Klausur Wirtschaftsmathematik VO

16. Mai 2025

Bitte leserlich in Druckbuchstaben ausfüllen!

NACHNAME:	
VORNAME:	
MATRIKELNUMMER:	

ERLAUBT: Formelsammlung des Instituts, Taschenrechner laut Liste!

VERBOTEN: Handy und Smartwatch am Arbeitsplatz!

Lösungswege müssen nachvollziehbar angegeben werden!

Aufgabe	max. Punkte	erreichte Punkte
1	11	
2	12	
3	12	
4	12	
5	13	
Summe	60	
Note:		

1. a) (7 Punkte) Geben Sie die Lösungsmenge der folgenden Ungleichung an.

$$\frac{2 + \log_5(5^x)}{2|x| + 1} \le 2^{\log_3(1)}$$

b) (4 Punkte) Berechnen Sie:

$$\sum_{i=1}^{3} \sum_{n=1}^{520} i \cdot n$$

Ausführung Beispiel 1:

Ausführung Beispiel 1:

Lösung:

a)
$$]-\infty; -\frac{1}{3}] \cup [1; \infty[$$
b) 812.760

2. Gegeben ist die Matrix A mit einem reellen Parameter t wie folgt:

$$A = \begin{pmatrix} -1 & 1 & t \\ -1 & -2t & 0 \\ 4 & 2t & -2 \end{pmatrix}$$

- a) (3 Punkte) Berechnen Sie die Determinante von A.
- b) (3 Punkte) Für welche Werte von $t \in \mathbb{R}$ ist die Matrix A invertierbar?
- c) (6 Punkte) Bestimmen Sie für t=1 den Rang der Matrix A und alle Lösungen des homogenen Gleichungssystems $A\cdot x=0$.

Ausführung Beispiel 2:

Ausführung Beispiel 2:

Lösung:

- a) $\det(A) = 6t^2 4t 2$.
- b) Die Matrix A ist genau dann invertierbar, wenn $\det{(A)}=6t^2-4t-2\neq 0$, d.h. für $t\neq 1$ und $t\neq -\frac{1}{3}$.
- c) $Rg\left(A\right)=2$. Für die Lösungsmenge des homogenen Gleichungssystems $A\cdot x=0$ gilt

$$x = s \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

 $\mathsf{mit}\ s \in \mathbb{R}.$

3. Gegeben sind die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ wie folgt:

$$a_n = \frac{3n-1}{n+1} \qquad b_n = \frac{2n^2}{4n^2 + n}$$

- a) (4 Punkte) Berechnen Sie die ersten drei Glieder der Folge a_n . Untersuchen Sie die Folge a_n auf Monotonie. Beweisen Sie Ihre Vermutung.
- b) (2 Punkte) Bestimmen Sie eine untere Schranke der Folge a_n und begründen Sie.
- c) (2 Punkte) Zeigen Sie rechnerisch, dass S=3 eine obere Schranke der Folge a_n ist.
- d) (4 Punkte) Berechnen Sie mit Hilfe der Grenzwertrechenregeln den Grenzwert der Folge $a_n \cdot b_n$, falls dieser existiert.

Ausführung Beispiel 3:

Ausführung Beispiel 3:

Lösung:

a)
$$a_1 = \frac{2}{2} = 1$$
; $a_2 = \frac{5}{3}$; $a_3 = \frac{8}{4} = 2$; $a_n < a_{n+1} \to -2 < 2$. Folge ist streng monoton steigend.

b)
$$S_u=1$$
, da $a_1=\frac{2}{2}=1$ und a_n streng monoton steigend.
c) $a_n\leq 3\to -1\leq 3$.

c)
$$a_n \le 3 \to -1 \le 3$$

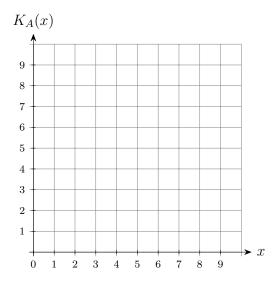
d)
$$\lim_{n\to\infty} (a_n \cdot b_n) = \frac{3}{2}$$
.

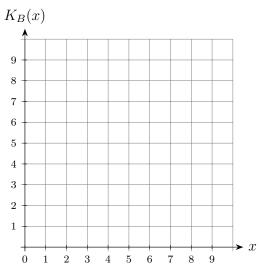
4. Ein Unternehmen stellt zwei Produkte A und B her. Die entsprechenden Kostenfunktionen lauten

$$K_A(x) = 2 + \sqrt{x}$$
 und $K_B(x) = \frac{x^2}{4} + 1$.

- a) (2 Punkte) Zeichnen Sie die beiden Kostenfunktionen in die untenstehende Koordinatensysteme.
- b) (3 Punkte) Bestimmen Sie für Produkt A die Durchschnittskostenfunktion $D_A(x)$ und zeigen Sie mit Hilfe der Differentialrechnung, dass diese streng monoton fallend ist!
- c) (4 Punkte) Berechnen Sie die Elastizität $\varepsilon_{D_A}(x)$ der Durchschnittskostenfunktion $D_A(x)$ und geben Sie damit näherungsweise, ausgehend von 16 Mengeneinheiten, die prozentuale Änderung von $D_A(x)$ bei einer Erhöhung der Produktionsmenge bei Produkt A um 1,5 % an!
- d) (3 Punkte) Die Erlösfunktion des Produktes B kann durch $E_B(x) = p \cdot x$ beschrieben werden. Zeichnen Sie in das Schaubild der Kostenfunktion $K_B(x)$ diejenige Erlösfunktion mit dem größtmöglichen Preis p ein, bei der das Unternehmen unabhängig von der produzierten Stückzahl x keinen Gewinn macht. Bestimmen Sie anhand Ihrer Zeichnung näherungsweise diesen Preis.

Ausführung Beispiel 4:

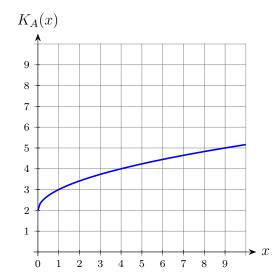




Ausführung Beispiel 4:

Lösung:

a)



 $K_B(x)$ $K_B(x_l)$ 8 7 $E_B(x)$ 6 5 4 3 2

$$D_A(x) = \frac{K_A(x)}{x} = \frac{2}{x} + \frac{1}{\sqrt{x}}$$
 und $D'_A(x) = \frac{-2}{x^2} - \frac{1}{2\sqrt{x^3}}$

1

$$D_A'(x) = \frac{-2}{x^2} - \frac{1}{2\sqrt{x^3}}$$

Da $D_A^\prime(x) < 0$ für alle positiven Werte von x, ist $D_A(x)$ monoton fallend.

c)

$$\varepsilon_{D_A}(x) = \frac{-4 - \sqrt{x}}{4 + 2\sqrt{x}}$$

und

$$\varepsilon_{D_A}(16) = -\frac{2}{3}.$$

Damit sinkt die Durchschnittskostenfunktion um näherungsweise 1~%.

d)
$$p = 1$$

5. Gegeben ist eine Funktion in zwei Variablen

$$f(x,y) = ax \cdot \sqrt{y} - x^2 - y + bx$$

mit Konstanten $a, b \in \mathbb{R}$.

- a) (3 Punkte) Bestimmen Sie a und b so, dass f an der Stelle (x, y) = (1, 4) den Funktionswert -1 und an der Stelle (x, y) = (2, 1) den Funktionswert 1 besitzt.
- b) Setzen Sie nun für a = 1 und für b = 2.
 - i. (5 Punkte) Wie lautet dann die Hesse-Matrix?
 - ii. (2 Punkte) Handelt es sich bei der Stelle (x, y) = (2, 1) um
 - A. ein Maximum
 - B. ein Minimum
 - C. eine Sattelstelle
 - D. keine der genannten Möglichkeiten?

Begründen Sie!

iii. (3 Punkte) Um wie viel ändert sich der Funktionswert an der Stelle (x,y)=(1,4) näherungsweise, wenn man x um eine Einheit erhöht? Wie groß ist diese Änderung exakt?

Ausführung Beispiel 5:

Ausführung Beispiel 5:

Lösung:

a)
$$a = 1$$
, $b = 2$

b)
$$f_x(x,y) = \sqrt{y} - 2x + 2$$
; $f_y(x,y) = \frac{x}{2\sqrt{y}} - 1$

i.
$$H(x,y) = \begin{pmatrix} -2 & \frac{1}{2\sqrt{y}} \\ \frac{1}{2\sqrt{y}} & -\frac{x}{4\sqrt{y^3}} \end{pmatrix}$$

ii. D, da z. B.
$$f_x(2,1) = -1 \neq 0$$

iii.
$$f_x(1,4) = 2$$
; $f(2,4) - f(1,4) = 1$