Statistik Vorlesung

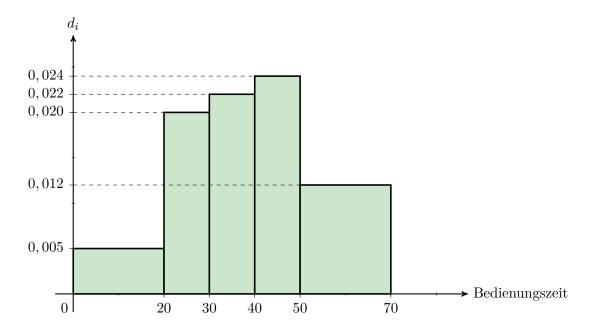
25. September 2025

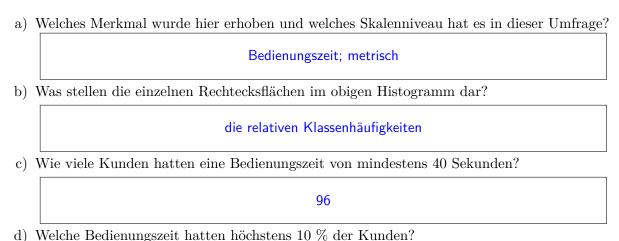
Arbeitszeit: 100 Minuten

VORNAME:	MATR.NR.:	
NACHNAME:		

ERLAUBT: Skriptum des Instituts, Taschenrechner gemäß Liste

 $\label{thm:potential} \mbox{VERBOTEN: alle sonstigen } \mbox{Unterlagen, Handys}$

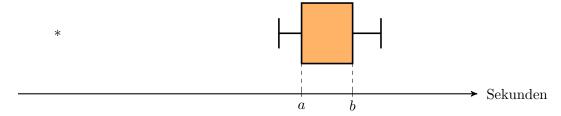

Aufgabe 1 und 2: Für jede vollständig richtig gelöste Frage gibt es 2 Punkte. Es gibt keine Teilpunkte und keine Minuspunkte.


Lösungswege müssen nachvollziehbar aufgeschrieben sein.

Aufgabe	max. Punkte	erreichte Punkte	Teilsumme
1	10		
2	10		
9	11		
3	11		
4	9		
5	10		
6	15		
7	12		
8	12		
Summe	100		
Note			

1. (10	Punkte)			
a) Kreuze	en Sie	e die beiden statistischer	n Kennzahlen an, die aus einem Bo	xplot im Allgemeinen
	abgele	sen w	verden können.		
	ar	ithm	etische Mittel		
	M	odus			
	X M	ediar	ı		
	U Va	ariati	onskoeffizient		
	X Sp	annv	veite		
b) Ergänz entstel		ie die Textlücke im nac	hstehenden Satz so, dass jedenfalls	s eine wahre Aussage
	Ist der	p-We	ert kleiner als die Irrtum	swahrscheinlichkeit α , so ist die H_1	bestätigt
c	•		Sie, ob die folgende Auss egründung.	sage zutrifft oder nicht, und kennze	ichnen Sie die jeweils
			wert teilt eine sortierte	Liste von Einzeldaten in zwei Hälft	en.
		Wahr			
		Falsch			
	Begrüi		g. Iodalwert entspricht de	m 50 % Quantil	
				ls durchschnittliche Merkmalsauspr	rägung in der Stichprob
				daten die am häufigsten vorkomme	
				C	1 0 0
d				teilt mit unbekanntem Erwartungsv chprobe, um μ zu schätzen. Welche	
	Konfid	lenzir		$\frac{s}{\sqrt{n}} \cdot t_{n-1;1-\frac{\alpha}{2}}; \bar{x} + \frac{s}{\sqrt{n}} \cdot t_{n-1;1-\frac{\alpha}{2}}$	
			,	ung, desto schmaler das Konfidenz	intervall.
		_		valls nimmt mit steigendem Stichp	
			en zu.	ans minimo mito socigendem sociap.	robendiniang ini 71ii
	X Di	ie t-V	erteilung wird verwende	et, weil die Varianz σ^2 unbekannt i	st.
	X Je	höhe	er das Konfidenzniveau	gewählt wird, desto breiter ist das	Konfidenzintervall.
			-	erhält man immer exakt dasselbe i selbe Konfidenzniveau vorgibt.	realisierte Konfidenz-
				g	
е) Ergänz entstel		ie die Textlücke im nac	hstehenden Satz so, dass jedenfalls	s eine wahre Aussage
				kommen $(x \text{ in Euro})$ und Mietau	· ·
			_	nde Regressionsgerade geschätzt: ý	
	Miete	_ [ies Einkommens um 100	Euro führt zu einem mittleren An Euro.	sueg der geschatzten
	1411676	um	30	Lui0.	

2. (10 Punkte) In der nachstehenden Graphik sind die Bedienungszeiten (in Sekunden) einer Kasse eines Supermarktes für 200 aufeinanderfolgende Kunden dargestellt:


a) Persone Bearenangezere necessi necessions 10 % der Francesia

20

- e) Kreuzen Sie die beiden Aussagen an, die auf jeden Fall zutreffen.
 - X 20 Kunden hatten eine Bedienungszeit unter 20 Sekunden.
 - Genau $\frac{2}{5}$ der untersuchten Kunden hatten eine Bedienungszeit von mehr als 40 Sekunden..
 - X Der Median der Verteilung liegt im Intervall [30; 40[.
 - 4 Kunden hatten eine Bedienungszeit von 25 Sekunden.

3. Ein Autohersteller überprüft regelmäßig die Effizienz seiner Fertigungsanlagen, insbesondere die Arbeitsabläufe an den Fließbändern. Bei einer solchen Untersuchung wurden die Montagezeiten eines bestimmten Werkstücks für 10 Arbeiter in Sekunden gemessen.

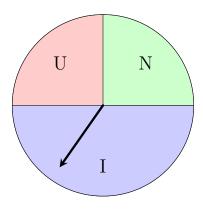
Die erhobenen Daten sind im folgenden Boxplot dargestellt:

- a) (4 Punkte) Berechnen Sie das arithmetische Mittel und den Median der Montagezeiten.
- b) (2 Punkte) Warum ist für diese Daten der Mittelwert kleiner als der Median? Begründen Sie!
- c) (2 Punkte) Berechnen Sie die Werte a und b des obigen Boxplots.
- d) (3 Punkte) Wie müsste man den Datenpunkt 92 des obigen Datensatzes abändern, damit er zu einem potentiellen Ausreißer nach unten wird? Geben Sie das Intervall an, in dem der geänderte Wert liegen muss.

- a) Metrisch; arithmetisches Mittel: $\overline{x} = 96, 8$; Standardabweichung: 15,471
- b) wird tendenziell größer als das arithmetische Mittel sein, da der Wert 53 einen Ausreißer nach unten darstellt, der das arithmetische Mittel nach unten "zieht".
- c) a = 96, b = 105
- d) [69; 82, 5]

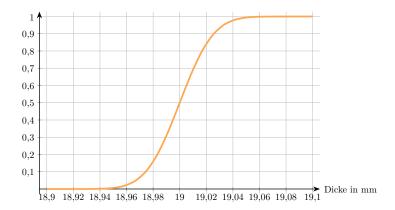
4. Im Rahmen eines Beurteilungsverfahrens wurden sieben Kandidaten anhand zweier verschiedener Kriterien bewertet:

Kriterium 1: Benötigte Zeit (in Minuten) zur Lösung von zehn vorgegebenen Logikaufgaben

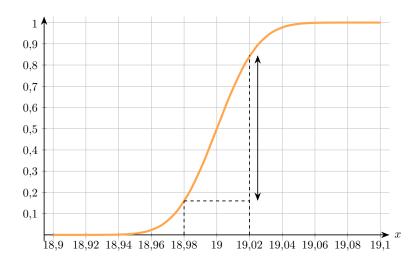

Kriterium 2: Platzierung in einem Englisch-Sprachkompetenztest

Kandidat	1	2	3	4	5	6	7
Zeit	25	27	19	21	20	19	24
Platzierung	7	6	3	4	1	2	5

- a) (2 Punkte) Ist es sinnvoll, in diesem Fall eine Regressionsgerade zu berechnen? Begründen Sie Ihre Antwort!
- b) (7 Punkte) Bestimmen Sie eine geeignete Kennzahl, um den Zusammenhang zwischen den beiden Merkmalen zu beschreiben, und interpretieren Sie den erhaltenen Wert im gegebenen Kontext.


- a) Da die Platzierung im Englisch-Test eine ordinal skalierte Variable ist, ist es nicht sinnvoll, eine Regressionsgerade zu berechnen. Eine Regressionsanalyse setzt voraus, dass beide Merkmale mindestens intervallskaliert sind.
- b) Der Rangkorrelationskoeffizient von Spearman beträgt $r_s \approx 0,848$. Dies zeigt einen starken positiven Zusammenhang zwischen der benötigten Zeit und der Platzierung. Das bedeutet: Kandidaten, die mehr Zeit für die Logikaufgaben benötigen, erzielen tendenziell schlechtere (höhere) Platzierungen im Englisch-Test.

5. (10 Punkte) Im Rahmen einer Semestereröffnungsparty wird folgendes Glücksspiel angeboten: Man darf das nachstehende Glücksrad dreimal drehen. Es wird angenommen, dass der Zeiger des Glücksrades mit derselben Wahrscheinlichkeit an jeder beliebigen Stelle des Kreises stehen bleiben kann. Erzielt man dabei das Wort "UNI" (in genau dieser Reihenfolge) so gewinnt man € 10.- Dreht man dreimal denselben Buchstaben hintereinander, so gewinnt man € 5.-. In allen anderen Fällen gibt es keinen Gewinn. Berechnen Sie den Erwartungswert und die Varianz des Gewinns pro Spiel.



- a) E(G) = 1,094
- b) Var(G) = 5,835

- 6. Auf einer Maschine werden Platten hergestellt, deren Dicke X (bei korrekter Einstellung der Maschine) normalverteilt ist mit dem Erwartungswert $\mu=19$ mm und der Soll-Standardabweichung $\sigma=0,02$ mm. Platten mit einer Dicke zwischen $18,98\leq X\leq 19,02$ mm sind Qualität A, alle anderen Qualität B.
 - a) (4 Punkte) Wie viel Prozent der Produktion sind Qualität A?
 - b) (2 Punkte) In der nachstehenden Abbildung ist der Graph der Verteilungsfunktion dieser Normalverteilung dargestellt. Kennzeichnen Sie in dieser Abbildung die Wahrscheinlichkeit, dass eine zufällig ausgewählte Platte von Qualität A ist.
 - c) (4 Punkte) Wie müssten die Toleranzgrenzen symmetrisch zu μ festlegt werden, um nur 5 % Platten der Qualität B zu erhalten?
 - d) (5 Punkte) Eine neu angeschaffte Maschine kann 98 % der Platten in Qualität A herstellen. Wie groß ist die Wahrscheinlichkeit, in einer nicht auf Qualität kontrollierten Lieferung von 10 Platten mehr als eine Platte der Güte B anzutreffen?

- a) 0,683
- b)

- c) [18, 961; 19, 039]
- d) 0,016

- 7. Die Reichweite X (in Kilometer) eines Elektroautos mit Semi-Festkörperbatterie ist $N(\mu, 18)$ -verteilt.
 - a) (6 Punkte) Testen Sie zum Niveau $\alpha=0,01$ die Hypothese $H_0:\mu\geq 500$ aufgrund einer Stichprobe vom Umfang n=225, die einen Mittelwert von 496,8 ergab und interpretieren Sie Ihr Ergebnis.
 - b) (3 Punkte) Bestimmen Sie den p-Wert.
 - c) (3 Punkte) Unterhalb welcher Reichweite würden Sie die Nullhypothese verwerfen?

- a) H_0 verworfen Es konnte gezeigt werden, dass die Autos signifikant weniger als 500 km zurücklegen.
- b) 0,004
- c) 497,21

8. Ein Unternehmen hat zwei parallele Fertigungsstraßen. Die Anzahl der bearbeiteten Produkte wurde an sechs zufällig ausgewählten Tagen beobachtet.

Fertigung A	120	113	118	124	128	116
Fertigung B	120	125	111	114	140	113

a) (9 Punkte) Können Sie mit einem Signifikanzniveau von $\alpha=0,1$ bestätigen, dass die Standardabweichung auf Fertigungsstraße B signifikant größer als auf Straße A ist? Gehen Sie dabei von normalverteilten Daten aus.

Hinweis: Die empirische Standardabweichung auf Fertigungsstrasse A beträgt: $s_A = 5,456$.

b) (3 Punkte) Können Sie aus dem Ergebnis der Aufgabe a) schließen, dass die Varianzen der beiden Fertigungsstraßen unterschiedlich sind? Begründen Sie Ihre Antwort ausführlich!

Lösung

a)
$$H_1 = \frac{\sigma_{x^2}}{\sigma_{y^2}} < 1$$
; $t_0 = 0,252$ $K = [0;0,29]$; Ja.

b) Wenn der einseitige Test signifikant ist, bedeutet das nur, dass die Varianz von Fertigungsstraße B größer ist. Es schließt jedoch nicht aus, dass die Varianzen auch bei einem zweiseitigen Test als gleich betrachtet werden könnten, da der zweiseitige Test zwar dieselbe Testgröße verwendet, aber die kritischen Bereiche anders berechnet werden.

9. Im Folgenden wird eine Regressionsanalyse dargestellt, die den Zusammenhang zwischen den Arbeitslosenzahlen und der Anzahl offener Stellen in Österreich für die Jahre 2016 bis 2024 untersucht. Das Modell soll die Abhängigkeit der Arbeitslosenzahl (in Tausend) von der Anzahl offener Stellen (in Tausend) schätzen.

Die Analyse ergab folgenden Output:

Regressions-Statistik				
Bestimmtheitsmaß	0,015			
Standardfehler	57,485			
Beobachtungen	9			

	Koeffizient	Standard- fehler	t-Statistik	p-Wert	Untere 95%	Obere 95%
Schnittpunkt	318,396	87,750	3,628	0,008	110,900	525,892
offene Stellen	-0,405	1,231			-3,316	2,506

- a) (1 Punkt) Formulieren Sie die Regressionsgleichung des Modells auf Grundlage der vorliegenden Regressionsanalyse. Geben Sie dabei die Gleichung der geschätzten Regressionsgeraden in Abhängigkeit von der unabhängigen Variablen an.
- b) (2 Punkte) Welche Arbeitslosenzahl prognostiziert das Modell für das Jahr 2025, in dem 78.000 offene Stellen erwartet werden?
- c) (2 Punkte) Interpretieren Sie das Bestimmtheitsmaß in Bezug auf die Güte des Modells.
- d) (6 Punkte) Hat die Anzahl der offenen Stellen einen signifikanten Einfluss auf die Arbeitslosenzahlen? Führen Sie den entsprechenden Test zum Niveau $\alpha=5~\%$ durch und beantworten Sie die Frage.

- a) $\hat{Y} = 318,396 0,405 \cdot x$
- b) 286.802
- c) $R^2=0,015$. Das Bestimmtheitsmaß von 0,015 bedeutet, dass 1,5 % der Varianz der Arbeitslosenzahlen durch die offenen Stellen erklärt werden können. Das Bestimmtheitsmaß von $R^2=0,015$ zeigt, dass das Modell die Arbeitslosenzahlen nur sehr schlecht erklärt. Es ist daher kein gutes Modell, um den Zusammenhang zwischen den Arbeitslosenzahlen und der Anzahl offener Stellen zu beschreiben.
- d) $t_0 = -0,329; K =]-\infty; -2,365[\cup]2,365; \infty[; t_0 \notin K \Rightarrow H_0 \text{ beibehalten (kein signifikanter Einfluss)}.$