http://controlling.unigraz.at/de/stud0/lehrveranstaltungsmaterialien/

© Wagenhofer/Ewert 2015. Alle Rechte vorbehalten.

Wert von Informationssystemen

Externe Unternehmensrechnung

3. Auflage

Ziele

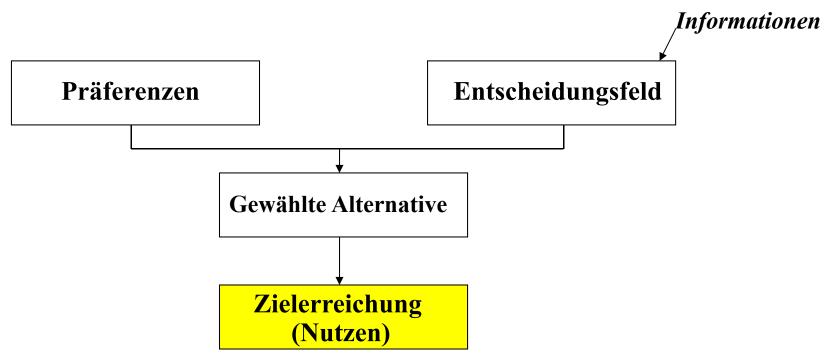
- Modellierung und Analyse von Informationssystemen zur Verbesserung individueller Entscheidungen
- Darstellung grundsätzlicher Einflussfaktoren für die Vorteilhaftigkeit von Informationssystemen im Individualkontext
- Darstellung der Wirkungen von Informationssystemen im Mehrpersonenkontext
- Aufzeigen von Problemen, optimale Informationssysteme im Rahmen des Mehrpersonen- und Kapitalmarktkontextes zu finden

Problemstellung

- **■** Externe Rechnungslegung
 - Ist ein kapitalmarktorientiertes Informationsinstrument
 - Enthält Angaben über die wirtschaftliche Lage
 - Beeinflusst Erwartungen der Anleger
 - Hat Konsequenzen f
 ür Kapitalkosten und Investitionst
 ätigkeit
- Wie aber soll die Rechnungslegung konkret gestaltet werden?
 - Bilanzierungs- und Bewertungsmethoden, Umfang der geforderten Angaben und Informationen?
- Was beeinflusst ganz grundsätzlich den Bedarf an und den Nutzen von Informationen?

Entscheidungstheoretische Grundlagen (1)

- Nutzen von Informationen ergibt sich nicht durch deren "Konsum"
- Wert von Informationen resultiert indirekt durch Verbesserung der Entscheidungen



Entscheidungstheoretische Grundlagen (2)

Entscheidungsfeld

- Aktionsraum A mit $a \in A$
- Zustandsraum Θ mit $\theta \in \Theta$
- Verteilung F mit Wahrscheinlichkeiten $f(\theta)$
- Ergebnisfunktion $x(a, \theta)$

Präferenzen

- Nutzenfunktion U(x) des Entscheidungsträgers
- Maximierung des Erwartungsnutzens

$$EU(a) = \sum_{\theta \in \Theta} U(x(a,\theta)) \cdot f(\theta)$$

Entscheidungstheoretische Grundlagen (3)

Optimale Entscheidung

$$EU(a^*) = \max_{a \in A} EU(a)$$

Beispiel: Drei gleichwahrscheinliche Zustände, Nutzenfunktion $U(x) = x^{1/2}$

Aktion	<i>q</i> 1	<i>q</i> 2	<i>q</i> 3
<i>a</i> 1	30	20	20
<i>a</i> 2	10	22	16
<i>a</i> 3	8	25	35

$$EU(a_1) = \frac{1}{3} \cdot (\sqrt{30} + \sqrt{20} + \sqrt{20}) = 4,807$$

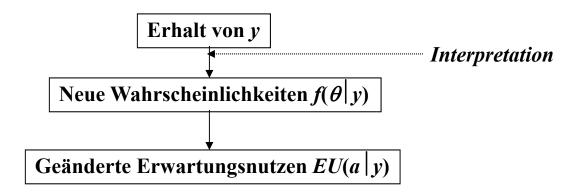
$$EU(a_2) = \frac{1}{3} \cdot (\sqrt{10} + \sqrt{22} + \sqrt{16}) = 3,951$$

$$EU(a_3) = \frac{1}{3} \cdot (\sqrt{8} + \sqrt{25} + \sqrt{35}) = 4,582$$

$$a^* = a_1 \text{ mit } EU(a^*) = 4,807$$

Informationssysteme

- **Basisinformationen des Entscheiders sind in** $f(\theta)$
- Beschaffung zusätzlicher Informationen beinhaltet den Erhalt eines Signals $y \in Y$



Neue signalbedingt optimale Entscheidung

$$a^*(y) = \underset{a \in A(y)}{\operatorname{arg max}} EU(a|y)$$

Interpretation der Signale

- Voraussetzung für eine Erwartungsänderung
 - Systematische Beziehung zwischen den Zuständen θ und den Signalen y
 - Diese Beziehungen sind regelmäßig stochastisch
- Die Beziehungen werden in sogenannten Likelihoods $f(y \mid \theta)$ ausgedrückt
- Sie geben an, mit welcher Wahrscheinlichkeit man das Signal y erhalten wird, wenn θ der tatsächlich eintretende Zustand ist
- In den Likelihoods spiegelt sich das Wissen um die Eigenschaften des Informationssystems wider

Vollkommene Information (1)

Ausgangspunkt: Obiges Beispiel mit drei gleichwahrscheinlichen Zuständen

Informationssystem hat folgende Signale

$$Y = \left\{ y_1, y_2, y_3 \right\}$$

Zustände Signale

$$\theta_1 \longrightarrow y_1$$

$$\theta_2 \longrightarrow y_2$$

$$\theta_3 \longrightarrow y_3$$

Jeder Zustand ist also umkehrbar eindeutig mit einem bestimmten Signal verbunden!

Eindeutiger Rückschluss vom Signal auf den Zustand möglich!

Vollkommene Information (2)

Likelihoods

	Zustände		
Signal	$ heta_{\scriptscriptstyle 1}$	$ heta_{\!\scriptscriptstyle 2}$	$ heta_{\!\scriptscriptstyle 3}$
\mathcal{Y}_1	1	0	0
\mathcal{Y}_2	0	1	0
\mathcal{Y}_3	0	0	1

$$f(y_i|\theta_j) = 1, f(y_i|\theta_j) = 0 \quad (i \neq j) \quad \forall j = 1,2,3$$

- Vollkommene Information eliminiert jegliches Risiko
- Zahl der Umweltzustände die nach Erhalt eines Signals y noch mit positiver Wahrscheinlichkeit auftreten können reduziert sich auf einen einzigen

Partitionierung und Information

Partitionierung

Gegeben sei eine Menge M und ein System von Teilmengen $T_i \subseteq M$ (i = 1,...,n). Die n Teilmengen bilden eine Partitionierung der Menge M, wenn sie paarweise disjunkt sind und ihre Vereinigung gerade der Menge M entspricht:

$$T_i \cap T_j = \emptyset \quad (\forall i, j = 1,...,n; i \neq j)$$

$$\bigcup_i T_i = M$$

Sei etwa $M = \{a,b,c,d\}$. Partitionierungen von M sind zB $T_1 = \{a,b\}$, $T_2 = \{c,d\}$, ebenso $T_1 = \{a,d\}$, $T_2 = \{b,c\}$. Keine Partitionierungen wären dagegen $T_1 = \{a,b\}$, $T_2 = \{d\}$ (die Vereinigung beider Teilmengen ergibt nicht M) oder $T_1 = \{a,b,c\}$, $T_2 = \{b,c,d\}$ (die beiden Teilmengen sind nicht disjunkt).

Der Erhalt von Informationen kann als Partitionierung aufgefasst werden: Nach Empfang von y ist nur noch eine Teilmenge von Θ relevant

Im obigen Beispiel mit vollkommener Information gilt

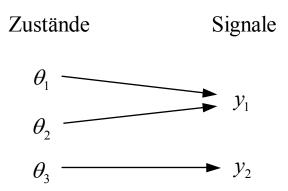
$$\left\{ \underbrace{\{\theta_1\}}_{y_1}, \underbrace{\{\theta_2\}}_{y_2}, \underbrace{\{\theta_3\}}_{y_3} \right\}$$

Unvollkommene Information (1)

■ Beziehung zwischen Signalen und Zuständen

- Jeder Zustand ist eindeutig mit einem bestimmten Signal verknüpft
- Es gibt aber mehrere Zustände, mit denen das gleiche Signal verbunden ist
- Daher *keine umkehrbar* eindeutige Beziehung

Verdeutlichung



Unvollkommene Information (2)

Likelihoodstruktur für dieses System ist

	Zustände		
Signal	$ heta_{\scriptscriptstyle 1}$	$ heta_{\!\scriptscriptstyle 2}$	$ heta_{\!\scriptscriptstyle 3}$
\mathcal{Y}_1	1	1	0
\mathcal{Y}_2	0	0	1

Partitionierung

$$\left\{\underbrace{\left\{\theta_{1},\theta_{2}\right\}}_{y_{1}},\underbrace{\left\{\theta_{3}\right\}}_{y_{2}}\right\}$$

Revidierte Erwartungen gemäß Bayes-Theorem

$$f(\theta_{1}|y_{1}) = \frac{f(\theta_{1})}{f(\theta_{1}) + f(\theta_{2})}; \quad f(\theta_{2}|y_{1}) = \frac{f(\theta_{2})}{f(\theta_{1}) + f(\theta_{2})}; \quad f(\theta_{3}|y_{1}) = 0$$

$$f(\theta_{1}|y_{2}) = f(\theta_{2}|y_{2}) = 0; \quad f(\theta_{3}|y_{2}) = 1$$

Jedem Zustand ist genau ein Signal y zugeordnet

$$Y(\theta_1) = y_1; \quad Y(\theta_2) = y_1; \quad Y(\theta_3) = y_2$$

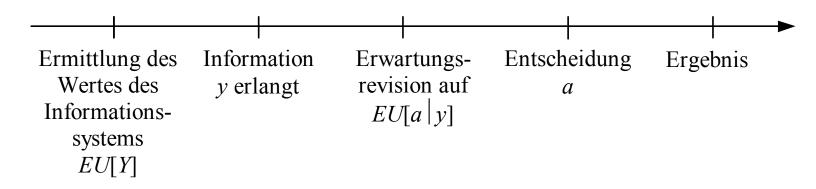
Vorteil von (kostenlosen) Informationen Überblick

■ Ohne Information

- Entscheider hat Aktionsraum A
- Er besitzt Erwartungen gemäß der Verteilung F
- Er wählt die optimale Aktion *a**
- Zielerreichung $EU(a^*)$

■ Mit Information

- Entscheider erhält Signal y
- Sein Aktionsraum ist A(y)
- Seine neuen Erwartungen sind F(y) mit $f(\theta|y)$
- Er wählt die signalbedingt optimale Aktion $a^*(y)$
- Signalbedingte Zielerreichung $EU(a^*(y)|y)$



Signalbedingte Entscheidungen

Die Verwendung des Informationssystems lohnt sich genau dann, wenn gilt

$$EU^*(Y) = \sum_{y} f(y) \cdot EU(a^*(y)|y) \ge EU(a^*)$$

Nach dem Erhalt von y resultiert bei Wahl einer Aktion a der Nutzen

$$EU(a|y) = \sum_{\theta \in \Theta} U(x(a,\theta)) \cdot f(\theta|y) = \frac{1}{f(y)} \cdot \sum_{\theta \in \Theta(y)} U(x(a,\theta)) \cdot f(\theta)$$

Die signalbedingt optimale Entscheidung ergibt sich aus

$$a^*(y) = \underset{a \in A(y)}{\operatorname{arg max}} EU(a|y)$$

Beim *Individualkontext* wird typischerweise unterstellt

$$A(y) = A \quad \forall y$$

Erwartungsnutzen EU(Y) bei beliebiger Strategie a(y)

$$EU(Y) = \sum_{y \in Y} f(y) \cdot EU(a(y)|y) = \sum_{y \in Y} \sum_{\theta \in \Theta(y)} U(x(a(y),\theta)) \cdot f(\theta)$$

Gilt stets $a(y) = a^*$ (bei A(y) = A immer möglich), folgt

$$EU(Y|a(y) = a^*) = \sum_{y \in Y} f(y) \cdot EU(a^*|y) =$$

$$\sum_{y \in Y} \sum_{\theta \in \Theta(y)} U(x(a^*, \theta)) \cdot f(\theta) = \sum_{\theta \in \Theta} U(x(a^*, \theta)) \cdot f(\theta) = EU(a^*)$$

Keine Verschlechterung möglich, weil Status Quo ohne Information stets erreichbar ist

Wählt man dagegen für wenigstens ein Signal y' eine von a^* abweichende Aktion $a^*(y')$, so muss gelten

$$EU(a^*(y')|y') > EU(a^*|y')$$

Daraus folgt dann für die Differenz der Erwartungsnutzen

$$EU^{*}(Y) - EU(a^{*}) = f(y') \cdot \left[EU(a^{*}(y')|y') - EU(a^{*}|y') \right] > 0$$

Beispiel

Drei gleichwahrscheinliche Zustände, Nutzenfunktion $U(x) = x^{1/2}$

Aktion	q 1	<i>q</i> 2	<i>q</i> 3
<i>a</i> 1	30	20	20
a 2	10	22	16
<i>a</i> 3	8	25	35

Informations system sei
$$\left\{\underbrace{\{\theta_1\}}_{y_1},\underbrace{\{\theta_2,\theta_3\}}_{y_2}\right\}$$

Offenbar ist $a^*(y_1) = a_1$. Bei y_2 ergibt sich $a^*(y_2)$ aus:

$$EU(a_{1}|y_{2}) = \frac{1}{2} \cdot (\sqrt{20} + \sqrt{20}) = 4,472$$

$$EU(a_{2}|y_{2}) = \frac{1}{2} \cdot (\sqrt{22} + \sqrt{16}) = 4,345$$

$$EU(a_{3}|y_{2}) = \frac{1}{2} \cdot (\sqrt{25} + \sqrt{35}) = 5,458$$

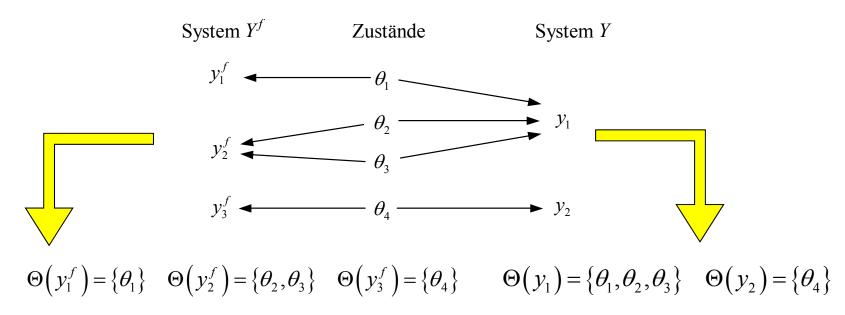
$$EU^*(Y) = \frac{1}{3} \cdot 5,477 + \frac{2}{3} \cdot 5,458 = 5,464 > EU(a^*) = 4,807$$

Informationsumfang Konzept

- Fragestellung: Ist mehr (kostenlose) Information stets besser als weniger (kostenlose) Information?
- **Problem: Präzisierung des Informationsumfangs**
- Idee
 - Angenommen, man hat zwei Informationssysteme Y und Y
 - Das System Y beinhaltet mehr Information als Y, wenn
 - > man für jedes Signal $y^f \in Y^f$ exakt angeben kann, welches Signal $y \in Y$ man erhalten hätte,
 - ➤ so dass man letztlich beim System Yf stets mindestens so viel weiß wie beim System Y, regelmäßig aber die Zustände noch genauer eingrenzen kann,
 - ➤ was impliziert, dass die mit Y verbundene Partitionierung "feiner" ist als diejenige von Y

Partitionierung und Feinheit (1)

Folgende beiden Informationssysteme sollen verglichen werden:



 Y^f beinhaltet weitere Partitionierung der Teilmenge $\Theta(y_1)$

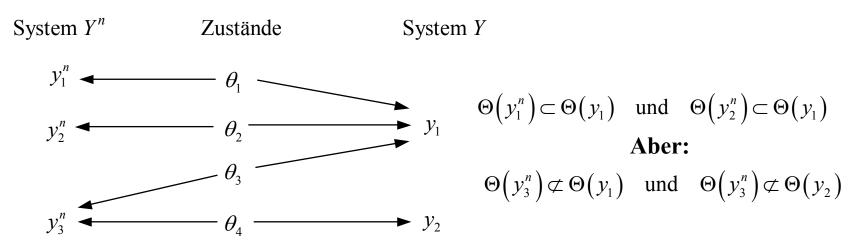
Partitionierung und Feinheit (2)

Allgemeine Definition der Feinheitsrelation

• Ein System Y^f ist genau dann feiner als ein System Y, wenn es zu jedem Signal y^f aus Y^f ein Signal y des Systems Y gibt, so dass $\Theta(y^f)$ eine Teilmenge von $\Theta(y)$ ist:

$$\forall y^f \in Y^f : \exists y \in Y \quad \text{mit } \Theta(y^f) \subseteq \Theta(y)$$

Folgende beiden Systeme lassen sich zB nicht danach ordnen:



Feinheitstheorem

■ Feinheitstheorem (*Blackwell*-Theorem)

Seien zwei (kostenlose) Informationssysteme Y^f und Y gegeben, wobei Y^f feiner als Y ist. Dann ist im Rahmen einer Individual analyse die Zielerreichung bei Y^f mindestens so groß wie diejenige bei Y, dh: $EU^*(Y^f) \ge EU^*(Y)$.

Beweis

- Analog zur Vorteilhaftigkeit eines (einzelnen) kostenlosen Informationssystems
- Es ist wegen A(y) = A und $A(y^f) = A$ beim System Y^f stets der Status Quo des Systems Y erreichbar
- Wird also eine Teilmenge $\Theta(y)$ durch mehrere y^f weiter partitioniert, so kann man für jedes dieser y^f stets $a^*(y)$ wählen und erzielt die gleiche Zielerreichung wie bei y.
- Weicht man für wenigstens ein y^f davon ab, dann nur deswegen, weil man dort einen höheren Nutzen erzielt

Aspekte des Feinheitstheorems

■ Eigenschaften

- Feinheitstheorem gilt für *Individualkontext* (A(y) = A)
- Informationskosten werden nicht betrachtet
- Ansonsten gilt es problemunabhängig, dh
 - > für beliebige Nutzenfunktionen
 - für beliebige Wahrscheinlichkeitsverteilungen
 - > für beliebige Aktionsräume und Ergebnisfunktionen
- Feinheitstheorem knüpft rein an Eigenschaften von Informationssystemen an
- Allerdings können nicht alle Informationssysteme gemäß der Feinheitsrelation geordnet werden

Informationskosten (1)

- Einsatz eines Informationssystems typischerweise nicht kostenlos
- Allgemein können die Informationskosten k vom System Y, der gewählten Aktion a und dem Zustand θ abhängen, dh $k = k(Y, a, \theta)$
- Signalbedingte Erwartungsnutzen bei Wahl einer Aktion a

$$EU(a|y)_{k} = \sum_{\theta \in \Theta} U(x(a,\theta) - k(Y,a,\theta)) \cdot f(\theta|y) = \frac{1}{f(y)} \cdot \sum_{\theta \in \Theta(y)} U(x(a,\theta) - k(Y,a,\theta)) \cdot f(\theta)$$

Informationskosten (2)

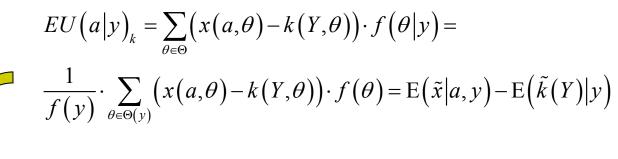
Zielerreichung beim Einsatz des Systems Y

$$EU^*(Y)_k = \sum_{y \in Y} f(y) \cdot EU(a_k^*(y)|y)_k$$

Der Einsatz von Y lohnt sich genau dann, wenn gilt

$$EU^*(Y)_k \ge EU(a^*)$$

Bei Risikoneutralität und aktionsunabhängigen Kosten folgt



Informationskosten beeinflussen die Aktionswahl nicht

Mehrpersonenkontext

■ Die externe Rechnungslegung wendet sich an eine Vielzahl von Personen

- Ihnen gehen die Informationen gemeinsam zu
- Die Entscheidung über "gute" Varianten der Rechnungslegung muss dies berücksichtigen

■ Relevante Aspekte sind insbesondere

- Probleme eines Standardsetters bei der Auswahl von Informationssystemen
- Wert von Informationssystemen bei Handlungsverbundenheit im Kapitalmarktkontext
- Potenzielle Unterschiede zwischen den Kriterien "Entscheidungsnützlichkeit" und "Anreiznützlichkeit"

Probleme eines Standardsetters

- Wie kann ein Standardsetter unter dem Aspekt der Entscheidungsnützlichkeit das "allgemein optimale" Informationssystem finden?
- Antwort: *Allgemein* gar nicht!
- Begründung
 - Die Parameter der individuellen Entscheidungsprobleme (Nutzenfunktionen, Erwartungen, Aktionsräume...) können sehr unterschiedlich sein
 - Selbst bei Vernachlässigung der Kosten ist Feinheitskriterium nicht anwendbar, weil sich nicht alle Informationssysteme danach ordnen lassen
 - Eine Entscheidung über derart nicht vergleichbare Systeme hängt aber vom spezifischen Entscheidungskontext ab

Beispiel

Zwei Investoren mit jeweils $U(x) = x^{1/2}$ und folgenden Entscheidungsproblemen: (die Zustände sind gleich wahrscheinlich)

Investor 1

Aktion	q 1	<i>q</i> 2	<i>q</i> 3
<i>a</i> 1	30	20	20
<i>a</i> 2	10	22	16

Investor 2

Aktion	<i>q</i> 1	<i>q</i> 2	<i>q</i> 3
<i>a</i> 2	10	22	16
<i>a</i> 3	8	25	35

$$a^*(I1) = a_1$$

$$a^*(I2) = a_3$$

Zwei (gemäß Feinheit nicht vergleichbare) Informationssysteme stehen zur Wahl:

$$Y_1: \{\{\theta_1, \theta_3\}, \{\theta_2\}\}$$
 $Y_2: \{\{\theta_1\}, \{\theta_2, \theta_3\}\}$

$$Y_2:\left\{\left\{\theta_1\right\},\left\{\theta_2,\theta_3\right\}\right\}$$

Investor 1:

- würde gerne genau wissen, ob θ_2 vorliegt,
- weil er dann stets die Aktion wählen kann. die zum höchsten zustandsbedingten Ergebnis führt,
- so dass er System Y_1 präferiert,
- während Y_2 für ihn völlig wertlos ist

Investor 2:

- würde gerne genau wissen, ob θ_1 vorliegt,
- weil er dann stets die Aktion wählen kann. die zum höchsten zustandsbedingten Ergebnis führt,
- so dass er System Y₂ präferiert,
- während Y_1 für ihn völlig wertlos ist

Folgerungen

Ohne Informationskosten

- Standardsetter m

 üsste sich f

 ür einen Investor entscheiden
- Der jeweils andere wird aber nicht schlechter gestellt (für jeden Investor gilt immer noch A(y) = A)
- Ausweg: Sind die Systeme kostenlos, könnte man einfach beide zur Verfügung stellen (muss feiner sein als jedes einzelne System und daher für jeden Investor besser)

■ Mit Informationskosten

- Beurteilung kann generell nicht unabhängig vom konkreten Entscheidungsproblem vorgenommen werden
- Obige Lösung ist schon *a priori* nicht mehr plausibel
- Standardsetter kennt zudem die Parameter der individuellen Probleme nicht, müsste sich aber selbst bei deren Kenntnis für bestimmte Investoren entscheiden
- Dies kann andere Investoren streng benachteiligen

→ Verteilungseffekte

■ Einpersonenkontext

- Positiver Wert eines Informationssystems setzt voraus, dass sich der Aktionsraum durch das Informationssystem nicht verändert A(y) = A für alle y
- Andernfalls: Kann ein Informationssystem bestimmte Aktionsmöglichkeiten ausschließen, dann stellt sich Entscheidungsträger schlechter obwohl er mehr Informationen zur Verfügung hat

■ Mehrpersonenkontext

 Entscheidungsstrategien anderer Entscheidungsträger sind unabhängig davon, ob der betrachtete Entscheidungsträger über mehr oder weniger Informationen verfügt

- Beispiel (Baiman 1975)
 - Unternehmen A: zwei Aktionen a_1 und a_2 Unternehmen B: zwei Aktionen b_1 und b_2
 - Entscheidungsträger beider Unternehmen sind risikoneutral
 - Unternehmen A kann kostenlos Informationssystem bekommen Signale y_1 und y_2 mit a priori Wahrscheinlichkeit y_1 : 20%, y_2 : 80%
 - Unternehmen B weiß, ob A das Informationssystem besitzt oder nicht Tatsächliches Signal selbst ist nur von Unternehmen A beobachtbar

Ergebnismatrizen

000		
N1	onal	12.5
Ю.	سسبع	

Nutzen A; B	Aktion B	
Aktion A	<i>b</i> ₁	<i>b</i> ₂
a_1	32; 11	9; 20
a 2	2; 1	-16; 25

Signal y 2

Nutzen A; B	Aktion B	
Aktion A	b ₁ b ₂	
a_1	0,75; 3,5	2,75; -1,25
a 2	2; 1	4; 0

- Annahme: Unternehmen A erwirbt das Informationssystem nicht
 - Es kann nicht zwischen den beiden Ergebnismatrizen unterscheiden
 - Entscheidung auf Basis der Erwartungswerte der jeweiligen Nutzen

Erwartungs- nutzen A; B	b_1	b_2
a_1	7; 5	4; 3
a_2	2; 1	0; 5

Nash-Gleichgewicht: (a₁,b₁)
 Erwartungsnutzen für A 7 und für B 5

■ Annahme: Unternehmen A erwirbt das Informationssystem

- A kann seine Entscheidung in Abhängigkeit des beobachteten Signals y wählen
- 4 Handlungskombinationen für A, B weiterhin nur 2 Alternativen

Erwartungs- nutzen A; B	$b_{\scriptscriptstyle 1}$	b_2
$a_1 y_1; a_1 y_2$	7; 5	4; 3
$a_1 y_1; a_2 y_2$	2; 1	0; 5
$a_1 y_1; a_2 y_2$	8; 3	5; 4
$a_{2} y_{1}; a_{1} y_{2}$	1; 3	-1; 4

- Nash-Gleichgewicht: $(a_1|y_1; a_2|y_2; b_2)$ Erwartungsnutzen für A 5 und für B 3
- Erwartungsnutzen beider Unternehmen bei Informationssystem geringer Informationssystem hat einen negativen Wert

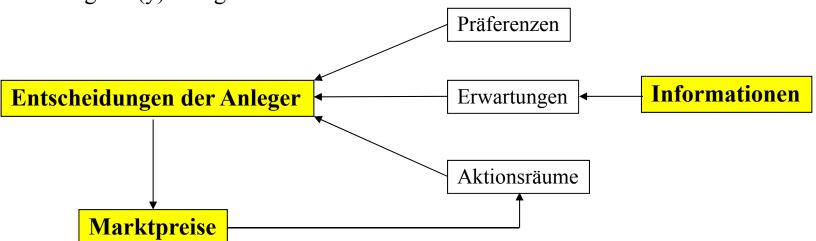
Informationsablehnungstheorem

■ Informationsablehnungstheorem

• Es kann Situationen geben, in denen *jeder* Investor vorziehen würde, eine kostenlose, öffentlich verfügbare Information *nicht* zu erhalten – er wäre sogar bereit, für deren Unterdrückung zu bezahlen

Grund

- Informationen ändern Erwartungen und Entscheidungen
- Veränderung der Marktpreise, die Aktionsraum determinieren



Portefeuillemodell - Annahmen

■ Modellannahmen

- Einperiodiger Markt
- Ein risikobehaftetes Wertpapier mit Preis P
- Überschuss (Endwert) am Periodenende $x = \mu + \theta$ Störgröße θ normalverteilt mit Erwartungswert 0 und Varianz σ^2
- Erwartungswert der Überschüsse daher $E(x) = \mu$
- I Investoren, homogene Erwartungen, a_i = Anteile von Investor i am risikobehafteten Wertpapier
- b_i = Betrag, den Investor i sicher zum Zinssatz 0 investiert
- Nutzenfunktion negativ exponentiell: $U_i(W_i) = -\exp(-r_i \cdot W_i)$
- W_i = unsicheres Endvermögen = $a_i \cdot x + b_i$
- Endvermögen W_i normalverteilt, daher Orientierung am Sicherheitsäquivalent $S\ddot{A}$ möglich

$$S\ddot{A}_{i} = E(\tilde{W}_{i}) - \frac{1}{2} \cdot r_{i} \cdot Var(\tilde{W}_{i})$$

Lösung ohne Information (1)

Budgetrestriktion eines Investors bindet im Optimum

$$a_i \cdot P + b_i \le m_i \cdot P + \overline{b_i}$$
 \longrightarrow $b_i = P \cdot (m_i - a_i) + \overline{b_i}$

Für den Endwert erhält man

$$\tilde{W}_i = a_i \cdot \tilde{x} + b_i = a_i \cdot (\tilde{x} - P) + m_i \cdot P + \overline{b_i}$$

Sicherheitsäquivalent

$$S\ddot{A}_{i} = \mathbb{E}\left(\tilde{W}_{i}\right) - \frac{1}{2} \cdot r_{i} \cdot Var\left(\tilde{W}_{i}\right) = a_{i} \cdot (\mu - P) + m_{i} \cdot P + \overline{b}_{i} - \frac{1}{2} \cdot r_{i} \cdot a_{i}^{2} \cdot \sigma^{2}$$

Optimaler Wertpapierbestand

$$\frac{\partial S\ddot{A_i}}{\partial a_i} = \mu - P - r_i \cdot a_i^* \cdot \sigma^2 = 0 \quad \Rightarrow \quad a_i^* = \frac{\mu - P}{r_i \cdot \sigma^2}$$

Lösung ohne Information (2)

Im Gleichgewicht muss der Markt geräumt sein

$$\sum_{i} a_{i}^{*} = \sum_{i} m_{i} \equiv M$$

Einsetzen der optimalen Politiken erbringt

$$\sum_{i} a_{i}^{*} = \sum_{i} \frac{(\mu - P)}{r_{i} \cdot \sigma^{2}} = \frac{(\mu - P)}{\sigma^{2}} \cdot \sum_{i} r_{i}^{-1} = \frac{(\mu - P)}{\sigma^{2}} \cdot R = M$$

Dies lässt sich nach dem Preis P auflösen

$$P = \mu - R^{-1} \cdot M \cdot \sigma^2$$

Einsetzen von P in die Lösung für die Politiken führt auf

$$a_i^* = \frac{M \cdot R^{-1}}{r_i} = M \cdot \left(\frac{r_i^{-1}}{\sum_i r_i^{-1}}\right)$$

Sicherheitsäquivalent im Gleichgewicht

$$S\ddot{A}_{i}^{*} = m_{i} \cdot \mu + \overline{b}_{i} + r_{i} \cdot \sigma^{2} \cdot \left(\left(a_{i}^{*} \right)^{2} / 2 - a_{i}^{*} \cdot m_{i} \right)$$

Bereitstellung perfekter Information

Die Anleger erhalten vor dem Handel folgende Signale y

$$\tilde{y} = \mu + \tilde{\theta} = \tilde{x}$$

Erwartungsrevision bei normalverteilten Zufallsvariablen

Angenommen, zwei normalverteilte Zufallsvariablen werden wie folgt definiert:

$$\tilde{\mathbf{X}} \square \mathbf{N}(\mu_{\mathbf{X}}, \sigma_{\mathbf{X}}^2)$$

$$\tilde{y} \square N(\mu_y, \sigma_y^2)$$

Der Korrelationskoeffizient lautet $\rho = Cov(\tilde{x}, \tilde{y})/(\sigma_x \cdot \sigma_y)$.

Dann folgt aus der Theorie bivariat normalverteilter Zufallsvariablen folgende Beziehung für die bedingten Erwartungswerte und Varianzen:

$$\mathsf{E}\left(\tilde{x}\left|y\right.\right) = \mu_{x} + \rho \cdot \frac{\sigma_{x}}{\sigma_{y}} \cdot \left(y - \mu_{y}\right) = \mu_{x} + \frac{\mathsf{Cov}\left(\tilde{x}, \tilde{y}\right)}{\sigma_{y}^{2}} \cdot \left(y - \mu_{y}\right)$$

$$Var\left(\tilde{x}|y\right) = \sigma_{x}^{2} \cdot \left(1 - \rho^{2}\right) = \sigma_{x}^{2} - \frac{Cov\left(\tilde{x}, \tilde{y}\right)^{2}}{\sigma_{y}^{2}}$$

Für vollkommene Information von y über x gemäß obigem Ausdruck gilt: $\mu_x = \mu_y = \mu$, $\sigma_x^2 = \sigma_y^2 = \sigma^2$ und $Cov(\tilde{x}, \tilde{y}) = Cov(\tilde{\theta}, \tilde{\theta}) = \sigma^2$. Einsetzen in die allgemeinen Ausdrücke erbringt

$$\mathsf{E}\left(\tilde{x}\,\middle|\,y\right)=y\quad\text{und}\quad \mathit{Var}\left(\tilde{x}\,\middle|\,y\right)=0$$

Lösung mit Information (1)

Nach Erhalt von y ist kein Risiko mehr vorhanden, daher folgt für SÄ

$$S\ddot{A}_{i}(y) = a_{i} \cdot (y - P(y)) + m_{i} \cdot P(y) + \overline{b}_{i}$$

Signalbedingt optimaler Wertpapierbestand

$$\frac{\partial S\ddot{A}_{i}(y)}{\partial a_{i}} = y - P(y) = 0 \implies P(y) = y$$

Effekte

- Marktpreis ist perfekt mit der Information y korreliert
- Keine Risiken mehr nach Erhalt von y
- Daher kein Grund mehr zum Handeln am Markt aus Gesichtspunkten der Risikoteilung
- Verbleibender Handelsgrund: Unterschiedliche Anfangsausstattungen
- Dieses Motiv wird wegen der obigen Preiseigenschaft ausgehebelt
- Beim gleichgewichtigen Preis ist jeder Investor bezüglich Handels indifferent

Lösung mit Information (2)

Nach Erhalt von *y* hat jeder Anleger daher ein sicheres Endvermögen, das faktisch alleine von seiner Anfangsausstattung abhängt:

$$S\ddot{A}_{i}^{*}(y) = m_{i} \cdot y + \overline{b}_{i} = m_{i} \cdot (\mu + \theta) + \overline{b}_{i}$$

Vor dem Erhalt von y besteht aber (Informations-) Risiko Ex ante ist das Endvermögen weiterhin normalverteilt Sicherheitsäquivalent dieses risikobehafteten Vermögens

$$S\ddot{A}_{i}^{Y} = m_{i} \cdot \mu + \overline{b}_{i} - \frac{1}{2} \cdot r_{i} \cdot m_{i}^{2} \cdot \sigma^{2}$$

Lösung mit Information (3)

Vorteil aus dem Einsatz des Informationssystems

$$S\ddot{A}_{i}^{Y} - S\ddot{A}_{i}^{*} = -\frac{1}{2} \cdot r_{i} \cdot m_{i}^{2} \cdot \sigma^{2} - r_{i} \cdot \sigma^{2} \cdot \left(\frac{\left(a_{i}^{*}\right)^{2}}{2} - a_{i}^{*} \cdot m_{i}\right) =$$

$$-\frac{1}{2} \cdot r_{i} \cdot \sigma^{2} \cdot \left(\left(a_{i}^{*}\right)^{2} - 2 \cdot m_{i} \cdot a_{i}^{*} + m_{i}^{2}\right) =$$

$$-\frac{1}{2} \cdot r_{i} \cdot \sigma^{2} \cdot \left(a_{i}^{*} - m_{i}\right)^{2} \leq 0$$

Kein Anleger kann sich wirklich verbessern Jeder, der ohne Information handeln würde, erfährt eine echte *informationsinduzierte Nutzeneinbuße*

Diskussion

- Auf den ersten Blick günstige Informationslage
 - Information y kommt vor dem Handel an den Markt
 - Man kann daher darauf reagieren
 - Die Information ist vollkommen und eliminiert jegliches Risiko
 - Außerdem ist sie kostenlos verfügbar
- Wäre im Individualkontext hinreichend für maximalen Informationswert
- Im Marktkontext diametral umgekehrt
 - Risikovernichtung gilt ja nur ex post, nicht aber ex ante
 - Das ex ante verbleibende Informationsrisiko ist jetzt wegen der ex post-Preise P(y) nicht mehr am Markt handelbar
 - Es entspricht aber faktisch dem ursprünglichen Risiko σ^2 , welches ohne Information durch Handel geteilt worden wäre
 - Daher kann die Information niemandem nützen

Relativierungen

■ Zeitliche Struktur des Problems

- Modell enthielt keine Möglichkeit zum Handel vor Information
- Erfassung über sogenanntes "sequenzielles" Marktregime
- Dort gilt Informationsablehnung für *ein* System *Y* nicht mehr
- Ggf aber noch möglich beim Vergleich mehrerer Systeme

■ Einbeziehung von Investition und Produktion eröffnet neue Vorteile für Informationen

\blacksquare Private Beschaffung eines Systems Y

- Einzelner Anleger handelt bei gegebenen Preisen gemäß individuellem Kosten-Nutzen-Tradeoff
- Kann dazu führen, dass jeder privat das System *Y* beschafft
- Gesamtwirkungen wie bei Informationsablehnung, kann aber nicht wirksam unterdrückt werden
- Öffentliche Bereitstellung kann dann effizienter sein

Folgerungen für Standardsetter

- Präzisierung der Funktion der Rechnungslegung
- **■** Beachtung des Mehrpersonenkontextes
 - Distributionseffekte verhindern Standards, die einmütig als optimal gelten können (ggf sogar Informationsablehnung)
 - Abschätzen der Verteilungswirkungen erfordert Kenntnisse der individuellen Entscheidungsprobleme
 - Diese sind realiter kaum zu erheben
 - Man agiert faktisch "im Nebel"
 - > Umgekehrt kann mit geeigneter Argumentation fast alles begründet werden
- Ausweg: Typisierung der Anlegerprobleme
 - Problem: In welche konkrete Richtung?
- Ergänzung durch empirische Forschung zur Abschätzung der Kapitalmarktkonsequenzen