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Abstract

What is the impact of sample selection on the inference payoff of an evaluator testing a
simple hypothesis based on the outcome of a location experiment? We show that anticipated
selection locally reduces noise dispersion and thus increases informativeness if and only if the
noise distribution is double logconvex, as with normal noise. The results are applied to the
analysis of strategic sample selection by a biased researcher and extended to the case of uncer-
tain and unanticipated selection. Our theoretical analysis offers applied research a new angle
on the problem of selection in empirical studies, by characterizing when selective assignment
based on untreated outcomes benefits or hurts the evaluator.
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1 Introduction

Empirical data are often nonrandomly selected, due to choices made by the subjects under inves-
tigation or sample inclusion decisions by data analysts.1 Suppose a new treatment is given to the
healthiest patient rather than to a random patient in a group. Because of selection, favorable out-
comes are weaker evidence that the treatment is effective. But is the evaluator’s assessment of
the treatment effect more accurate with selective or with random assignment? A similar question
arises when peremptory challenge gives a defendant the right to strike down a number of jurors.
Given that the defendant selects the most favorable jurors, how is the quality of final judgement
affected? When feeding a consumer review to potential buyers with limited attention, should an
e-commerce platform post a random review or allow the merchant to cherry-pick one? And when
testing a student in an exam, should the teacher ask a question at random or allow the student to
select the most preferred question out of a batch?

These comparisons are all instances of one and the same problem—assessing the impact of
selection in simple hypothesis testing. There is an unknown state θ that is either high or low—the
effect of a new treatment, a defendant’s innocence, the quality of a merchant’s good, or a student’s
ability. An evaluator observes a stochastic signal about the state, x = θ + ε , where ε is a noise
term—the baseline health of an individual, a juror’s bias, a reviewer’s leniency, or a student’s
specific knowledge. Based on the signal, the evaluator then makes a decision either to accept—the
correct choice in the high state—or reject—the correct choice in the low state. The issue is, in
which of the following two scenarios does the evaluator make better decisions:

• Random Experiment. The signal is sampled randomly. The noise term ε is drawn from a
known cumulative distribution F .

• Selected Experiment. The signal is selected—perhaps by another party, strategically—
as the highest out of k > 1 random signals. Thus, ε = max〈ε1, . . . ,εk〉, where ε1, . . . ,εk

are independent draws from the same distribution F . The noise distribution of a selected
experiment becomes G = Fk.

To address this issue we must compare the error rates the evaluator can achieve in the two
experiments. Given a noise distribution, F or G, the evaluator’s decision is the familiar trade-off
between the probability α of a false positive—accepting in the low state—and the probability β of
a false negative—rejecting in the high state. With a higher threshold of acceptance on the observed
signal, α decreases, but β increases. The evaluator minimizes a weighted sum of the two, setting
a higher threshold when the relative weight attached to α is higher. Consider the example of a
uniform F , illustrated in Figure 1. The blue and red curves on the left are the distributions of the

1For instance, Heckman (1979) refers from the outset to these two sources of selection.
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Figure 1: Local dispersion with a uniform noise.

random and selected (k = 2) signal in the low state. Those on the right, the distributions in the high
state. An evaluator choosing the high threshold x̄F in experiment F induces error rates αF and β F

and is therefore at least as concerned about false positives as one choosing x̄′F , inducing error rates
α ′F > αF and β

′
F < β F .

Consider now changing the experiment from F to G = F2. An evaluator who was optimally
choosing threshold x̄F in experiment F stands to gain from the change: choosing threshold x̄G in G
gives as many false positives, αG = αF , but fewer false negatives, β G < β F . This is because at x̄F

the horizontal difference between the selected and the random signal distribution is smaller in the
low state than in the high state—the solid green segment is shorter than the dashed green segment
on the right. But the signal distributions in the two states are just translated versions of the noise
distributions F and G. Thus, the gain is due to the fact that G is locally less dispersed than F at the
top—the dashed green segment on the left is shorter than the solid green segment.

For an evaluator more concerned about false negatives, who was choosing a lower threshold
like x̄′F in experiment F , the mechanics of the change to G work just the opposite way, but the im-
pact of the change is subtler. There are α ′F false positives in F , but getting as many (α ′G = α ′F ) in
G now requires increasing false negatives to β

′
G > β

′
F . At the bottom, G is locally more dispersed

than F—the solid brown segment is longer than either dashed brown segment. From this observa-
tion, however, we cannot conclude that changing experiment from F to G damages the evaluator,
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because the change leads to a new trade-off where α is reoptimized to a value different from α ′F .2

The observation does reveal a structure though: plotting β against α for each experiment—we call
this function the information constraint of the experiment—an alternating pattern emerges. The
information constraint of G crosses that of F once and from below, as α increases beyond a certain
value—reflecting the alternating pattern in local dispersion.

Our first main contribution is to develop a theory of local dispersion that can take advantage of
this alternating pattern in the information constraint. By considering the convex envelope of the
information constraints of F and G, in Theorem 1 we show that any alternating pattern of prefer-
ence uniquely corresponds to an alternating sign pattern of the information constraint difference,
and hence uniquely corresponds to a local dispersion pattern. Intuitively, every point where G
switches from less to more locally dispersed than F corresponds to a critical weight attached to
false positives—where the preferred experiment switches from G to F . For example, the uniform
case discussed earlier represents the particular case where G is first more then less locally dispersed
than F . This corresponds to the fact that as the weight attached to false positives increases beyond
a critical value, the evaluator switches from preferring F to preferring G.

Our notion of local dispersion formalizes the idea that a noise distribution is more informative
than another at some quantiles and less informative at others. Lehmann (1988) considered experi-
ments ranked in the dispersive order—with one globally (everywhere locally) less dispersed than
the other—and characterized when one experiment is preferred to the other for all possible evalua-
tor’s preferences, thus following Blackwell (1951, 1953). But, as the uniform example illustrates,
in general the random experiment F and the selected experiment G = Fk are incomparable in the
sense of Blackwell—one cannot identify the experiment giving the evaluator the higher payoff
without knowing anything about the evaluator’s preferences. The notion of local dispersion strikes
a different balance: it requires some knowledge of the evaluator’s preferences—the strength of the
evaluator’s relative concern about false positives—but allows us to rank more experiments.

Given the characterization provided by Theorem 1, our main question about the welfare impact
of selection becomes an issue of comparing random and selected experiments in terms of global
or local dispersion. At a global level, our second main contribution identifies a necessary and
sufficient condition for a selected experiment to be less dispersed than a random experiment. The-
orem 2 shows that Fk is less dispersed than F , with dispersion monotonically decreasing in k, if
and only if − log(− logF) is a convex function. Gumbel’s extreme value distribution has a double
loglinear distribution function, so we can equivalently characterize double logconvexity of F as
having a quantile density that is less elastic than Gumbel’s. Given that less dispersion increases the
evaluator’s payoff, this result characterizes the class of distributions F for which the evaluator’s
payoff must be increasing (or decreasing) in the extent k of selection.

2Had we started from the assumption that x̄′G were optimal for the selected experiment G, we could have concluded
that the random experiment F is better than G.
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Intuitively, the double logconvexity criterion says that neither the top tail of the distribution
should be thicker than in the Gumbel distribution—for otherwise the thickening of the top tail
resulting from selection would increase dispersion at the top of the distribution—nor the bottom
tail should be thinner—for otherwise the thinning of the bottom tail created by selection would
again increase dispersion, this time at the bottom. For example, the condition implies that the
evaluator always gains from sample selection when F is normal or logistic, but always loses when
F is exponential.

To assess the impact of selection in those cases where the double-log transformation of F
is neither concave nor convex, we rely on both the local dispersion characterization in Theorem 1
and the double logconvexity criterion in Theorem 2. If, for instance,− log(− logF) is first concave
then convex, then selection harms evaluators with a strong preference against false negatives, as
seen earlier with a uniform F . Overall, an evaluator more concerned about false negatives is
harmed when the data distribution has sufficiently thin left tail (as for the uniform distribution).
Symmetrically, an evaluator more concerned about false positives is harmed by selection when the
right tail is sufficiently thick—this happens, for instance, with the Laplace distribution.

Our results have important implications for applied research. While typically thought of ex-
clusively as a threat to internal validity, selective assignment based on untreated outcomes—or,
more generally, some unobservable characteristics correlated with untreated outcomes—can actu-
ally benefit an evaluator who properly anticipates selection. Actually, as we discuss at the end of
the paper, selection may benefit even an unwary evaluator who does not anticipate it. In addition,
our analysis provides a useful practical criterion for a first assessment of the impact of selection
in empirical studies. Since double logconvexity of F is equivalent to double logconvexity of Fk,
a direct indication of the potential benefit or harm of selection can be obtained by checking if the
empirical data distribution satisfies these properties—whether data are actually selected or not.

Drawing on extreme value theory, we also analyze the case with large selection, when k tends to
infinity. For illustration, when F is normal, we show that the evaluator in the limit is able to identify
the true state on the basis of one, extremely selected observation. In this case, the evaluator thus
obtains the highest possible payoff, where both error rates are zero. By contrast, − log(− logF) is
concave for the exponential distribution, so selection increasingly harms the evaluator (Theorem 2)
and information in the limit is less than full. We show that for all strictly logconcave distributions
in the exponential power family the evaluator achieves full information in the limit with extreme
selection. Thus, unless the noise distribution is exactly exponential in the upper tail (as for the
Laplace distribution), extreme selection benefits the evaluator for all parameter values—however,
the rate of convergence is extremely slow.

Selection naturally arises when the evidence is provided by a strategic researcher who observes
a presample x1, ...,xk of size k and then reports the most favorable realization max〈x1, ...,xk〉 to the
evaluator. Given the presample size k and the fact that the evaluator uses an acceptance threshold
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policy, it is indeed optimal for the researcher to report the highest realization. We provide a strate-
gic foundation for sample selection by introducing a researcher who aims at convincing the eval-
uator that the true state is high—e.g. that a new treatment is effective. The researcher’s incentives
to bias upward the evaluator’s inference through sample selection are anticipated in equilibrium by
the evaluator. Under the global condition of Theorem 2, we show that equilibrium selective sam-
pling benefits also the researcher in the empirically relevant case where the prior strongly favors
rejection.3 Instead, when the noise distribution has a thick right tail and selection is mild (small k),
equilibrium selective sampling harms not only the evaluator but also the researcher when the prior
strongly favors rejection—generating a credibility crisis.4

We also endogenize the amount of selection in terms of costly investment by the researcher in
obtaining pre-sample k realizations from which selection is made. The evaluator’s anticipation of
the extent of selection k and the resulting adjustment for selection bias at least partly frustrates the
researcher’s attempt to manipulate. If selection is fully anticipated in equilibrium—for example
because the researcher’s cost of pre-sample collection is known—then pre-sample collection and
selection are a pure rat race when noise follows a Gumbel distribution. In that case, correctly
anticipated presample collection and selection have no impact on the acceptance probability and
decision payoffs of evaluator and researcher, and so results in a loss by the researcher exactly equal
to the cost of presample collection. Thus, in Gumbel’s pure rat race the researcher unambiguously
benefits from commitment not to allow (or, equivalently, to disclose) presample collection.5

Finally, we discuss the welfare impact of unanticipated and uncertain selection. We showcase
a notable situation in which unanticipated selection leaves the evaluator exactly indifferent: when-
ever the noise distribution is symmetric (as with normal, logistic, or uniform noise) and equipoise
holds at the prior (an ethical condition requiring indifference between acceptance and rejection),
an evaluator who observes the maximum of k = 2 realizations while expecting a random realiza-
tion obtains the same payoff as when observing (and correctly expecting) a random realization.
Intuitively, unexpected selection increases acceptance, but by symmetry the loss associated to the
increase in false positives (higher α) is exactly offset by the benefit associated to the reduction in
false negatives (lower β ). In addition, we show that uncertainty in the extent of selection tends
to damage the evaluator. This effect is most transparent in the Gumbel case, as indifference to
selection hinges on the evaluator’s exact knowledge of the extent of selection k.

Related Literature. Concerns about data selection and manipulation have long been voiced by

3In this case, we also show that equilibrium selection harms the researcher when the prior strongly favors accep-
tance.

4In this case, we also show that equilibrium selection benefits the researcher when the prior strongly favors accep-
tance.

5More generally, selection is not completely self defeating, even when the evaluator correctly anticipates the extent
of selection k. Our results characterize the net impact of properly anticipated selection on acceptance probability (the
researcher’s decision payoff) and the evaluator’s decision payoff.
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the science and medicine literature and have led to important policy responses.6 However, there
is a dearth of modeling in the area.7 An early exception is Blackwell and Hodges (1957), who
analyze how an evaluator should optimally design a sequential experiment to minimize selection
bias, a term they coined to represent the fraction of times a strategic researcher is able to correctly
forecast the treatment assignment.8 However, they did not model the information available to
the researcher at the assignment stage. Moreover, the ensuing literature focused on exogenous
selection bias and on how to adjust for it, rather than on its strategic origin and its impact on the
quality of inference. Once we explicitly model information, we characterize situations in which
selection actually benefits the evaluator, contrary to what Blackwell and Hodges (1957) stipulate.

Relative to work on optimal persuasion following Rayo and Segal (2010) and Kamenica and
Gentzkow (2011), in our setting information acquistion is costly and information manipulation is
naturally constrained by the need of reporting a signal selected from the pre-sample. Our researcher
discloses a single observation, as in the limited-attention model first proposed by Fishman and
Hagerty (1990).9 Thus, we have a signal-jamming model of equilibrium persuasion through pre-
sample collection and then sample selection. The researcher’s choice of the size k of the presample
is akin to the agent’s effort choice in Holmström’s (1999) classic career concern model. The twist
here is that this effort results in private information, which the researcher then uses to select the
reported information.

In a complementary approach to modeling conflicts of interest in statistical testing, Banerjee,
Chassang, and Snowberg (2017) propose a theory of a researcher facing an adversarial evaluator
who will challenge any prior information. In another complementary approach, Tetenov (2016)
analyzes an evaluator’s optimal commitment to a decision rule when privately informed researchers
select into costly testing. Instead, we focus on the impact of a researcher’s manipulation of data on
the welfare of an uncommitted evaluator.

6See, for example, the analysis of Schulz, Chalmers, Hayes, and Altman (1995) and the CONSORT statement,
http://www.consort-statement.org.

7Glaeser (2008) discusses a number of issues in this regard. Di Tillio, Ottaviani, and Sørensen (forthcoming)
compare different types of selection in the context of an illustrative model with binary noise, which violates the
logconcavity assumption maintained in this paper.

8Blackwell and Hodges (1957) argue that selection bias is minimized by a truncated binomial design, according
to which the initial allocations to treatment and control are selected independently with a fair coin, until half of the
subjects are allocated to either treatment or control; from that point on, allocation is deterministic. Efron (1971), in-
stead, characterizes the selection bias resulting from a biased coin design, according to which the probability of current
assignment to treatment is higher if previous randomizations resulted in excess balance of controls over treatments.

9See also Henry (2009), Dahm, Gonzàlez, and Porteiro (2009), Felgenhauer and Schulte (2014), and Hoffmann,
Inderst, and Ottaviani (2014) for persuasion models with endogenous information acquisition. Henry and Ottaviani
(2015) analyze a dynamic model of persuasion with costly information acquisition à la Wald (1950), where information
is truthfully reported at the time of application.
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2 Statistical Setup

A Bayesian evaluator is interested in the true value of an unknown binary state θ ∈ {θ L,θ H},
where θ L and θ H > θ L are real numbers, and assigns prior probability p ∈ (0,1) to state θ H . The
evaluator faces a binary decision, to accept or to reject. Acceptance results in payoff θ , while
rejection gives a safety payoff R, where θ L < R < θ H .

Information and Optimal Decision. Before deciding, the evaluator observes an informative sig-
nal about the true state, x = θ + ε . The noise term, ε , is independent of θ and drawn from a
known cumulative distribution function F , called an experiment, with logconcave density f .10 The
evaluator optimally accepts if and only if the conditional expectation of the state given the signal
realization is greater than or equal to R, that is,

p f (x−θ H)θ H +(1− p) f (x−θ L)θ L >
[
p f (x−θ H)+(1− p) f (x−θ L)

]
R.

Thus, the evaluator accepts when the likelihood ratio, `F(x)≡ f (x−θ H)/ f (x−θ L), is at least as
large as the acceptance hurdle defined by

¯̀=
1− p

p
R−θ L

θ H−R
. (1)

Logconcavity of f implies the monotone likelihood ratio property: `F(x) is increasing.11 Thus, the
evaluator accepts if and only if the signal realization x is greater than or equal to some (possibly
unbounded) threshold −∞ 6 x̄ 6 ∞. The optimal threshold is x̄∗F( ¯̀) = ∞ if `F(x) < ¯̀ for every x,
and x̄∗F( ¯̀) = inf

{
x : `F(x)> ¯̀} otherwise.

Reformulation. Any threshold x̄ induces a false positive (type I error) rate α = 1−F(x̄− θ L),
the probability of an incorrect acceptance in state θ L, and a false negative (type II error) rate β =

F(x̄−θ H), the probability of an incorrect rejection in state θ H . Given the decision to accept above
and reject below x̄, conditional on state θ the evaluator’s payoff is F(x̄−θ)R+[1−F(x̄−θ)]θ .
Thus, disregarding constants the evaluator’s expected payoff becomes

− (1− p)(R−θ L)α− p(θ H−R)β , (2)

a linear and strictly decreasing function of α and β . The term (1− p)(R−θ L) can be interpreted
as the marginal cost of a false positive, and p(θ H−R) as the marginal cost of a false negative. The
acceptance hurdle ¯̀ then measures the relative marginal cost of false positives.

The evaluator can achieve any pair (α,β ) induced by some threshold, that is, any pair such that
α = 1−F(x̄−θ L) and β = F(x̄−θ H) for some−∞ 6 x̄ 6 ∞. The two error types are then related

10A density f is logconcave if ∂ 2 log f (x)/∂x2 6 0; see Bagnoli and Bergstrom (2005) for a primer.
11Since we consider experiments with arbitrary values θ H > θ L, the monotone likelihood ratio property is not only

necessary but also sufficient for logconcavity of the error distribution. See e.g. Lehmann and Romano (2005, p. 323).
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Figure 2: Reformulated problem and optimal solution in the normal case.

by the following function, which we call the information constraint of experiment F :

β = β F(α) = F
(
F−1(1−α)+θ L−θ H

)
. (3)

Figure 2 illustrates the construction of the information constraint from the cumulative distribution
functions of the signal in the two states, when F is standard normal. Note that β F is decreasing
and convex. Indeed, by decreasing the threshold the evaluator accepts more often, increasing false
positives but decreasing false negatives. Moreover, at any interior point (α,β F(α)) ∈ (0,1)2 the
slope of the constraint is the negative of the likelihood ratio at the corresponding threshold:

β
′
F(α) =−

f
(
F−1(1−α)+θ L−θ H

)
f (F−1(1−α))

=−`F
(
F−1(1−α)+θ L

)
.

To simplify the presentation of our results, it will be convenient to define the slope of the informa-
tion constraint also for non-interior points on its graph. Specifically, we define β

′
F(0) = −∞ and

β
′
F(α) = 0 for all α ∈ [0,1] such that β F(α) = 0.12

12What we call information constraint has appeared in varous guises and names in the statistical literature. For
example, Jewitt (2007) considers the probability-probability plot which shows β as a function of 1−α , namely the
parametric plot of the point (F(x− θ L),F(x− θ H)), as the signal realization x varies. Torgersen (1991) uses both
names β -functions and Neyman-Pearson functions to describe 1−β as a function of α . The latter relationship is also
known as the receiver operating characteristic curve or ROC graph.
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Dividing (2) by p(θ H −R) and using (1), we conclude that the problem of the evaluator is
equivalent to choosing α and β to minimize the linear objective function ¯̀α + β subject to the
decreasing, convex constraint β = β F(α). More simply, the evaluator chooses α ∈ [0,1] to min-
imize ¯̀α + β F(α). Letting α∗F(

¯̀) denote the optimal solution to the reformulated problem, we
have α∗F(

¯̀) = 1−F(x̄∗F( ¯̀)−θ L), that is,

α
∗
F( ¯̀) = sup

{
α ∈ [0,1] : −β

′
F(α)> ¯̀}.

Figure 2 illustrates the optimal solution in the symmetric case where type I and type II errors
have equal marginal costs, namely ¯̀= 1. The green lines with slope − ¯̀= −1 are the evaluator’s
indifference lines. The top line connects the points (1,0) and (0,1), the pairs of errors achievable
by always accepting (setting threshold at −∞) and always rejecting (setting threshold at ∞). The
evaluator can do better than that, e.g. by setting the threshold at x̄ or x̄′′, both of which lead to the
intermediate indifference line in the figure. Finally, the lower indifference line, i.e. the unique (by
convexity of β F ) line tangent to β F , identifies the optimal solution α ′∗F (1), corresponding to the
optimal threshold x̄′∗F (1) in the original problem.

Finally, note that the information constraint and both the solution and the value of the eval-
uator’s problem remain the same if the noise is translated by a constant c, so that its cumulative
distribution function is F(ε− c) instead of F(ε).

Random vs. Selected Experiment. Our main goal in this paper is to compare the following two
scenarios in terms of evaluator’s welfare. In the first scenario, the evaluator observes a random data
point: the noise term ε is drawn from some distribution F . In the second scenario, the evaluator
observes a selected data point: the noise term is the maximum of k > 1 independent draws from F .

The case of selected data corresponds to the experiment Fk, with density kFk−1 f . The latter
inherits logconcavity from f , so the evaluator again uses a cutoff rule, but the optimal threshold is
higher than under F , and increasing in k. Indeed, the evaluator accepts if and only if

`Fk(x) = [F(x−θ H)/F(x−θ L)]
k−1`F(x)> ¯̀, (4)

and the term in square brackets is less than 1 for each x. By our reformulation, the evaluator’s
optimal decision minimizes ¯̀α +β subject to the information constraint β = β Fk(α).

Potential Outcomes Interpretation. Selection bias is an important concern in observational stud-
ies, as well as in the practice of controlled experiments; see Schulz (1995) and Berger (2005) for
extensive accounts and examples of subversion of randomization in clinical trials.13 Following

13As explained by Berger (2005), the practice of blocking to ensure an equal number of patients in the control and
in the treatment group tends to make allocation to control/treatment more predictable toward the end of the block,
allowing researchers to subvert the assignment of individual patients depending on the outcomes they expect for
individual patients.
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Neyman (1923) and Rubin (1974, 1978), consider a population of individuals and two alternative
treatments—a default, known treatment a and a new treatment b whose benefit beyond the de-
fault is unknown. Let Yi(t) denote the potential outcome of individual i when receiving treatment
t = a,b. Assume that the unknown treatment effect on individual i, the difference Yi(b)−Yi(a), is
the same for each individual i and can take only two values. Letting ε = Yi(a) and x = Yi(b) it is
easily seen that the random experiment F is nothing else than a randomized controlled trial with
a random control group.14 Analogously, experiment Fk corresponds to the selection-biased trial
where the assignment to treatment is correlated with the untreated potential outcome—the treated
individual’s untreated outcome ε = Yi(a) is systematically higher than for a random individual
(maximum in a group of k).

3 Comparing Experiments by Local Dispersion

Is the evaluator better off with a random experiment or with a selected experiment? Selection
has two opposite effects on the acceptance probability in each state, and hence contrasting effects
on the value of the evaluator’s problem. The higher optimal threshold tends to lower acceptance
in both states, decreasing α and increasing β . However, Fk first-order stochastically dominates
F , which tends to raise acceptance in both states, increasing α and decreasing β . To shed light
on these effects, in this section we take a step back, and address the more general problem of
comparing any two experiments F and G, where G is not necessarily Fk.

3.1 Local Dispersion

Consider two experiments F and G with logconcave densities. If we know the parameters of the
evaluator’s problem and we compute the information constraints of the two experiments, β F and
β G, then we can immediately determine the evaluator’s preference: combining (1), (2), and (3), G
is preferred to F if and only if

¯̀α∗G( ¯̀)+β G(α
∗
G( ¯̀))6 ¯̀α∗F( ¯̀)+β F(α

∗
F( ¯̀)),

with strict preference or indifference if the inequality holds strictly or with equality, respectively.
What is behind the evaluator’s preference for one or the other experiment? Is there a method to de-
termine this preference without computing information constraints or having detailed information
about the problem parameters?

14More precisely, our analysis describes an experiment—random or selected—without a control group. But the case
of an experiment with a randomly chosen control group is formally equivalent—observing ε j for any other individual
j carries no information about the treatment effect θ . However, adding a control group can benefit the evaluator in the
selected experiment, when the untreated units are chosen among the k−1 that were not selected for treatment.
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Following Blackwell (1951, 1953), suppose first that we are interested in characterizing those
pairs of experiments F and G such that G is globally preferred to F , that is, preferred to F for all
parameter values. It is easy to see that this global preference holds if and only if for all θ H > θ L

the information constraint of G lies entirely below that of F , or β G(α) 6 β F(α) for all α ∈
[0,1]. Lehmann (1988, Theorem 5.2) showed that the latter property is in turn equivalent to the
following:15 the quantile difference G−1−F−1 is weakly decreasing, i.e.

G−1(v)−F−1(v)6 G−1(u)−F−1(u) for all 0 < u < v < 1. (5)

This criterion defines that G is less dispersed than F , a notion of stochastic ordering proposed by
Bickel and Lehmann (1979).16 Intuitively, G is less spread out than F and thus provides better
information about the state—for an example, see Figure 5 below.

Lehmann’s result provides a sufficient condition that is intuitive, easy to check, and requires no
knowledge of the problem parameters: given any value of θ L, θ H , p and R, if G is less dispersed
than F then the evaluator must prefer G to F . Moreover, the condition is sharp, for no weaker
condition can guarantee that G is always the preferred experiment—if G is not less dispersed than
F , then there exist parameter values such that the evaluator strictly prefers F to G.

Despite its sharpness, Lehmann’s criterion is often inapplicable—the ordering of experiments
in terms of dispersion is only partial. If the quantile difference G−1−F−1 is not monotone, then
for some θ H > θ L the information constraints β F and β G must fail to lie one below the other,
and the evaluator’s preference then depends on the value of p and R. But suppose now that we
do know something about the problem parameters and are therefore interested in determining the
evaluator’s preference in some subset of their possible values. For example, we might be interested
in checking whether G is preferred to F when the acceptance hurdle ¯̀ is sufficiently high—say,
for fixed values of p, θ L and θ H and all sufficiently large values of R. Can we obtain a criterion
that, like Lehmann’s, is easy to check and does not need computing the information constraints,
but allows comparison of experiments not ordered by dispersion?

We now show that a useful criterion for comparing experiments whose information constraints
may cross can indeed be given, in terms of a notion that we call local dispersion. To introduce
this notion, let δ = F−1(v)−F−1(u) and rewrite condition (5), that G is less dispersed than F , as
follows:

F(F−1(u)+δ )6 G(G−1(u)+δ ) for all δ > 0 and 0 < u < 1. (6)

15Briefly: let v = 1−α and u = β F (α). Like in the top part of Figure 1, G achieves no higher β G (α) because
G−1 (v)−G−1 (u)6 F−1 (v)−F−1 (u).

16Bickel and Lehmann (1979), in turn, credit Brown and Tukey (1946) for the essence of the definition. For ap-
plications of the notion of dispersion to economic problems, see Persico (2000) and Jewitt (2007). See also Quah
and Strulovici (2009), who extend Lehmann’s result from monotone procedures to a more general family of decision
problems.
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Figure 3: G is locally less δ -dispersed than F on [0,uδ ] and more δ -dispersed than F on [uδ ,1].

Written this way, the condition says that, given any δ and u, the probability that in experiment
F the noise takes a value between F−1(u) and F−1(u)+ δ is smaller than the probability that in
experiment G the noise takes a value between G−1(u) and G−1(u)+δ . In other words, G is more
concentrated in the interval [G−1(u),G−1(u)+δ ] than F in the interval [F−1(u),F−1(u)+δ ].

Our definition of local dispersion weakens both quantifiers in condition (6), requiring only that
the inequality holds for a fixed value of δ and for all u in some interval.

Definition 1. Experiment G is locally less δ -dispersed than experiment F on [u1,u2]⊆ [0,1] if

F(F−1(u)+δ )6 G(G−1(u)+δ ) for all u1 6 u 6 u2.

Figure 3 illustrates a case where G is locally less δ -dispersed than F for low values of u, and
more δ -dispersed than F for large values of u.17 Consider a low value of u, e.g. u = u1. Going
from F−1(u1) to F−1(u1)+δ , distribution F increases from u1 to u′1. But going from G−1(u1) to
G−1(u1)+δ , distribution G increases more, from u1 to u′′1 > u′1. At large values of u, the opposite
happens. For instance, starting from u = u2, distribution F increases to u′2 while G increases to
u′′2 < u′2. At the critical value uδ experiment G switches from being less to being more δ -dispersed
than F . The quantile difference G−1(u)−F−1(u) is decreasing at u = uδ , but moving horizontally
by δ both F and G reach the value u′

δ
, where the quantile difference is increasing. On average, the

two effects cancel—starting from uδ , the two distributions grow by the same amount u′
δ
−uδ .

17The plots are drawn for the case where θ H − θ L = 1 and the information constraints β F and β G correspond to
Gumbel’s minimum and maximum extreme value distributions, respectively: F(ε) = 1− e−eε

and G(ε) = e−e−ε

.
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3.2 Comparison of Experiments

We are now ready to state our first main result—the characterization of how local dispersion of
noise determines the value of information:

Theorem 1. For all experiments F and G and for all N > 1 and θ H > θ L, letting δ = θ H −θ L,
the following conditions are equivalent:

(L) There exist 0 = `1 6 · · ·6 `2N+1 = ∞ such that, for all n = 1, . . . ,N, the evaluator prefers F
to G for ¯̀∈ [`2n−1, `2n] and G to F for ¯̀∈ [`2n, `2n+1].

(A) There exist 1 = α1 > · · · > α2N+1 = 0 such that, for all n = 1, . . . ,N, β F(α) 6 β G(α) for
all α ∈ [α2n,α2n−1] and β F(α)> β G(α) for all α ∈ [α2n+1,α2n].

(D) There exist 0 = u1 6 · · · 6 u2N+1 = 1 such that, for all n = 1, . . . ,N, F is locally less δ -
dispersed than G on [u2n−1,u2n] and more δ -dispersed than G on [u2n,u2n+1].

According to Lehmann’s (1988) Theorem 5.2, when two experiments are not ordered by disper-
sion we cannot determine the evaluator’s preference without having information on the parameters
of the problem. Theorem 1 shows, however, that we do not need much information to determine
the value of information. The evaluator’s preference depends on the problem parameters in a way
that is both intuitive and easily predictable from the shape of the quantile difference, much like in
Lehmann’s global result.

Before discussing the intuition and the mechanics of Theorem 1, it is worth highlighting two
special cases. First, letting N = 1, with `2 = `1 = 0 and u2 = u1 = 0, we obtain Lehmann’s
(1988) Theorem 5.2 as an immediate corollary. Second, letting again N = 1, but this time with
0 = `1 < `2 < `3 = ∞ and 0 = u1 < u2 < u3 = 1, our theorem characterizes when the information
constraints of F and G have a single crossing—this happens in the example of Figure 3, which we
will shortly revisit. In this single-crossing case, there is a simple criterion to identify the switch in
local dispersion: if F and G have the same support and the quantile difference G−1−F−1 is first
decreasing and then increasing, then, for every δ not too large, G is locally first less and then more
δ -dispersed than F . Thus, while the definition of local dispersion depends on the value of δ , there
is a simple case—which will be useful in the analysis of Section 4 below—where just looking at
the quantile difference is enough. We report this conclusion in the following proposition.

Proposition 1. Let 0 < u1 < 1. Let F and G be experiments such that G−1(u)−F−1(u) is decreas-
ing on [0,u1] and increasing on [u1,1]. Assume that F and G have a common (possibly unbounded)
support [ε,ε]. For every 0< δ < ε−ε there exists uδ ∈ [0,1] such that G is locally less δ -dispersed
than F on [0,uδ ] and more δ -dispersed than F on [uδ ,1].
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Figure 4: Building the preference pattern from the sign pattern of the constraint difference.

The intuition for the equivalence in Theorem 1 is based on a simple observation: asking for
the inequality in (6) to hold only for δ = θ H − θ L (instead of all δ > 0) and for all u in some
interval is the same as asking that β G(α) 6 β F(α) for all α in a certain corresponding interval.
Thus, the alternating local dispersion pattern in condition (D) of Theorem 1 is equivalent to a
suitably defined alternating sign pattern of the difference β F(α)−β G(α), as in condition (A). But,
crucially, each value of α where the information constraints cross corresponds to a critical value
of ¯̀ where the evaluator is indifferent and preference switches from one experiment to the other.
Intervals between crossings instead correspond to intervals of values of ¯̀ where the experiment
with the lower information constraint is preferred. Thus, the pattern in condition (A) is in turn
equivalent to the alternating preference pattern in condition (L).

Appendix A establishes and discusses in detail the intuitive but subtle equivalence between
conditions (A) and (L) through two lemmas. Here we illustrate the main idea with the help of
Figure 4, where F and G are the experiments already discussed in Figure 3. The left diagram gives
the overall picture, the right diagram zooms in around the point where the information constraints
cross. For low values of ¯̀, and precisely for ¯̀ between 0 and −β

′
F(α1), the preferred experiment

is G, for G affords a higher payoff than F even to an evaluator who suboptimally chooses α∗F(
¯̀).

Symmetrically, when ¯̀ is larger than −β
′
G(α1), the preferred experiment is F . For ¯̀ between

−β
′
F(α1) and −β

′
G(α1), however, the comparison is not immediate—with ¯̀ in this range, β G lies

below β F at α∗F(
¯̀), and β F lies below β G at α∗G(

¯̀), i.e. changing experiment without reoptimizing
on α leads to a lower payoff. But since the information constraints have exactly one interior
crossing, at α1, Lemma 1 guarantees that preference switches exactly once, at the critical value `1
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of ¯̀. Thus, the optimizing evaluator still prefers G as ¯̀ increases from −β
′
F(α1) to `1, while F

remains preferred as ¯̀ decreases from −β
′
G(α1) down to `1.

Lemma 2 in Appendix A allows us to go the other way around. Take any two experiments F
and G and a critical value `1 where preference switches from G to F as ¯̀ rises above `1. Then the
convex envelope of β F and β G must be tangent to β F at α∗F(`1) and to β G at α∗G(`1). But then, by
their continuity, the two constraints must cross at a point α1 between α∗F(`1) and α∗G(`1).

Remark on Bayesian and Frequentist Hypothesis Testing. In the theory of statistical testing,
the evaluator’s optimal decision in an experiment F , to accept if and only if the observed signal x
satisfies `F(x) > ¯̀, is called the Bayes solution or, in classical statistics terms, a likelihood ratio
test, where α∗F(

¯̀) is the significance level of the test and 1−β F(α
∗
F(

¯̀)) its power.18

As we have already noted, a Bayesian evaluator prefers another experiment G to F for every
value of ¯̀ if and only if β G(α) 6 β F(α) for every α . Thus, the Bayesian and the frequentist
comparison agree when F and G are compared globally over all values of ¯̀ or all significance
levels: G is preferred to F by the Bayesian evaluator for every value of ¯̀ if and only if, for every
significance level α , the most powerful test based on G provides greater power than the most
powerful test based on F .

The example in Figure 4 shows that the Bayesian and the frequentist approach differ, however,
when F and G are compared locally in an interval of values of ¯̀ or an interval of significance
levels. Under experiment F , each value of α in the interval [α∗F(`1),α1] is the optimal solution for
some value of ¯̀ between −β

′
F(α1) and `1. Holding fixed the significance level at that value of α ,

the likelihood ratio test based on F provides greater power than that based on G, as β G lies above
β F in the interval [α∗F(`1),α1]. But our Bayesian evaluator, who does not keep fixed but rather
optimizes on the type I error, nevertheless prefers G to F when ¯̀ is between −β

′
F(α1) and `1.

4 Welfare Impact of Selection

In this section we use the notions of dispersion and local dispersion to address the main question
in this paper: How is the welfare impact of selection related to the noise distribution and to the
parameters of the evaluator’s problem?

4.1 Global Impact of Selection

Toward a full answer to our question, we first provide a characterization of experiments F where
the extent of selection, k, has a global and monotone effect: for all parameter values, increasing k

18See Torgersen (1991) for more general results.
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Figure 5: Selection in normal experiment: double-log transformation and convexity criterion.

makes the evaluator better off, or worse off—in other words, Fk is less dispersed the greater is k,
or more dispersed the greater is k. This is our second main result:

Theorem 2. Fk is less dispersed the greater is k > 1 if and only if − log(− logF) is convex.
Likewise, Fk is more dispersed the greater is k > 1 if and only if − log(− logF) is concave.

By Lehmann’s (1988) Theorem 5.2, we obtain immediately the following corollary:

Proposition 2. The evaluator prefers Fk′ to Fk (resp. Fk to Fk′) for all k′ > k > 1 and all values
of θ L, θ H , p and R, if and only if − log(− logF) is convex (resp. concave).

To gain intuition for the role of double logconvexity in our characterization, it is helpful to
rewrite the condition that an experiment G is less dispersed than another, F , in yet another way,
equivalent to (5) and (6) above:

f
(
F−1(u)

)
6 g
(
G−1(u)

)
for all 0 < u < 1. (7)

Thus, G is less dispersed than F if the slope of G at the quantile G−1(u) is steeper than the slope
of F at the quantile F−1(u), for every u. Consider now comparing F with G = Fk. In order to
compare the slopes of these distributions at their quantiles, as required by (7), it is convenient to
first transform F and Fk in such a way that the transformed functions are parallel shifts of each
other. The suitable transformation is the strictly increasing function u 7→ − log(− logu), because
− log(− log(Fk))=− log(− logF)−logk. The transformation is illustrated in Figure 5 for the case
of a standard normal experiment F .19 Condition (7) requires that, for every u′ ∈ [0,1], the slope of

19The plots are drawn for k = 8, but of course any k > 1 gives the same qualitative result.
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F computed at the quantile ε ′=F−1(u′) be less than the slope of Fk computed at the corresponding
quantile ε ′′ = (Fk)−1(u′). Since our double-log transformation is strictly increasing, this property
is equivalent to the slope of − log(− logF) at ε ′ being less than the slope of − log(− logFk) at
ε ′′. But this is the same as saying that the slope of − log(− logF) itself is greater at ε ′′ than at
ε ′. With ε ′′ > ε ′, this is satisfied when− log(− logF) is a convex function. Figure 5 shows that
this is exactly what happens with a normal signal. In this case, the information constraint β Fk lies
everywhere below β F , and further below the greater is k.

Variation of k > 1 lets us thus compare the slope at ε ′ with the slopes at any ε ′′ > ε ′ in the
support of F . This makes double logconvexity a necessary property. Let us remark that we de-
scribed selection with a natural number k, but the interpretation—as well as the statement in the
theorem—for real numbers k > 1 is equally valid. Increasing selection from k to k′ > k changes
the experiment from Fk to Fk′ = (Fk)k′/k. This is akin to starting from Fk and applying selection
of extent k′/k > 1. Our comparative statics result in Theorem 2 characterizes when this reduces
dispersion. Note the implication that experiment F is such that selection monotonically benefits
(or hurts) the evaluator if and only if Fk has the same property for every real number k > 1—both
properties depend on double logconvexity of F .

There is only one distribution F such that− log(− logF) is both convex and concave, i.e. linear,
namely Gumbel’s (maximum) extreme value distribution, F(ε) = exp(−exp(−ε)). This distribu-
tion, which plays a special role in the ensuing analysis, is such that for every k the experiment
Fk is neither less nor more dispersed than F and the evaluator is therefore indifferent to selection.
The following intuitive argument also leads to the same conclusion. With selection at extent k,
the noise distribution is Fk(ε) = exp(−k exp(−ε)) = F(ε − logk). Thus, compared to a random
sample, selection inflates noise by a constant, log(k). This implies that the information constraints
in the random and in the selected experiment coincide: β F = β Fk . The evaluator adjusts for the
constant inflation in the noise distribution, and is back to square one.20

Restatement in Terms of Shape of Reverse Hazard Rate. Taking its first derivative, the function
− log(− logF(ε)) is easily seen to be convex if and only if the ratio [ f (ε)/F(ε)]/ logF(ε) of
the reverse hazard rate to the reverse hazard function—sometimes also called cumulative reverse
hazard rate—is decreasing.21 But [ f (ε)/F(ε)]/ logF(ε) decreasing can also be seen as

d[ f (ε)/F(ε)]/dε

f (ε)/F(ε)
6

d logF(ε)/dε

logF(ε)
,

which says that the rate at which the reverse hazard rate decreases—recall that by logconcavity of
F , f/F decreases—is lower than the rate at which the reverse hazard function increases—note that
the hazard function is negative and increasing for every random variable. Thus, selection benefits

20Recall that the value of the evaluator’s problem is unaffected by a change in the location of the noise distribution.
21See e.g. Marshall and Olkin (2007) for definitions and properties of the hazard rate.
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the evaluator, increasingly in k, if and only if the reverse hazard rate of the noise distribution
decreases less fast than the reverse hazard function increases.

Restatement in Terms of Elasticity of Quantile Density Function. Note that the derivative of the
transformation u 7→ − log(− logu) is given by −1/(u logu). Taking the next derivative, convexity
of − log(− logF) can be restated as

f ′ (ε)/ f (ε)
f (ε)/F (ε)

>
1+ logF (ε)

logF (ε)
for all ε. (8)

This condition has another interpretation. Denote the quantile function by Q(u) = F−1 (u). Its
derivative is the quantile density function q(u) = 1/ f

(
F−1 (u)

)
, also known as Tukey’s sparsity

function.22 The elasticity of the quantile density function is

uq′ (u)
q(u)

=−
u f ′
(
F−1 (u)

)
[ f (F−1 (u))]2

=−
f ′
(
F−1 (u)

)
/ f
(
F−1 (u)

)
f (F−1 (u))/F (F−1 (u))

.

For the Gumbel distribution, Q(u) =− log(− logu) and hence q(u) =−1/(u logu). Thus,

uq′ (u)
q(u)

=−u(1+ logu)/(u logu)2

1/(u logu)
=−1+ logu

logu
.

Summing up, our key condition (8) can also be restated as saying that F has a quantile density
function that is less elastic than the quantile density function of the Gumbel distribution.

Logistic Example. Besides the normal case discussed earlier, another instance where the evaluator
prefers more selection is when noise is drawn from the logistic distribution, F (ε) = 1/(1+ e−ε).
In this case, we have Q(u) = log [u/(1−u)] and hence q(u) = 1/ [u(1−u)]. Thus,

uq′(u)
q(u)

=−1−2u
1−u

<−1+ logu
logu

.

The quantile density function is less elastic than Gumbel’s, therefore any amount of selection
benefits the evaluator, and benefits more as k increases.

Exponential Example. Our main example of the opposite case, where more selection hurts
the evaluator, is the exponential distribution F (ε) = 1− e−ε , for ε > 0. In this case, Q(u) =
− log(1−u) and hence q(u) = 1/(1−u). Thus,

uq′ (u)
q(u)

=
u

1−u
>−1+ logu

logu
.

The quantile density function is more elastic than Gumbel’s, therefore any amount of selection
hurts the evaluator, ever more as k increases.

22See Parzen (2004) for an introduction to quantile probability modeling.
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It is worth remarking that the exponential distribution is not the only double logconcave distri-
bution with a logconcave density. For instance, given any a <−1, the distribution F such that

F(ε) = e
1

1+a

[
(1−e−ε)

1+a−1
]

for ε > 0 (9)

is such that both − log(− logF) and log f are strictly concave.

Contribution to Stochastic Ordering of Order Statistics. Previous results in the literature on
stochastic ordering of order statistics only covered distributions with decreasing hazard rate. No-
tably, Khaledi and Kochar (2000, Theorem 2.1) showed that for any distribution with decreasing
hazard rate higher order statistics are more dispersed.23 Given that logconcavity implies increasing
hazard rate by Prekopa’s theorem, the only distribution with logconcave density for which Khaledi
and Kochar’s (2000) result applies is the exponential (loglinear) distribution, which has constant
hazard rate.24 The novel characterization in Theorem 2 applies more generally to the relevant case
of distributions with logconcave densities.

Empirics of Double Logconvexity. Given that − log(− logF) and − log(− logFk) only differ
by a constant, we conclude that F is double logconcave (double logconvex) if and only if Fk is
double logconcave (double logconvex). From this selection-invariance property of double logcon-
vexity/logconcavity we obtain a simple practical criterion to assess the possible impact of selection
in empirical data. Whether selection is known to have occurred or not, empirical distributions of
treated outcome with a double logconcave shape should “raise a flag”: if selection did occur, then
the analyst is bound to having less informative data, even when the analyst is aware of selection and
correctly sets the acceptance standard. Instead, double logconvex data indicate that if the analyst
does take selection into account, then selection actually results in a more informative experiment.
In the online supplementary appendix Di Tillio, Ottaviani, and Sørensen (2017) we develop em-
pirical tests for double logconvexity and illustrate how to apply the tests to some data sets drawn
from recent experiments published in economics.

4.2 Locally Variable Impact of Selection

We now turn to discussing the cases where the welfare impact of selection is positive or negative
depending on the parameters of the evaluator’s problem. Here, our analysis exploits both the
local dispersion charaterization provided by Theorem 1 and the double logconvexity criterion of
Theorem 2. To keep things simple, we focus on experiments F such that, given any k > 1, F is
first less and then more locally dispersed than Fk (or vice versa).

23According to Khaledi and Kochar (2000, Theorem 2.1), if Xi’s are i.i.d. with decreasing hazard rate, then Xi:n is
less dispersed than X j:m whenever i 6 j and n− i > m− j. Setting i = n = 1 and j = m = k, we have that the maximum
of k i.i.d. variables with decreasing hazard rate is more dispersed than the original variable.

24Theorem 2 also covers distributions with decreasing hazard rate, where − log(− log(F)) is necessarily concave.
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Figure 6: Selection in uniform experiment: concave then convex double-log transformation.

Proposition 3. Let F be an experiment such that− log(− logF) is first concave (resp. convex) and
then convex (resp. concave). Then for every k > 1 there exists `k such that the evaluator prefers F
to Fk (resp. Fk to F) for ¯̀6 `k and Fk to F (resp. F to Fk) for ¯̀> `k.

By Theorem 2, when F is not everywhere double logconvex or everywhere double logconcave,
random and selected experiment are incomparable in the sense of Lehmann (1988). The evaluator’s
preference for F or Fk then depends on the parameters of the specific problem at hand. However,
thanks to the local criterion provided by Theorem 1, we can qualify the impact of selection without
actually solving the problem. Proposition 3 offers a particularly simple criterion for making this
assessment: if F is first double logconcave and then double logconvex, then the quantile difference
(Fk)−1(u)−F−1(u) is first increasing and then decreasing in u. Thus, the evaluator suffers or
benefits from selection according to whether the acceptance hurdle is, respectively, below or above
a certain critical value. The opposite is true if F is instead first double logconvex and then double
logconcave—in this case, the quantile difference is first decreasing and then increasing.

Proposition 3 applies to two important special cases, which we now discuss.

Uniform Example. Suppose we are interested in comparing F with Fk when F is uniform, F(ε) =

ε for ε ∈ [0,1]. Thus, the double-log transformation of F is − log(− logε), which is concave for ε

smaller and convex for ε greater than the inverse of Euler’s number, 1/e, as represented in Figure 6.
According to Proposition 3, the evaluator is hurt by selection when more concerned about type II
errors—the acceptance hurdle ¯̀ is low—and benefits from selection when more concerned about
type I errors—the acceptance hurdle ¯̀ is high. Of course, we reach the same conclusion using
Theorem 1: since Fk(ε) = εk, the quantile difference (Fk)−1(u)−F−1(u) = u1/k−u is easily seen
to be bell-shaped, so F is locally first less then more dispersed than Fk.

Laplace Example. Noise drawn from a Laplace distribution, where F(ε) = (1/2)eε for ε < 0 and
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F(ε) = 1− (1/2)e−ε for ε > 0, provides our second illustration of Proposition 3. In this case, the
double-log transformation of F is convex for ε < 0 and concave for ε > 0. Thus, the evaluator’s
preference for selection is reversed compared to a uniform experiment. Here, the evaluator prefers
Fk to F for low values of the acceptance hurdle, and F to Fk for large values. Thus, the information
constraint difference β F(α)− β G(α) is first positive, then negative.25 Plotting the distribution
functions F and Fk reveals a U-shaped quantile difference, in accordance with Theorem 1.

4.3 Extreme Selection

To conclude our analysis of the impact of selection on the evaluator’s welfare, we examine the
effect of extreme selection, letting k→ ∞. We draw on the fundamental result in extreme value
theory, which characterizes the limit distribution of the maximum of k i.i.d. random variables,
properly normalized for location and scale inflation. Let F be an experiment and suppose that, for
some nondegenerate distribution F̄ and some sequence of numbers ak > 0 and bk,

Fk (bk +akε)→ F̄ (ε)

for every continuity point ε of F̄ . The fundamental theorem of extreme value theory says that F̄
must belong to one of the following three types: Gumbel, Extreme Weibull or Frechet.26

Recall that the distribution of the noise term is systematically shifted upwards as k increases,
in the sense of first-order stochastic dominance. Hence, the location normalization sequence bk is
growing. However, the evaluator can adjust for any translation of the noise distribution without
any impact on payoff.

The limit impact of selection thus hinges on whether the scale normalization sequence ak

shrinks to zero or not. If ak→ 0, then the noise distribution is less and less dispersed as k grows,
providing the evaluator with arbitrarily precise information about the state. If instead we can
choose a constant sequence ak, then we can also choose ak = 1 for all k, and extreme selection
based on experiment F then amounts to a random experiment based on F̄ .

Proposition 4. Let F, F̄ be experiments and let ak > 0 and bk be sequences of numbers such that
Fk (bk +akε)→ F̄ (ε) at every continuity point of F̄. If ak → 0, then the value of the evaluator’s
problem converges to the full information payoff (α = 0, β = 0). If instead ak = 1 for all k, then
the value of the evaluator’s problem converges to the value of the problem in experiment F̄.

It is well known that many familiar distributions are in the domain of attraction of the Gumbel
distribution. Specifically, when F is normal—or half-normal, which has the same right tails—then

25In a Laplace experiment—random or selected—the likelihood ratio is bounded, hence the information constraint
is not tangent to the axes as α → 0 and α → 1.

26See e.g. Leadbetter, Lindgren, and Rootzén (1983) for a primer on extreme value theory. Müller and Rufibach
(2008) show that for every logconcave distribution F has a Gumbel or Extreme Weibull limiting distribution F̄ .
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ak must be decreasing to zero—the scale normalization sequence ak = (2logk)−1/2 is appropriate
in this case—and the limit experiment F̄ is the Gumbel distribution.

More generally, consider a distribution F in the exponential power family, with density

f (ε) =
s

Γ(1/s)
e−|ε|

s
,

where s is a shape parameter and Γ is the Gamma function. This family includes the Laplace
(s = 1), normal (s = 2), and uniform (s = ∞) distributions discussed earlier in this section. Our
next result shows that when the shape parameter s is strictly greater than 1, the scale normalization
sequence ak must be decreasing to zero, and the limiting distribution F̄ is the Gumbel distribution.

Proposition 5. Let F be an exponential power distribution with shape parameter s > 1. Then
Fk(bk + akε)→ e−e−ε

for some sequence of constants bk and ak → 0. Thus, the value of the
evaluator’s problem in experiment Fk converges to the full information payoff as k→ ∞.

We find the conclusion in Proposition 5 striking, because it is known that when F is the ex-
ponential distribution—or the Laplace, since the two distributions have the same right tails—then
F also converges to the Gumbel distribution, but we can take ak = 1 for each k. (The same nor-
malizing constants work for the generalized exponential distribution defined in (9).) Thus, while
extreme selection leads to full information as k→∞ for any b > 1 in the exponential power family,
the limit result is very different when b = 1. The globally negative impact of selection in the expo-
nential case discussed earlier is, in this sense, non-generic, as any arbitrarily close distribution in
the family reverses the conclusion.27

Note that Proposition 5 does not cover the uniform case (s=∞). Indeed, in this case the relevant
extreme value distribution is not the Gumbel distribution but rather the Extreme Weibull. However,
it is immediate to see that extreme selection leads to full information also in the uniform case. If F
is uniform on the interval [ε,ε], letting ak = (ε− ε)/k and bk = ε we obtain Fk(bk +akε)→ F̄(ε)

where F̄(ε) = eε for ε < 0 (Extreme Weibull). Since ak → 0, the full information result follows
from Proposition 4. Intuitively, with noise bounded above by ε , as k→ ∞ the observed signal
becomes arbitrarily concentrated around θ + ε , revealing the true value of θ .

5 Strategic Selection

Sample selection of the sort considered above naturally arises as an equilibrium phenomenon in
a strategic setting where the experiment is carried out by a researcher who is fully biased toward
acceptance—the researcher suffers no loss for type I errors. Intuitively, this researcher wants to
select an individual with a high noise term—e.g., in the treatment effect setting, a good untreated

27Of course, as s approaches 1 the convergence to full information becomes slower.
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outcome—in order to push upward the experimental result and thus increase the chances of ac-
ceptance. As we have seen, an evaluator taking this behavior into account may suffer or benefit,
compared to the case of a random sample. In this section, we verify that the posited behavior
constitutes an equilibrium in this game, and we discuss how the researcher’s ability to strategically
select the sample affects the researcher’s own welfare, too.

5.1 Selective Sampling Game

Consider the following timeline:

1. The researcher privately observes ε1, . . . ,εk and then chooses i ∈ {1, . . . ,k}.

2. The evaluator observes xi = θ + ε i and then chooses whether to accept or reject.

As before, the evaluator receives a fixed payoff R when rejecting, and θ when accepting. The
researcher receives 0 if the evaluator rejects, and 1 if the evaluator accepts.

Proposition 6. There exists a Bayes Nash equilibrium where the researcher chooses maximal
selection, i ∈ argmax16 j6k ε j, and the evaluator accepts for signals x satisfying (4), i.e. such that

Fk−1(x−θ H) f (x−θ H)

Fk−1(x−θ L) f (x−θ L)
> ¯̀. (10)

Note that the evaluator’s strategy is precisely the one we have analyzed until now, when observ-
ing a signal subjected to selection of extent k. The researcher’s strategy is a best response because
the evaluator will observe a higher signal and hence be more likely to accept.28

It is worth remarking that this behavior would continue to constitute an equilibrium if we
instead modified stage 1 of the game to allow the researcher to observe outcomes x1, . . . ,xk. For
any realization of state θ we have max16 j6k x j = θ +max16 j6k ε j. The interpretation of the setup
would be different: the researcher actually possesses information about θ before carrying out
the strategic sample selection. Literally, the researcher in this version of the game is selectively
reporting the outcome of already conducted trials.

Finally, we note that, even without assuming equilibrium, the outcome of the equilibrium de-
scribed in Proposition 6 is the only outcome compatible with the assumption that (i) both players
are rational, (ii) the researcher believes that the evaluator follows a cutoff rule, and (iii) the evalu-
ator believes in (i) and (ii).

Equilibrium Impact of Selection on Researcher’s Welfare. The equilibrium effect of selection
on the evaluator’s welfare works through its effect on the evaluator’s optimal choice of type I and

28The researcher is indifferent when max〈ε1, . . . ,εk〉< x̄−θ H or min〈ε1, . . . ,εk〉> x̄−θ L.

24



type II errors—we have analyzed this effect in Section 4. By Proposition 6, the equilibrium impact
of selection on the researcher’s welfare also hinges on the direction of change in the pair (α,β )

optimally chosen by the evaluator.

For any pair (α,β ) that the evaluator may choose, the researcher’s payoff is

p(1−β )+(1− p)α.

Thus, a generic indifference curve of the researcher is a line of the form

β =

(
1− u

p

)
+

1− p
p

α,

where 0 6 u 6 1 is the researcher’s payoff. To assess the equilibrium impact of selection on the
researcher’s welfare, it is therefore enough to check whether the evaluator’s optimal pair of error
rates in experiment Fk lies above or below the researcher’s indifference line going through the
optimal pair in experiment F . The researcher benefits from selection if and only if the evaluator
reacts to selection by choosing a new pair (α,β ) which is below that line.

To formalize this argument, in the rest of this section we fix θ H > θ L and a value p for the
prior—thus fixing a family of researcher’s indifference curves—and we investigate changes in the
researcher’s welfare, moving from experiment F to Fk, as the evaluator’s safety payoff R varies
between θ L and θ H . To emphasize the fact that the acceptance hurdle ¯̀ here varies only when R
varies, we use the notation `(R) to denote the value of ¯̀ corresponding to R. Thus,

`(R) =
1− p

p
R−θ L

θ H−R
.

Define the function ϕ : [0,1]→ [0,1] as follows:

β Fk(ϕ(α))−β F(α) =
1− p

p
(ϕ(α)−α) for all 0 6 α 6 1.

In other words, ϕ is defined so that the researcher is indifferent between the evaluator choosing a
type I error equal to α in experiment F or equal to ϕ(α) in experiment Fk.

Proposition 7. The researcher benefits from selection at R if and only if

−β
′
Fk(ϕ(α

∗
F(`(R))))> `(R). (11)

Let 0 6 `0 < `1 6 ∞ and suppose that the evaluator prefers F to Fk (resp. Fk to F) for ¯̀∈
[
`0, `1

]
and is indifferent between F and Fk for ¯̀ = `1. Then the researcher loses (resp. benefits) from
selection at R such that `(R) = `1.

It is immediate to see the first part of Proposition 7 at work in our leading example where
the double logconvexity criterion of Theorem 2 is satisfied—the case of a normally distributed
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Figure 7: Impact of selection on researcher’s welfare in normal experiment.

noise. In this case, as R varies between θ L and θ H , the evaluator’s optimal solution in the random
experiment, α∗F(`(R)), varies between α = 1 and α = 0, and the difference β

′
F(α)−β

′
Fk(ϕ(α)) is

bell-shaped. Since −β
′
F(α

∗
F(`(R))) = `(R) for every θ L 6 R 6 θ H , we conclude by Proposition 7

that the researcher suffers from selection when R is below a critical value R̄, and benefits from
selection when R is above R̄.

We illustrate this conclusion in Figure 7. The dashed lines are the researcher’s indifference
curves, while the green curve represents the researcher’s payoff difference between selected and
random experiment. When R is low, inequality (11) is violated—the researcher suffers from se-
lection. When R is high, inequality (11) holds, and the researcher benefits. At the critical value
R̄, the researcher is indifferent between random and selected experiment—the respective optimal
solutions α ′ = α∗F(`(R)) and α ′′ = α∗Fk(`(R)) lie on the same researcher’s indifference curve.

Clearly, the opposite picture emerges when noise has an exponential distribution. In this case
the information constraints β F and β Fk are arranged in the opposite order. With a Gumbel signal,
selection has no effect on the error rates optimally chosen by the evaluator, so selection has zero
impact on both the evaluator’s and researcher’s payoff.

When selection does not globally benefit (or hurt) the evaluator, the equilibrium impact of se-
lection on the researcher’s welfare is more subtle, but Proposition 7 again applies. Consider first
the case of a uniform distribution. Recall that in this case—for a fixed value of p—the evaluator
is worse off with Fk than with F for small values of R, but better off for large values of R (cf. Fig-
ure 6). As a consequence, the researcher’s welfare changes sign twice. If R is either sufficiently
small or sufficiently large, the researcher benefits from selection. However, at intermediate values
of R the researcher loses from selection. Corresponding to the crossing between the information
constraints there is a value of R where the evaluator is indifferent (Lemma 1 in Appendix A), and
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the second claim in Proposition 7 then implies that the researcher loses from selection at this point.

Next, recall the case of the Laplace distribution. Symmetrically to the case of a uniform dis-
tribution, the impact on the researcher’s welfare also changes sign twice as R varies between θ L

and θ H . However, the impact on the researcher’s welfare, just like that on the evaluator’s, is ex-
actly the opposite. Selection harms the researcher for small or large values of R, but benefits for
intermediate values.

In Section 4, we explored the possibility that the evaluator’s choice converges to the bliss point
(α = β = 0) in the limit as k tends to infinity. Such a property makes it easy to check whether
the researcher gains from extreme selection. In the limit, the researcher’s payoff is p, since the
evaluator correctly accepts in state θ H . If, for lower k, the evaluator makes a choice satisfying
(1− p)α > pβ , then the researcher is better off at k than when selection grows infinitely. This
occurs when the evaluator has low reservation utility R and hence accepts often.

Conclusion. Summing up, the following intuitive conclusion emerges. Suppose that R is high, so
the evaluator initially chooses α relatively low. The evaluator and researcher then have alignment
of preferences over selection. If selection is good for the evaluator, as with normal or uniform
noise, the researcher also stands to gain from selection. With exponential or Laplace noise, instead,
both evaluator and researcher lose from selection—in this case selection causes a credibility crisis,
which both parties would rather eliminate. When instead R is low, evaluator and researcher have
conflicting preferences over selection.

5.2 Data Production and Selection Game

It is natural to endogenize the number k of subjects among which the researcher can select. We
augment the game with a stage that takes place before stages 1 and 2:

0. The researcher privately chooses k ≥ 1.

Note that this procedure is chosen before any realizations of ε i are observed at the next stage.
We assume that there is no credible way to directly reveal any information about the true k. The
choice directly affects the researcher’s payoff through a cost C (k) which we assume to be an
increasing, convex function—if we restrict attention to natural numbers k, convexity means that
C (k+1)−C (k) is increasing in k.

We look for a pure strategy equilibrium of this larger game, where the evaluator correctly
anticipates the value of k optimally chosen by the researcher. In the subgame, the evaluator takes
k as given and best responds by accepting when the signal realization x satisfies (10). In the first
stage, the researcher correctly anticipates the evaluator’s threshold x̄, and chooses k in order to
maximize the payoff

p
(

1−Fk (x̄−θ H)
)
+(1− p)

(
1−Fk (x̄−θ L)

)
−C (k) . (12)
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Considering a deviation from equilibrium, the researcher has a potential gain through the upward
shift of the realized observation x. This is to be weighed against the cost of looking at more
subjects, when already looking at k.

Proposition 8. The researcher’s objective function is concave in k. Thus, any equilibrium (x̄,k)
solves the pair of equations (10) and

− p log(F (x̄−θ H))Fk (x̄−θ H)− (1− p) log(F (x̄−θ L))Fk (x̄−θ L) =C′ (k) . (13)

Note that, keeping all other parts of the model fixed, for every k ∈ N there exists an increasing
and convex cost function C such that k is the equilibrium choice of the researcher. Simply, fix k
and solve (as before) equation (10) for the evaluator’s best response x̄k. Then plug in x̄k and k on
the left hand side of (13) to determine the requisite C′ (k). Then choose the number γ > 0 such
that C′ (k) = 2γk, and use the quadratic cost function C (k) = γk2. This observation provides a
foundation for our approach so far where the number k was taken for given.

Researcher’s Rat Race. The equilibrium described in Proposition 8 exhibits a rat race effect:
when the evaluator correctly anticipates a greater degree k of selection, the researcher’s cost C (k)
to manipulate the experiment is largely wasted. To see the cleanest instance of this, consider the
Gumbel example. We have established above that the evaluator’s and researcher’s gross payoffs
are independent of k. The researcher’s total payoff, accounting for costs C (k), is then smaller when
these costs are greater. As follows from our first remark, any k is consistent with equilibrium. This
does not imply that costs can be arbitrarily large, but it does prove that the costs can be positive.
It also proves that the researcher may gain from tying the hands to be unable to augment k. The
researcher would also gain from being able to credibly prove the chosen k to the evaluator. Going
beyond the Gumbel example, these costs of manipulation could further harm a researcher who was
already harmed by the evaluator’s response. If the researcher stood to gain from manipulation, the
endogenous costs will reduce this gain, perhaps to a loss.

Evaluator’s Value of Commitment. The researcher’s best response k may increase or decrease
with the evaluator’s standard x̄, depending on parameters. The sign of this slope depends on the
sign of the derivative of the left hand side in (13) with respect to x̄,

− p(1+ k log(F (x̄−θ H)))Fk−1 (x̄−θ H) f (x̄−θ H)

− (1− p)(1+ k log(F (x̄−θ L)))Fk−1 (x̄−θ L) f (x̄−θ L) ,

which is positive when F (x̄−θ L) is sufficiently small, as happens when the prior strongly favors
rejection. In that case, the best response k is an increasing function of x̄. Conversely, when the
prior strongly favors rejection, the best response k is a decreasing function of x̄.29

29It can be easily verified that the best reply of the researcher is increasing for x̄ < θ L +F−1(e−1/k) and decreasing
for x̄ > θ H +F−1(e−1/k).
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Finally, we characterize the evaluator’s optimal commitment to an ex-post suboptimal accep-
tance standard. Suppose R is large, so that the evaluator often rejects. The direction of commitment
depends upon whether the evaluator stands to gain from more or less selection—this depends on F ,
as seen in Section 4. Given that then the researcher’s best response is downward sloping, when the
evaluator gains from greater k, it is optimal for the evaluator to commit to reduce the acceptance
standard below the Nash level in order to induce the researcher to increase k. Conversely, when
F is double logconcave at the top, the evaluator should optimally commit to a tougher acceptance
standard, to reduce the extent of selection.

6 Extensions and Conclusion

Impact of Unanticipated Selection. So far, we considered situations in which the evaluator ratio-
nally predicts the correct extent of selection k and there is no uncertainty in k, for example because
the parameters of the model (such as researcher’s bias and cost of presampling) are known. This is
the most optimistic scenario when evaluating the impact of selection. Here we relax these assump-
tions to consider more realistic scenarios.

Consider an unwary evaluator who wrongly anticipates a lower k than true. Holding fixed the
true k, clearly the evaluator is generally worse off by being unwary than being rational. More
interestingly, it is ambiguous whether an unwary evaluator who expects k gains or loses when the
true signal has k′ > k. If the rational evaluator would prefer k′ to k, this gain might be greater than
the cost of irrationality.

In an important benchmark case, we find that the unwary evaluator is exactly indifferent to an
increase of selection from k = 1 to k = 2. Consider a situation of equipoise, whereby at the prior
the evaluator is indifferent between accepting and rejecting, i.e. ¯̀= 1.30 Suppose that the noise
distribution F is symmetric, so that for some ε0 we have F (ε0 + ε) = 1−F (ε0− ε) for all ε .
Start from the acceptance threshold that is optimal in the random experiment, namely x̄∗F = ε0 +

(θ L+θ H)/2, and consider how selection with k = 2 affects an unwary evaluator who maintains the
acceptance standard unchanged at x̄∗F . The probability of acceptance clearly increases, resulting in
a change in the evaluator’s payoff—in the original problem, see (2) above—equal to

−(1− p)
[
F (x̄∗F −θ L)−F2 (x̄∗F −θ L)

]︸ ︷︷ ︸
increase in type I error

(R−θ L)+ p
[
F (x̄∗F −θ H)−F2 (x̄∗F −θ H)

]︸ ︷︷ ︸
reduction in type II error

(θ H−R) .

By equipoise, (1− p)(R− θ L) = p(θ H −R). Thus, type I and type II errors are equally costly
for the evaluator. By symmetry, F(x̄∗F − θ L) + F(x̄∗F − θ H) = 1. Thus, the increase in type I

30The condition of equipoise, requiring experimental subjects to be indifferent between treatment and control, is an
ethical prerequisite for carrying out a randomized experiment.
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error exactly equals the reduction in type II error. We conclude that the unwary evaluator, who
anticipates no selection (k = 1), is indifferent between no selection and selection with k = 2.31

A fortiori, under symmetry and equipoise an increase in selection from k = 1 to k = 2 must
necessarily benefit a rational evaluator.

Impact of Uncertain Selection. In a natural extension of the selection model, the number k is
random. Again, information constraints can be generally used to compare experiments. However,
the analysis in terms of dispersion is harder. Suppose that ε is drawn from λFk+1 +(1−λ )Fk

where λ ∈ (0,1) and Fk+1 is less dispersed than Fk. It might be natural to conjecture that the
evaluator is better off, the greater the weight λ attached to the less dispersed experiment. However,
this is generally false. To see this note that when F is Gumbel, both Fk and Fk+1 are Gumbel, but
λFk+1 +(1−λ )Fk is not Gumbel. In fact, for every λ ∈ (0,1), λFk+1 +(1−λ )Fk is worse than
Fk, for it is Blackwell worse than informing the evaluator about the outcome of the lottery over Fk

and Fk+1. Intuitively, the equivalence of Fk with Fk+1 rests on being able to remove a constant
bias from the distribution of ε , but this is not feasible when it is random whether ε derives from
one distribution or the other.

Conclusion. Contrary to naive intuition, sample selection does not necessarily damage the eval-
uator. We characterize natural conditions under which the evaluator benefits. Increased selection
benefits when the noise distribution is double logconvex—with a top tail thinner than the extreme
value Gumbel distribution and the bottom tail thicker than Gumbel—a condition satisfied by nor-
mal noise, as well as a large set of exponential power distributions. For realistically unlikely propo-
sitions for which the researcher has an incentive to undertake experimentation in the first place, the
top of the distribution matters, and sample selection is detrimental when the noise distribution is
double logconcave—i.e., a relatively thick tail—at the top. Adding uncertainty or unawareness of
selection adds further damage. In addition, we characterize situations in which the researcher ends
up suffering from information manipulation like in a rat race, even if we abstract away from the
cost of acquiring information.

At a methodological level, we also develop a generally applicable method for comparing the
value of information structures depending on local dispersion. While in general selected data are
not Blackwell comparable to random data, by constructing the convex envelope of the information
constraints we characterize the welfare impact of selection on the basis of the local dispersion
pattern of the conditional signal distribution and the parameters of the decision problem.

We leave to future work the design of experiments and policy responses in the presence of
strategic selection. A natural starting point in this direction is Chassang, Padró i Miquel, and
Snowberg’s (2012) characterization of experimental design when outcomes are affected by experi-

31As it is easy to verify, when the noise is normal for ¯̀> 1 even an unwary evaluator (who wrongly anticipates
random data, k = 1) benefits from observing selected data with k = 2.
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mental subjects’ unobserved actions. Also, given the work by Allcott (2015) on site selection bias,
another open question is a general characterization of the impact of selection challenging external
validity in the presence of heterogeneous treatment effects.

A Equivalent Comparison of Information Constraints

Lemmas 1 and 2 below spell out the technical details needed to establish the equivalence between
conditions (A) and (L) in Theorem 1.

From Information to Preference. Lemma 1 is the building block in the construction of the
evaluator’s preference pattern from the sign pattern of the information constraint difference.

Lemma 1. Let 0 6 α0 < α1 6 1. Let F and G be experiments such that β F(α1) = β G(α1)

and β F(α) 6 β G(α) for all α ∈ [α0,α1]. There exists `1 ∈
[
−β

′
F(α1),−β

′
G(α1)

]
such that the

evaluator prefers G to F for ¯̀∈
[
−β

′
F(α1), `1

]
and F to G for ¯̀∈

[
`1,−β

′
G(α0)

]
.

To understand the construction, consider again Figure 4. The points α0 and α1 in the figure
satisfy the assumptions of Lemma 1, with β F lying below β G between α0 and α1 and then crossing
β G at α1. Note that the type I and type II errors at the crossing point are exactly the ones determined
by the switch in local dispersion at uδ illustrated in Figure 3, for δ = θ H−θ L.

First observe that, by the assumptions of the lemma, β F cannot be steeper than β G at α1. Thus,
the interval

[
−β

′
F(α1),−β

′
G(α1)

]
is nonempty. At the left endpoint of the interval, ¯̀=−β

′
F(α1),

the evaluator prefers G to F . Indeed, by suboptimally choosing α1 in experiment G, the evaluator
gets as much as by optimally choosing α1 under F , as illustrated by the solid black indifference
line. Analogously, at the right endpoint of the interval, ¯̀=−β

′
G(α1), and in fact all the way up to

¯̀=−β
′
G(α0), by convexity of β G the evaluator prefers F to G. For ¯̀=−β

′
G(α1) this preference

is illustrated by the dashed and dotted indifference lines.

Since the evaluator prefers G to F for ¯̀= −β
′
F(α1) and F to G for ¯̀= −β

′
G(α1), continuity

of the problem’s value guarantees existence of some `1 between −β
′
F(α1) and −β

′
G(α1), where

the evaluator is indifferent between F and G. This indifference is illustrated by the green line
in Figure 4. Starting from ¯̀= `1 and increasing ¯̀ toward −β

′
G(α1), the indifference line going

through the point (α∗F(`1),β F(α
∗
F(`1))) separates this point from the curve β G (see clockwise

arrow in the figure). This means that suboptimally choosing α∗F(`1) in experiment F gives the
evaluator a higher payoff than choosing any α in experiment G. Thus, the evaluator prefers F to
G for ¯̀ between `1 and −β

′
G(α1). By analogous argument, when we decrease ¯̀ from `1 toward

−β
′
F(α1), as indicated by the counterclockwise arrow, the indifference line going through the

point (α∗G(`1),β G(α
∗
G(`1))) separates this point from the curve β F . Thus, the evaluator prefers G

to F for ¯̀ between −β
′
F(α1) and `1.
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Finally, observe that in our example α0 = 0 also satisfies the hypothesis in Lemma 1. Indeed, F
is the preferred experiment whenever ¯̀> `1.32 Furthermore, β G(1) = β F(1) and β G(α)6 β F(α)

for all α ∈ [α1,1]. Thus, applying Lemma 1 again, the evaluator prefers G to F whenever ¯̀6
−β
′
F(α1). Putting our conclusions together, we have thus covered the whole set of possible values

of the acceptance hurdle. The evaluator prefers G to F for ¯̀∈ [0, `1] and F to G for ¯̀∈ [`1,∞].

From Preference to Information. Lemma 2 allows the reverse construction—inferring the cross-
ing pattern of information constraints from the evaluator’s preference pattern.

Lemma 2. Let 0 6 `0 < `1 6 ∞. Let F and G be experiments such that the evaluator prefers G to F
for ¯̀∈

[
`0, `1

]
and is indifferent between F and G for ¯̀= `1. There exists α1 ∈

[
α∗F(`1),α

∗
G(`1)

]
such that β G(α)> β F(α) for all α ∈

[
α∗F(`1),α1

]
and β G(α)6 β F(α) for all α ∈

[
α1,α

∗
G(`0)

]
.

To illustrate Lemma 2 we use again Figure 4, arguing that the information constraints of any
two experiments F and G (not necessarily Gumbel’s distributions) such that the evaluator prefers
G to F for ¯̀6 `1 and F to G for ¯̀> `1 must exhibit the single-crossing pattern in the figure.

Let `0 = 0 and let `1 be as in Figure 4. The first observation to make is that α∗F(`1) cannot be
greater than α∗G(`1), for otherwise the evaluator would strictly prefer F to G for ¯̀ slightly below `1,
contradicting the hypothesis in the lemma—-note that α∗F(`1) < α∗G(`1) in the example depicted
in Figure 4. Now consider the difference β G(α)−β F(α), which is decreasing in the nonempty
interval [α∗F(`1),α

∗
G(`1)]. At the left endpoint of this interval the difference is nonnegative, be-

cause for ¯̀ = `1 the evaluator is indifferent between F and G—note that in the figure we have
β G(α

∗
F(`1)) > β F(α

∗
F(`1)). At the right endpoint of the interval, and in fact all the way up to

α∗G(`0) = 1, the difference is nonpositive, because for ¯̀ between `0 and `1 the evaluator prefers G
to F—in the figure, β G lies below β F between α∗G(`1) and 1. The crossing point α1 predicted by
Lemma 2 then exists by continuity of the functions β F and β G.

The argument in the previous paragraph tells us that the difference β G(α)− β F(α) is non-
positive for α ∈ [α1,1] and nonnegative for α ∈ [α∗F(`1),α1]. Swapping the roles of F and G in
Lemma 2 and applying the result again, this time to the interval [`1,∞], we conclude that β G must
be above β F also for α 6 α∗F(`1), thus completing the picture.

B Proofs

Proof of Proposition 1. Let ε ′ = F−1(u1) and fix any 0 < δ < ε − ε . Since G−1(u)−F−1(u) is
decreasing on [0,u1], we have G−1(F(ε +δ ))−G−1(F(ε))6 δ for every ε ∈ [ε,max〈ε,ε ′−δ 〉].
Similarly, since G−1(u)−F−1(u) is increasing on [u1,1], we have G−1(F(ε +δ ))−G−1(F(ε))>

δ for every ε ∈ [min{ε ′,ε − δ},ε − δ ]. Finally, again because G−1(u)−F−1(u) is decreasing

32Recalling our definition of the slope of an information constraint at a non-interior point, we have −β
′
G(0) = ∞.
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on [0,u1] and increasing on [u1,1], the difference G−1(F(ε +δ ))−G−1(F(ε) is increasing in the
interval [max〈ε,ε ′−δ 〉,min〈ε ′,ε−δ 〉]. Thus, there exists εδ in this interval, such that G−1(F(ε +

δ ))−G−1(F(ε)) is smaller than δ for ε ∈ [ε,εδ ] and larger than δ for ε ∈ [εδ ,ε − δ ]. Letting
uδ = F(εδ ), this is equivalent to F(F−1(u)+δ ) being smaller than G(G−1(u)+δ ) for u ∈ [0,uδ ]

and greater than G(G−1(u)+δ ) for u ∈ [uδ ,1].

Proof of Lemma 1. First we show that the evaluator prefers F to G for ¯̀∈
[
−β

′
G(α1),−β

′
G(α0)

]
.

Since β G is convex and −β
′
G(α) < ¯̀ for α > α∗G(

¯̀), we have α∗G(
¯̀) > α0. Suppose first that

α∗G(
¯̀)> α1. Then by convexity of β G we have −β

′
G(α1) = ¯̀ and hence β G(α1)−β G(α

∗
G(

¯̀)) =
¯̀[α∗G( ¯̀)−α1

]
. Since β F(α1)6 β G(α1), we thus have

¯̀α1 +β F(α1)6 ¯̀α1 +β G(α1) = ¯̀α∗G( ¯̀)+β G(α
∗
G( ¯̀)),

which proves that the evaluator prefers F to G. Next, suppose that α0 6 α∗G(
¯̀) 6 α1. Then

β F(α
∗
G(

¯̀)) 6 β G(α
∗
G(

¯̀)) and hence ¯̀α∗G( ¯̀)+β F(α
∗
G(

¯̀)) 6 ¯̀α∗G( ¯̀)+β G(α
∗
G(

¯̀)). Thus, also in
this case the evaluator prefers F to G.

Next, we show that there exists `1 ∈
[
− β

′
F(α1),−β

′
G(α1)

]
such that the evaluator is in-

different between F and G for ¯̀ = `1. First note that −β
′
F(α1) 6 −β

′
G(α1), for β F(α1) =

β G(α1) and β F(α) 6 β G(α) for every α in the nonempty interval [α0,α1]. Thus, the interval[
−β

′
F(α1),−β

′
G(α1)

]
is nonempty. Now observe that, since β F is convex, β F(α)−β F(α1) >

β
′
F(α1)(α − α1) for all α ∈ [0,1]. Thus, −β

′
F(α1)α1 + β G(α1) = −β

′
F(α1)α1 + β F(α1) 6

−β
′
F(α1)α +β F(α) for all α ∈ [0,1], so the evaluator prefers G to F for ¯̀=−β

′
F(α1). Similarly,

by convexity of β G the evaluator prefers F to G for ¯̀= −β
′
G(α1). The value of the evaluator’s

problem is continuous in ¯̀ and the interval
[
−β

′
F(α1),−β

′
G(α1)

]
is nonempty, so there exists `1

in this interval, such that the evaluator is indifferent between F and G for ¯̀= `1.

It remains to be shown that the evaluator prefers G to F for ¯̀∈
[
−β

′
F(α1), `1

]
and F to G for

¯̀∈
[
`1,−β

′
G(α1)

]
. First note that, since the evaluator is indifferent between F and G for ¯̀= `1,

`1α +β F(α)> `1α
∗
G(`1)+β G(α

∗
G(`1)) ∀α ∈ [0,1], (14)

`1α +β G(α)> `1α
∗
F(`1)+β F(α

∗
F(`1)) ∀α ∈ [0,1]. (15)

Next, note that `1 6−β
′
G(α1) and ¯̀6−β

′
G(α1) imply α∗G(`1)>α∗G(−β

′
G(α1))>α1 and α∗G(

¯̀)>
α∗G(−β

′
G(α1)) > α1. Moreover, since `1 > −β

′
F(α1) and ¯̀ > −β

′
F(α1), there exist α̃1 6 α1

and α̂1 6 α1 such that `1α̃1 +β F(α̃1) = `1α∗F(`1)+β F(α
∗
F(`1)) and ¯̀α̂1 +β F(α̂1) = ¯̀α∗F( ¯̀)+

β F(α
∗
F(

¯̀)). Now, if ¯̀6 `1 then by (14), using the fact that α∗G(`1)> α1 > α̂1, we obtain

¯̀α∗F( ¯̀)+β F(α
∗
F( ¯̀)) = ¯̀α̂1 +β F(α̂1)> ¯̀α∗G(`1)+β G(α

∗
G(`1)).

This proves that the evaluator prefers G to F for ¯̀∈
[
−β

′
F(α1), `1

]
. Suppose now that ¯̀> `1.

Then by (15), using the fact that α∗G(
¯̀)> α1 > α̃1, we obtain

¯̀α∗G( ¯̀)+β G(α
∗
G( ¯̀))> ¯̀α̃1 +β F(α̃1).
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This proves that the evaluator prefers F to G for ¯̀∈
[
`1,−β

′
G(α1)

]
.

Proof of Lemma 2. First we show that β G(α)6 β F(α) for all α ∈ [α∗G(`1),α
∗
G(`0)]. This follows

from the fact that β G(α) 6 β F(α) for all α ∈ [0,1] such that `0 6 −β
′
G(α) 6 `1, which we now

prove. By convexity of β G we have β
′
G(α)(α ′−α)6 β G(α

′)−β G(α) for all α ′ ∈ [0,1]. Assume
by way of contradiction that β G(α) > β F(α). Then −β

′
G(α)α +β F(α) < −β

′
G(α)α ′+β G(α

′)

for all α ′ ∈ [0,1], that is, the evaluator strictly prefers F to G for ¯̀=−β
′
G(α). This is impossible,

because the evaluator prefers G to F for ¯̀∈ [`0, `1].

To conclude the proof, we show that there exists α1 ∈
[
α∗F(`1),α

∗
G(`1)

]
such that β G(α) >

β F(α) for all α ∈
[
α∗F(`1),α1

]
and β G(α) 6 β F(α) for all α ∈

[
α1,α

∗
G(`1)

]
. First we show

that the interval
[
α∗F(`1),α

∗
G(`1)

]
is nonempty. By way of contradiction, suppose that α∗F(`1) >

α∗G(`1), and let ∆ = β G(α
∗
F(`1))−β G(α

∗
G(`1))+ `1

[
α∗F(`1)−α∗G(`1)

]
. Since β G is convex and

−β
′
G(α)< `1 for all α > α∗G(`1), we must have ∆ > 0. By optimality of α∗G(`1),

β G(α
∗
G(`1))−β G(α)6 `1 [α−α

∗
G(`1)] ∀α < α

∗
F(`1),

and moreover, again by convexity of β G,

β G(α
∗
G(`1))−β G(α)6 `1 [α−α

∗
G(`1)]−∆ ∀α > α

∗
F(`1).

Since the evaluator is indifferent between F and G for ¯̀= `1, the above inequalities imply

β F(α
∗
F(`1))−β G(α)6 `1 [α−α

∗
F(`1)] ∀α < α

∗
F(`1),

β F(α
∗
F(`1))−β G(α)6 `1 [α−α

∗
F(`1)]−∆ ∀α > α

∗
F(`1).

But ∆ > 0, hence for all δ > 0 sufficiently small we have

β F(α
∗
F(`1))−β G(α)< (`1−δ ) [α−α

∗
F(`1)] ∀α ∈ [0,1],

which contradicts the assumption that the evaluator prefers G to F for all ¯̀∈ [`0, `1]. This proves
that the interval

[
α∗F(`1),α

∗
G(`0)

]
is nonempty. But the difference β G(α)−β F(α) is decreasing

on this interval, because for every α ∈
[
α∗F(`1),α

∗
G(`1)

]
we have−β

′
G(α)> `1 and−β

′
F(α)6 `1.

Moreover, since the evaluator is indifferent between F and G for ¯̀= `1, we must have β G(α)−
β F(α) > 0 for α = α∗F(`1) and β G(α)−β F(α) 6 0 for α = α∗G(`1). Thus, by continuity of β F

and β G there exists α1 ∈
[
α∗F(`1),α

∗
G(`1)

]
such that β G(α)> β F(α) for all α ∈

[
α∗F(`1),α1

]
and

β G(α)6 β F(α) for all α ∈
[
α1,α

∗
G(`1)

]
.

Proof of Theorem 1. Changing variable from u to α = 1−F(F−1(u)+θ H −θ L), condition (D)
becomes condition (A). We now show that (A) is equivalent to (L). If (A) holds then, by Lemma 1,
there exist 0 6 `2 6 . . . 6 `2N 6 ∞ such that the evaluator prefers F to G for ¯̀∈ [0, `2]∪ ·· · ∪
[`2N−1, `2N ] and G to F for ¯̀∈ [`2, `3]∪ ·· · ∪ [`2N , `2N+1], i.e. (L) holds. Conversely, if (L) holds
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then, by Lemma 2, there exist 1 > α2 > · · · > α2N > 0 such that β F(α) is below β G(α) for
α ∈ [α2N ,α2N−1]∪ ·· · ∪ [α2,1] and above β G(α) for α ∈ [0,α2N ]∪ ·· · ∪ [α3,α2], i.e. (A) holds.
Thus, (A), (L) and (D) are all equivalent.

Proof of Theorem 2. We provide first a direct argument and then one based on dispersion, i.e. us-
ing Lehmann’s (1988) Theorem 5.2 (or our Theorem 1).

Given any k > 1, at the optimal threshold x̄ = x̄∗Fk( ¯̀) the following first-order condition holds:

dβ

dx̄
= kFk−1 (x̄−θ H) f (x̄−θ H) = ¯̀kFk−1 (x̄−θ L) f (x̄−θ L) =− ¯̀ dα

dx̄
. (16)

As k varies, the changes in β and α may be derived as

dβ

dk
= log(F (x̄−θ H))Fk (x̄−θ H)+ kFk−1 (x̄−θ H) f (x̄−θ H)

dx̄
dk

, (17)

dα

dk
= − log(F (x̄−θ L))Fk (x̄−θ L)− kFk−1 (x̄−θ L) f (x̄−θ L)

dx̄
dk

. (18)

Thus, the evaluator gains as k increases if and only if

0 >
dβ

dk
+ ¯̀dα

dk
= log(F (x̂−θ H))Fk (x̂−θ H)− ¯̀log(F (x̂−θ L))Fk (x̂−θ L) ,

where (16) was used to reduce the expression. Using (16) once more, we can rewrite the latter
inequality as

log(F (x̂−θ H))
F (x̂−θ H)

f (x̂−θ H)
< log(F (x̂−θ L))

F (x̂−θ L)

f (x̂−θ L)
. (19)

Since the derivative of − log(− logF) is − f/(F logF) > 0, and x̂− θ H < x̂− θ L, the evaluator
gains as k increases if and only if the derivative of − log(− logF) is increasing, i.e. if and only if
− log(− logF) is a convex function.

For the alternative argument, let ϕ(ε) = − log(− log(F(ε))) for brevity, and observe that for
all ε and k > 1 the horizontal distance between Fk and F , namely (Fk)−1(F(ε))−ε , is the same as
the horizontal distance between the double-log transformations of Fk and F , namely ϕ−1(ϕ(ε)+

log(k))− ε . The derivative of the latter distance is

ϕ ′(ε)

ϕ ′(ϕ−1(ϕ(ε)+ log(k)))
−1, (20)

which is negative (resp. positive) for every ε and k > 1 if and only if ϕ is a convex (resp. concave)
function. Thus, Fk is less dispersed than F if and only if ϕ is a convex function. The result now
follows from Lehmann’s (1988) Theorem 5.2.

Proof of Proposition 2. Immediate from Theorem 2 and Lehmann’s (1988) Theorem 5.2.

Proof of Proposition 3. By Proposition 1, it is enough to show that if ϕ is first concave and
then convex, then the expression in (20) is first positive and then negative. (The proof that, if ϕ
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is first convex and then concave, then the expression in (20) is first negative and then positive, is
analogous.) Thus, fix any ε1 such that ϕ(ε) is concave for ε 6 ε1 and convex for ε > ε1. Let
ε0 = ϕ−1(ϕ(ε1)− log(k)). By the same argument used in the proof of Theorem 2, the horizontal
difference ϕ−1(ϕ(ε)− log(k))− ε is increasing for ε 6 ε0 and decreasing for ε > ε1. For ε in the
interval [ε0,ε1] the slope ϕ ′(ε) is increasing while the slope ϕ ′(ϕ−1(ϕ(ε)+ log(k))) is decreasing.
Thus, in the interval [ε0,ε1] the horizontal difference ϕ−1(ϕ(ε)− log(k))−ε is first increasing and
then decreasing.

Proof of Proposition 4. Fix any δ ∈ (0,(θ H−θ L)/2). Let εδ > 0 be such that F̄ (εδ )−F̄ (−εδ )>

1−δ/2. Choose k̂ so that for all k > k̂,

akεδ < δ , Fk (bk +akεδ )> F̄ (εδ )−
δ

4
, and Fk (bk−akεδ )6 F̄ (−εδ )+

δ

4
.

Then, for each θ , since x = θ +bk +akε ,

Pr
(
θ +bk−δ 6 x 6 θ +bk +δ

∣∣ θ
)
> Pr

(
θ +bk−akεδ 6 x 6 θ +bk +akεδ

∣∣ θ
)

= Fk (bk +akεδ )−Fk (bk−akεδ )

> F̄ (εδ )−
δ

4
− F̄ (−εδ )−

δ

4
> 1−δ .

In words, the distribution of observation x in state θ assigns at least probability 1− δ to a δ -ball
around the point θ +bk. Now, rejecting if and only if x < x̄ = θ H +bk−δ gives

α = Pr
(
x > θ H +bk−δ

∣∣ θ L
)
6 1−Pr

(
θ L +bk−δ 6 x 6 θ L +bk +δ

∣∣ θ L
)
6 δ

β = Pr
(
x < θ H +bk−δ

∣∣ θ H
)
6 1−Pr

(
θ H +bk−δ 6 x 6 θ H +bk +δ

∣∣ θ H
)
6 δ .

As we can choose δ > 0 arbitrarily small, we can make ¯̀α +β arbitrarily small, and the first claim
in the proposition follows.

To prove the second claim, consider the pair of error rates (α,β ) that result with threshold x̄
when the noise is drawn from F̄ . Let (αk,β k) be the error rates that result with threshold x̄− bk

when the noise is drawn from Fk. The convergence Fk (bk + ε)→ F̄ (ε) at both ε = x̄− θ H and
x̄− θ L implies that the sequence (αk,β k) converges to (α,β ). Since this is true for every x̄,
every point on the information constraint of F̄ is a limit point for the corresponding constraints of
experiments Fk. Since information constraints are convex curves in a compact space, this implies
convergence of the information constraints and hence of the evaluator’s payoff.

Proof of Proposition 5. We show that if ε1, . . . ,εk are i.i.d. exponential power with shape s > 1,
location and scale parameters 0 and 1, then Mk = max〈ε1, . . . ,εk〉 satisfies Pr(Mk 6 akε +bk)→
e−e−ε

for all ε , where

ak = (s logk)−
s−1

s and bk = (s logk)1/s−
s−1

s log logk+ log(2Γ[1/s])

(s logk)
s−1

s
.

36



Start by noticing that f (ε)/
(
εb−1[1−F(ε)]

)
→ 1 as ε→∞. Fix ε and define yk for each k > 1 by

1−F (yk) = e−ε/k, so that
e−ε

k
ys−1

k
f (yk)

→ 1 as k→ ∞. (21)

We may assume yk > 0 for all k. Then f (yk) = s
s−1

s e−ys
k/s/2Γ[1/s] and hence, by (21),

− logk− ε +(s−1) logyk−
s−1

s
logs+ log(2Γ[1/b])+

ys
k
s
→ 0. (22)

From (22) we see that− logk+(s−1) logyk+ys
k/s =− logk+o

(
ys

k/s
)
+ys

k/s converges to a con-
stant. Thus,−s logk/us

k+o
(
ys

k/s
)
/(us

k/s)+1 converges to 0, i.e. logyk =(1/s)(logs+ log logk)+
o(1). Using this fact in (22), we obtain

ys
k
s
= logk+ ε− s−1

s
(logs+ log logk)+

s−1
s

logs− log(2Γ[1/s])+o(1)

= logk+ ε− s−1
s

log logk− log(2Γ[1/s])+o(1) .

Equivalently,

yk = (s logk)1/s

[
1+

ε− s−1
s log logk− log(2Γ[1/s])

logk
+o
(

1
logk

)]1/s

= (s logk)1/s

[
1+

ε− s−1
s log logk− log(2Γ[1/s])

s logk
+o
(

1
logk

)]

= (s logk)1/s +
ε− s−1

s log logk− log(2Γ[1/s])

(s logk)
s−1

b
+o

(
1

(logk)
s−1

s

)
= akε +bk +o(ak) .

Thus, Pr(Mk 6 akε +bk +o(ak))→ e−e−ε

, as was to be shown.

Proof of Proposition 6. We prove the stronger claim that the strategy profile described in the
proposition is the unique Bayes Nash equilibrium where the researcher always selects the same
order statistic—in equilibrium, the highest. Since the density function f (x) is logconcave, both
the cumulative distribution function F(x) and the reliability function 1− F(x) are logconcave.
Moreover, the product of logconcave functions is logconcave. Thus, the density function of the
mth smallest of k such (i.i.d.) random variables,

k!
(m−1)!(k−m)!

Fm−1(x)
[
1−F(x)

]k−m f (x),

is logconcave, which implies that the evaluator accepts if and only if the signal is at or above some
threshold x̄. But then the best response of the researcher is to select the individual with highest
noise term (m = k) because its distribution first-order stochastically dominates that of any other
order statistic.
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Proof of Proposition 7. The researcher benefits from selection at R if and only if

p
[
1−β Fk(α∗Fk(`(R)))

]
+(1− p)α∗Fk(`(R))> p [1−β F(α

∗
F(`(R)))]+(1− p)α∗F(`(R)),

i.e.
β Fk(α∗Fk(`(R)))−β F(α

∗
F(`(R)))6

1− p
p

[
α
∗
Fk(`(R))−α

∗
F(`(R))

]
.

By definition of ϕ , the latter inequality is equivalent to α∗Fk(`(R))> ϕ(α∗F(`(R))), which is in turn
equivalent to `(R)6 β

′
Fk(ϕ(α∗F(`(R)))). The first claim in the proposition then follows.

To prove the second claim, assume that the evaluator prefers F to Fk for ¯̀ ∈ [`0, `1]. By
Lemma 2 we have α∗Fk(`2) 6 α∗F(`2) and hence, by the evaluator’s indifference for ¯̀= `2, also
β Fk(α∗Fk(`2)) > β F(α

∗
F(`2)). Thus, the researcher loses from selection at R such that `(R) = `2.

The proof for the case where the evaluator prefers Fk to F for ¯̀∈ [`0, `1] is analogous.

Proof of Proposition 8. Since the cost function is convex, it suffices to check that the first two
terms in (12) are concave in k. It suffices to take k to be a real number. The first derivative of ak is
log(a)ak and the second derivative is (log(a))2 ak which is positive when a /∈ {0,1}. It is easy to
see that the first terms are instead constant in k, if the base is zero or one.
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