Klausur Wirtschaftsmathematik VO

5. Februar 2025

Bitte leserlich in Druckbuchstaben ausfüllen!

NACHNAME:	
VORNAME:	
MATRIKELNUMMER:	

ERLAUBT: Formelsammlung des Instituts, Taschenrechner laut Liste!

VERBOTEN: Handy und Smartwatch am Arbeitsplatz!

Lösungswege müssen nachvollziehbar angegeben werden!

Aufgabe	max. Punkte	erreichte Punkte
1	12	
2	12	
3	12	
4	12	
5	12	
Summe	60	
Note:		

1. a) (8 Punkte) Erstellen Sie jeweils für die folgenden Situationen ein Venn-Diagramm für drei nicht-leere Mengen A, B und C, wobei die Mengen immer paarweise verschieden sind.

i.
$$A \subset B \subset C$$

ii.
$$A\subset B$$
 und $C\cap B\neq\{\,\}$ und $C\cap A=\{\,\}$

iii.
$$(A \cup B) \subset C$$
 und $\bar{A} \cap B = \{\}$

iv.
$$|A \cup B| = |A| + |B|$$
 und $(A \setminus C) = A$ und $(C \setminus B) \neq \{\}$ und $|B \cap C| < |B|$

b) (4 Punkte) Bestimmen Sie die größtmögliche Definitionsmenge $D\subseteq\mathbb{R}$ und lösen Sie die folgende Ungleichung:

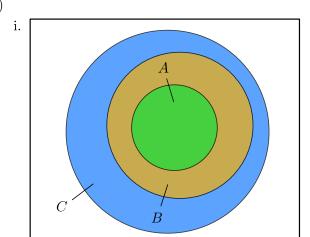
$$\frac{5}{|x^2 + 1|} < 1$$

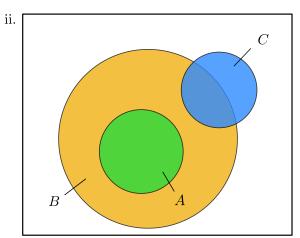
Ausführung Beispiel 1:

Ausführung Beispiel 1:

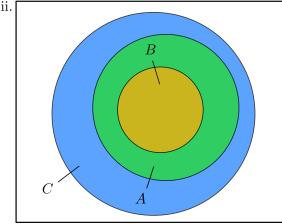
Lösung:

a)

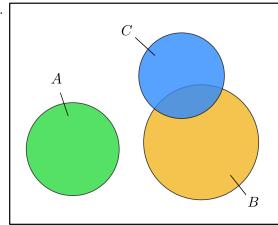




iii.



iv.



b) $D = \mathbb{R};$

$$\frac{5}{|x^2+1|} < 1 \quad \Leftrightarrow \quad 4 < x^2 \quad \Leftrightarrow \quad x \in]-\infty; -2[\,\cup\,]2; \infty[$$

2. Gegeben ist die Matrix A und der Vektor b:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ -1 & -1 & \lambda \end{pmatrix} \qquad b = \begin{pmatrix} \mu \\ 4 \\ -3 \end{pmatrix} \qquad \lambda, \, \mu \in \mathbb{R}$$

- a) (5 Punkte) Für welche Koeffizienten $\lambda,\,\mu$ ist das lineare Gleichungssystem
 $A\cdot x=b$ $unl\ddot{o}sbar?$
- b) (5 Punkte) Bestimmen Sie alle Lösungen des linearen Gleichungssystems $A \cdot x = b$ für $\lambda = -1$ und $\mu = 3$. Geben Sie dann eine (beliebige) Lösung dieses Systems an, in der alle Komponenten größer als Null sind.
- c) (2 Punkte) Sind die drei Spaltenvektoren der Matrix A für $\lambda=0$ linear unabhängig? Begründen Sie!

Ausführung Beispiel 2:

Ausführung Beispiel 2:

Lösung:

a) Stufenform:
$$\begin{pmatrix} 1 & 1 & 1 & \mu \\ 0 & -1 & 2 & 4 - \mu \\ 0 & 0 & \lambda + 1 & -3 + \mu \end{pmatrix}$$

Daher: System unlösbar für $\lambda=-1$ und $\mu\neq 3$

b)
$$X = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$$
; $t \in \mathbb{R}$; z.B. für $t = 1$: $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

c) Ja, da für $\lambda=0$ gilt: $Rg\left(A\right)=3$

3. a) (5 Punkte) Untersuchen Sie die durch ihr Bildungsgesetz angegebene Folge auf Monotonie und berechnen Sie mit Hilfe der Grenzwertrechenregeln den Grenzwert falls er existiert:

$$a_n = \frac{n^2 + 1}{2n^2}, \quad n \in \mathbf{N}$$

- b) (7 Punkte) Frau L. legt 1.000 Euro am 01.01.2025 auf ein mit 5 % p.a. verzinstes Konto.
 - i. Geben Sie eine Formel an, die den Wert dieser Einzahlung nach n Jahren angibt.
 - ii. Sie plant ein Jahr nach der Einzahlung jährlich 100 Euro abzuheben. Geben Sie eine Formel an, die den Wert aller Auszahlungen nach n Jahren (also n Auszahlungen) angibt.
 - iii. Geben Sie die allgemeine Formel für das Kontoguthaben K_n nach n Jahren an.
 - iv. Bestimmen Sie, ob und wenn ja, nach wie vielen Jahren das Konto leer ist.

Ausführung Beispiel 3:

Ausführung Beispiel 3:

Lösung:

a)
$$a_n$$
 streng monoton fallend; $a = \frac{1}{2}$

i.
$$E_n = 1000 \cdot 1,05^n$$

i.
$$E_n = 1000 \cdot 1,05^n$$

ii. $A_n = 100 \cdot \frac{1-1,05^n}{1-1,05}$

iii.
$$K_n = 1000 \cdot 1,05^n - 100 \cdot \frac{1 - 1,05^n}{1 - 1,05} = 2000 - 1000 \cdot 1,05^n$$

iv.
$$K_n = 0 \Leftrightarrow 1,05^n = 2 \Leftrightarrow n \approx 14,21$$
. Das Konto ist nach 15 Jahren leer.

4. Gegeben ist die Funktion

$$f(x) = (2x+1) \cdot e^{x^2+x}$$

- a) (2 Punkte) Bestimmen Sie die größtmögliche Definitionsmenge $D\subseteq\mathbb{R}$ und alle Nullstellen der Funktion f(x).
- b) (6 Punkte) Berechnen Sie sofern vorhanden alle stationären Stellen der Funktion f.
- c) (4 Punkte) Berechnen Sie

$$\int f(x) \, dx$$

Ausführung Beispiel 4:

Ausführung Beispiel 4:

Lösung:

- a) $D = \mathbb{R}$; Nullstellen: $x = -\frac{1}{2}$
- b) keine stationäre Stellen
- c) $F(x) = e^{x^2 + x} + C$

5. Gegeben ist eine Produktionsfunktion f mit den Faktoreinsatzmengen Arbeit und Kapital durch

$$f(A,K) = (2A^{\frac{1}{2}} + 3K^{\frac{1}{2}})^2$$

- a) (4 Punkte) Ist diese Funktion homogen? Bestimmen Sie gegebenenfalls den Homogenitätsgrad.
- b) (3 Punkte) Zurzeit werden 16 Einheiten Kapital eingesetzt. Wie viele Einheiten Arbeit müssen dann eingesetzt werden, um eine Outputmenge von 676 zu erzielen?
- c) (5 Punkte) Es werden nun A=4 und K=9 eingesetzt. Um wieviel Prozent ändert sich das Produktionsniveau näherungsweise, wenn der Faktor A um 2% erhöht wird?

Ausführung Beispiel 5:

Ausführung Beispiel 5:

Lösung:

- a) Homogen von Grad 1.
- b) 49
- c) $\varepsilon=\frac{4}{13}\approx 0,30769$ %, daher näherungsweise Änderung um $2\cdot 0,30769=$ 0,615 %