialforschung, 2004a). The second, taken from Harrison et al. (2005), consists of three questions regarding subjects’ risk-taking behavior (here, the items were translated to German by the authors). Appendix 5.1 reproduces the exit questionnaire, excluding only the address form.

4 Discussion and Conclusion

The paper presents the requirements for a software for asset market experiments, suitable for a wide range of research applications. We consider the development of such a standardized software package to be desirable for our discipline. At the moment, most researchers or research teams develop their own, custom-built solutions. One problem with this approach is the inefficiency caused by the parallel development of similar applications. The cost of time and resources spent on the programming and testing is non-trivial and could instead be spent on running additional sessions or experiments. However, there are arguments for more standardization beyond efficiency
and costs. The programs custom-built for individual researchers or teams are frequently not made public (except for where the journal the results are published in requires submission and publication of software). Given this fact, it is not inconceivable that some instances of reported differential outcomes in apparently similar contexts may be owing to overlooked differences in the market software being used. It is for example common in experiments following the Smith, Suchanek and Williams (1988) paradigm to report trading volume (measured in terms of the total share of units traded) as a proxy for market efficiency. At the same time, the placement and thus the distance between buttons and entry fields on the screen differs between software solutions. Also, some packages allow subjects to accept an outstanding offer simply by clicking a “Buy” or “Sell” button, while others require them first to select the best outstanding bid or ask, or even to enter a desired volume. It can hardly be surprising, then, that trading volume and the pace of trading might be higher in experiments using the former design than in ones employing the latter. While this is only one example, we argue that standardization would reduce the number of auxiliary hypotheses experimental findings – and especially comparisons of findings from different experiments – are based on.\(^\text{15}\)

We present the Graz-Innsbruck Market System as a possible candidate to serve in the role of such a standardized solution. By offering the software as a free download, including extensive documentation, we wish to further the democratization of the study of asset markets. It is our intention to lower the cost of entry into this branch of research, and conserve scarce resources for those researchers who choose to use it.

5 Appendix

5.1 Exit questionnaire

This section lays out the exit questionnaire accompanying GIMS. While filling in the questionnaire, subjects cannot return to previous pages. Note that it is easy to customize the questionnaire by removing, modifying or extending it.

The exit questionnaire starts with a form asking subjects to fill in their address and indicate their availability for further experiments. The subsequent pages contain the questionnaire items below. For each entry, the variable name is listed in square brackets, while the captions and internal value coding are listed in parentheses. A horizontal line indicates a page break.

1. What is your gender? [Female]
 (1 = “Female”, 0 = “Male”)

15 As a side note, using a standardized software package also reduces the number of design details which need to be reported in papers, thus shortening the experimental design section and focusing the reader’s attention on the relevant aspects of the experiment, namely the treatment variation.
2. What is your age in years? [Age]
 (Integer between 0 and 121)

3. Your nationality? [Nationality]
 (Open text)

4. What is your employment status? [Employment]
 ("Full-time", "Part-time", "None")

5. If you are a student, what is your major? [Major]
 (Open text)

6. What is the level of the highest degree you are currently studying? [LevelDegree]
 ("Bachelor", "Master", "Doctor/PhD", "Other")

7. How do you see yourself: are you generally a person who is fully prepared to take risks or do you try to avoid taking risks? [RiskGeneral]
 (0 = “Not at all willing to take risks” … 10 = “Very willing to take risks”)

People can behave differently in different situations.
How would you rate your willingness to take risks in the following areas?

8. How is it … while driving? [RiskDriving]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

9. How is it … in financial matters? [RiskFinancial]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

10. How is it … in leisure and sport? [RiskLeisureSport]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

11. How is it … in your occupation? [RiskWork]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

12. How is it … with your health? [RiskHealth]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

13. How is it … your faith in other people? [RiskOthers]
 (0 = “Risk averse” … 10 = “Fully prepared to take risks”)

16 This item is taken from Dohmen et al. (2011), with the specific wording stemming from Infratest Sozialforschung (2004b).
14. How often do you participate in extreme sports (Extreme sports include bungee-jumping, para-gliding, parachute jumping, gliding, rafting, diving and other dangerous sports)? [ExtremeSports]\(^{17}\)
 (“Never”, “A few times”, “Occasionally”, “Often”, “Every chance I get”)

15. Do you currently smoke cigarettes? [Smoker]\(^{17}\)
 \((0 = \text{“No”} \ldots 1 = \text{“Yes”})\)

16. If yes, how many cigarettes do you smoke in one day? [NumberCigarettes]\(^{17}\)
 (Integer between 0 and 1000)

17. Did you ever make a mistake in entering a price, or clicked a wrong button? If so, please tell us exactly what went wrong and in what period: [Typo]
 (Open text)

18. Did you find the instructions in the market experiment clear and understandable? What if anything could be improved? [ClarityInstructionsMarket]
 (Open text)

19. Room for your comments: [Comments]
 (Open text)

5.2 Usage examples

The following examples are intended to provide the reader with an impression of the amount of work which would be required to recreate various experiments from the literature using GIMS. In the interest of readability, the specific modifications of the code are omitted here. Section 5 of the GIMS manual (Palan, 2014) contains a number of design variations plus a step-by-step guide of the modifications to GIMS required to implement them.

5.2.1 Smith, Suchanek and Williams (1988)

Smith, Suchanek and Williams (1988) is one of the most famous papers in experimental asset market research, and the most prominent on long-lived asset markets, i.e., asset markets comprising more than one period without interim reset. The experiments listed therein can readily be run using GIMS, with only minimal modifications to the programming.\(^{18}\) The only feature requiring programming of a (single) new line of code is the implementation of the buyout value, whose size depends on the dividends drawn over the preceding periods (paying a fixed buyout value is possible in GIMS by default).

\(^{17}\) This item is taken from Harrison et al. (2005).

\(^{18}\) Here and in the remainder of this section, we do not consider the simple changing of parameters (in the code) as constituting a modification of the programming.
As for the market design, Smith, Suchanek and Williams (1988) use a continuous double auction market with a bid-ask improvement rule and an order book displaying only the best bid and ask. Subjects are not allowed to buy on margin or to short sell the asset. Smith, Suchanek and Williams (1988) let subjects vote for an early end to the trading period, which is realized if and only if unanimity is reached. All of these design features are also available in GIMS.

5.2.2 Smith, van Boening and Wellford (2000)

Smith, van Boening and Wellford (2000) vary the dividend payment modalities in their experiment. In their treatment A1, a lump-sum dividend is paid at the end of the last period in a market. In treatment A2, they pay a random dividend after each period, while in A3, they combine the two options by paying a random dividend after every period plus a lump-sum dividend at the end of the last. The implementation of the random buyback value requires programming a similar line of code as discussed in section 5.2.1, while the remaining functionality is implemented in GIMS by default.

Note that certain – as opposed to random – dividend payments, as implemented in Porter and Smith (1995), are also already built into GIMS. So are lottery dividends as in Ackert et al. (2009) and Ackert, Kluger and Qi (2012).

5.2.3 Haruvy and Noussair (2006)

The main treatment variation in Haruvy and Noussair (2006) is to endow subjects with the ability to sell the asset short. In treatments QL3 (QL6), subject’s short selling capacity is fixed to 3 (6) units of the asset, a feature which is built into GIMS by default and only requires the setting of a parameter. In treatments CR100, CR150 and FLX, this capacity depends on a subject’s cash balance relative to the dividend holding value of the assets sold short. This would require an additional “checker” in GIMS, the implementation and testing of which we estimate to require 1-2 hours’ work. Another interesting design feature is that Haruvy and Noussair (2006) roll a die to determine the amount of dividend to be paid. While not pre-configured, the built-in experimenter screens render it very easy to implement such a functionality in GIMS, such that we would estimate a time requirement of 30-60 minutes.

5.2.4 Cheung and Palan (2012)

Cheung and Palan (2012) is an interesting paper in terms of the features required of the asset market software, because it reports results from both continuous double auction markets and sealed bid-ask call auction markets. Still, either treatment can readily be run using GIMS, without any need to modify the programming beyond adapting the exit questionnaire. In fact, GIMS’ call auction price determination and trade settlement mechanisms are considerably more efficient than those employed in Cheung and Palan (2012).
Kirchler, Huber and Stöckl (2012) implement different fundamental value trajectories using combinations of positive and negative dividends payable at the end of every period, plus a terminal dividend payable after the last period of trading. GIMS offers this functionality by default. In some treatments the dividend income is added to subjects’ cash balance immediately, while in others it accrues to a savings account which cannot be tapped to fund trading, but counts towards subjects’ final payoff. While the first is the standard in GIMS, the latter would require approximately 30 minutes of programming and testing to implement. Furthermore, in some treatments Kirchler, Huber and Stöckl (2012) grant periodic, deterministic cash inflows to their subjects, while in others they deduct periodic, deterministic cash outflows from their cash balances. Mimicking these in GIMS would require minimal additional programming of about 15 minutes.

The market architecture in Kirchler, Huber and Stöckl (2012) consists of a continuous double auction with open order books where all orders are executed honoring price-time priority. They permit multiple unit trading and the partial execution of limit orders, while disallowing short selling and margin buying. Their trading screen shows a real-time chart in addition to displaying subjects’ cash and asset balances. All of these features are GIMS defaults. They also elicit the Holt and Laury (2002) risk measure from their subjects after the conclusion of the 10 periods of trading in the market. As noted in the body of the present paper, GIMS is endowed with the built-in capability of eliciting this measure of subjects’ risk preferences.

Sutter, Huber and Kirchler (2012) in Sutter, Huber and Kirchler (2012), the market features a continuous double auction with an open order book. Subjects can buy and sell, but neither sell short nor buy on margin. Wealth is carried over between each of the ten periods constituting one round, but not between each of the three rounds in a session. Subsets of all subjects receive information about the dividend to be paid in the current or in the current and the upcoming period. Furthermore, the dividend realizations were drawn once and then reused in multiple markets. This functionality is offered in GIMS by default, except for providing the information to subjects, which can be expected to require 30 minutes to program. Furthermore, Sutter, Huber and Kirchler (2012) display previous periods’ mean prices on a results screen following the end of the period. This can also be implemented in a few minutes’ work.

Kleinlercher et al. use a continuous double auction market with an open order book. Their main design feature with regard to their research question is the implementation of different incentive schemes, which is trivial to do in GIMS (it requires changing a single line of code). The most demanding element of their design in terms of the ex-
perimental software is that the authors allow subjects to trade in two markets simultaneously (aligned side-by-side on the screen). GIMS does not currently offer this option. While some preparations for multiple market trading are already implemented (e.g., all offers and orders carry a market ID identifying the market they belong to), implementing this feature set would require duplicating the trading screens and changing the programming of some market-wide variables (e.g., the last price). Including testing, we would expect this to require 1-3 days’ work.
Figure 1 Continuous double auction market interface. The figure shows a screenshot of the continuous double auction market interface with multi-unit trading enabled. The display of the price chart and of the lists of transaction prices and signals is optional.
Figure 2 Sealed bid-ask call auction market interface. The figure shows a screenshot of the sealed bid-ask call auction market interface with multi-unit trading disabled. The display of the list of signals is optional.
Call auction price determination mechanisms

The table lays out the rules used for determining the auction price in the call auctions of various global exchanges. The criteria are cumulative. For example, the second step at the ASX searches for the single volume-maximizing limit price which minimizes order imbalance.

<table>
<thead>
<tr>
<th>Step</th>
<th>ASX¹</th>
<th>BSE India²</th>
<th>NASDAQ³</th>
<th>NSE Emerge⁴</th>
<th>NYSE⁵</th>
<th>XETRA⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Minimum order imbalance</td>
<td>Minimum order imbalance</td>
<td>Minimum order imbalance</td>
<td>Minimum order imbalance</td>
<td>Price closest to the previous closing price</td>
<td>Minimum order imbalance</td>
</tr>
<tr>
<td>3</td>
<td>Highest (lowest) price if bid (ask) surplus for all such prices</td>
<td>Price closest to the previous closing price</td>
<td>Highest (lowest) price if bid (ask) surplus for all such prices</td>
<td>Reference price</td>
<td>Reference price</td>
<td>Highest (lowest) price if bid (ask) surplus for all such prices</td>
</tr>
<tr>
<td>4</td>
<td>The two prices where buy and sell pressure change are compared to the reference price. If the latter is at or above (below) the higher (lower) of these two prices, then the highest (lowest) price is the auction price. If it lies between these two, the reference price is the auction price.</td>
<td></td>
<td>Average between the highest price with positive, and the lowest price with negative imbalance, rounded to the nearest tick and rounded down in case of equal distance.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

We are indebted to Urs Fischbacher for creating – and offering to the community for free – the experimental software platform z-Tree. We furthermore thank the co-authors of our asset market papers, without whom the development of the requirements and the software would not have been possible. We are also grateful to Sascha Füllbrunn, Florian Hauser, Michael Kirchler, Owen Powell, Michael Razen and Thomas Stöckl for valuable comments and testing, and to the Austrian Science Fund FWF (START-Grant Y617-G11 Kirchler) for funding the development of GIMS.

REFERENCES

Infratest Sozialforschung, 2004b. Living in Germany. Survey 2004 on the social situation of households.

