
On The Quality Of Cryptocurrency Markets

Centralized Versus Decentralized Exchanges

Andrea Barbon, Angelo Ranaldo∗

First Draft: July 2021. This Draft: April 2022

Abstract

Despite the growing adoption of decentralized exchanges, little is known about

their market quality. Using a novel and comprehensive dataset, we compare

decentralized blockchain-based venues (DEXs) to centralized crypto exchanges

(CEXs) by assessing two key aspects of market quality: price efficiency and mar-

ket liquidity. We find that CEXs provide better market quality overall and iden-

tify the main friction dampening DEX efficiency as the high gas price stemming

from proof-of-work blockchains. We propose and empirically validate a stylized

model of DEX liquidity provision, linking trading volume, protocol fees, and liq-

uidity in equilibrium. Our theory identifies the quantitative conditions needed

for DEXs to overtake CEXs in the future.
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I. Introduction

In modern financial markets, equity securities, cryptocurrencies, and many other asset

classes are traded on centralized exchanges (CEXs). This dominant market structure

often relies on an electronic limit order book (LOB), matching end-user orders in a

fairly transparent, efficient, and centralized way. Recently however, fueled by the wave

of innovation brought about by the advent of blockchain technology, decentralized

exchanges (DEXs) have emerged as an alternative and innovative market structure for

crypto assets. These venues, based on smart-contract implementations of automated

market makers (AMM), have been attracting an increasing amount of attention and

trading volumes.1 One of the questions arising from this development concerns the

market quality offered by these new market systems compared to LOB-based CEXs.

We address this issue by analyzing cryptocurrency trading and assessing the market

quality of CEXs and DEXs, focusing on market liquidity and price efficiency.2 We find

that CEXs generally enjoy higher liquidity and tighter transaction costs. By analyzing

the violation of the law of one price for triplets of exchange pairs, we also find that

DEXs enjoy more efficient pricing. We identify the high level of gas fees – that is, the

cost of recording transactions on the blockchain that depends on the dollar price of the

native token and level of network congestion – as the main cause of price inefficiency

of DEX markets. To draw possible paths to efficiency, we provide a simple equilibrium

1Throughout the paper, we use the acronym CEX to indicate an LOB-based centralized exchange and DEX
to indicate an AMM-based decentralized one. However, the concepts of AMM and LOB are not identical to
those of CEX and DEX. While CEXs depend on a proprietary IT platform (server, databases, account system,
security, etc.), DEXs rely only on smart contracts and blockchain technology. The distinction between LOB
and AMM, meanwhile, relates to the institutional arrangements regarding liquidity provision. In LOB markets,
bid and ask limit orders are submitted and updated by market makers and recorded in the order book, while
in AMM markets liquidity is posted to pools by market participants, and transaction prices are determined
by a mathematical framework – a detailed explanation of the AMM system is provided in Section II. Even
though it is possible to envision an LOB-based DEX, an effective implementation of an on-chain order book
is currently unfeasible due to the limited speed of transaction and non-trivial gas costs. An AMM-based CEX
would be feasible in practice but, to the best of our knowledge, such a solution has not yet been implemented
by any prominent exchange.

2Market quality is a broad concept that includes price efficiency, liquidity and fairness in the sense that
each market participant has an equal chance of obtaining a market price that reflects the fundamental value
of the financial security. In this study, we focus on the first two aspects and only briefly discuss fairness.
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model capturing the main characteristics of DEX markets and the risk-return trade-off

endured by LPs. Using a unique and highly representative dataset, we test the main

empirical predictions and quantify the necessary conditions to improve DEX market

quality in order to compete with a CEX equivalent.

While academic research on the topic is almost non-existent, assessing the present

quality of decentralized AMM markets and their future potential is important for at

least two reasons. First, it is a new market design that could potentially be applied to

more traditional financial securities. Thus, understanding DEX characteristics could

point to ways to improve the frictions of traditional markets. For instance, the fact that

DEX relies on AMM rather than LOB implies that anyone, no matter who and what

degree of sophistication she has, can offer liquidity to the exchange in a completely

passive fashion by means of liquidity pools. In addition, the custody of assets remains

fully with the user, thus ensuring the highest level of security and censorship resistance.

Second, the political discussion has centered on the need to regulate cryptocurrency

markets to protect their users and ensure financial stability. To properly address these

issues, a thorough analysis of the quality of DEXs is desirable.

Our empirical work leverages a unique and very granular dataset that is comprised of

three elements: (i) LOB high-frequency snapshots for the most liquid centralized crypto

exchanges (Binance, Kraken, Coinbase), (ii) liquidity pools levels and transactions for

the most prominent DEXs (Uniswap, Pancakeswap, Sushiswap), (iii) historical gas

prices for the Ethereum blockchain and the Binance Smart Chain. This rich set of

information allows us to accurately reconstruct quoted prices and spreads for a selected

set of exchange pairs of cryptocurrencies at a per-minute frequency. We proceed in three

steps. First, we analyze market liquidity by computing effective transaction costs for

each pair and for different sizes that an end user has to bear. For CEXs, our measure

for transaction costs is defined as the volume-weighted realized half-spread based on

the available limit orders (implementation shortfall), plus the percentage transaction

fees charged by the exchange. Similarly, for DEXs, we consider the sum of the realized
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half-spread (based on the available liquidity in the pools), the percentage transaction

fees charged by the protocol, and the gas fees paid to miners operating the relevant

blockchain. Two main findings emerged: (i) in general, CEXs feature better market

quality in the sense that they offers higher liquidity and lower transaction costs, and

(ii) DEXs become competitive for expensive transactions; we quantify this threshold

as a transaction volume of more than 100,000$.

Next, we study price efficiency by examining triangular price deviations; that is, the

difference between the quoted prices of a triplet of exchange pairs and those implied

by no-arbitrage relations. For example, one could buy USD Coin (USDC) against

Ethereum (ETH) directly or do so indirectly by first selling ETH for Tether (USDT)

and then selling the latter to obtain USDC. Using the above-defined proxy for trans-

action costs, we compute arbitrage bounds; that is, regions in which the profits from a

triangular trade would be lower than the effective transaction costs of executing that

trade. We employ the size of those bounds as an inverse proxy for price inefficiency.

Our empirical analysis of exchange triplets uncovers that, once accounting for trans-

action costs, no-arbitrage conditions are less restrictive for DEXs and result in larger

deviations from the theoretically efficient price.

In the third part of the paper, we outline a simple theoretical model that consistently

captures the trade-off faced by DEX LPs and postulate clear empirical predictions.

For a given exchange pair, expected profits arise from collected fees and are a linear

function of the expected trading volume. In addition, because fees are shared among

LPs proportionally to the percentage share of the pool owned, the expected return

on capital is a decreasing function of pool size. On the other side of the trade-off,

LPs face the risk of incurring what is known as impermanent loss (IL; it is also called

divergence loss), the AMM analogue to adverse selection cost in LOB markets. Hence,

the prediction of our model states that the bid-ask spread depends on the equilibrium

level of assets staked in a liquidity pool that in turn is proportional to the transaction

fees earned by the LP and the expected volume and inversely proportional to the ex-
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ante IL volatility. We test the empirical predictions with our data and find strong

corroboration. Furthermore, based on the insights from our model and two planned

institutional changes in the DEX market (i.e., the introduction of Ethereum 2.0 and

lower protocol fees), we make quantitative predictions on the possible future evolution

of liquidity and price efficiency of DEXs, conditional on expected levels of trading

volume. Our analysis suggests that the market quality of DEXs will likely soon catch

up with and potentially overtake that of CEXs.

Our contribution to the literature is at least three-fold. First, we provide a systematic

analysis of liquidity and price efficiency in decentralized markets based on the AMM

paradigm, highlighting the main reasons for the current dominance of CEXs. Specifi-

cally, we are the first to shed light on and analyze the crucial role of gas costs. Second,

we propose a simple model of liquidity provision in DEX with intuitive economic pre-

dictions; that is, the spread depends on the LP’s liquidity provision, which in turn is

determined by the expected transaction fees, trading volume, and IL. These predictions

find strong empirical support and can explain the vast majority of the cross-sectional

and time-series variation in observed liquidity levels. Third, the theoretical and em-

pirical analysis we apply to the anticipated institutional improvements indicates that

DEXs are not destined to be shelved. On the contrary, DEX systems are likely to

become a viable and competitive alternative to the classic CEX market structure.

The rest of the paper is organized as follows. Section II presents a high-level introduc-

tion and a simplified mathematical treatment of AMM markets. Section III describes

our dataset and provides summary statistics. Section IV analyses liquidity based on

transaction costs, while Section V studies price efficiency based on triangular arbi-

trage bounds. Section VI outlines our model for DEX liquidity provision, brings it to

the data, and presents the resulting forecasts of future efficiency levels. Section VIII

concludes.
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II. AMM Markets

A. High-level description of AMM Markets

Most exchanges in contemporary financial markets use a central LOB system that often

requires a central institution to maintain a record of available and executed buy and

sell orders. On this type of exchange, the market price is determined by the most

recently matched buy and sell order. Unlike order-book-based exchanges, AMMs rely

on an algorithm that automatically determines transaction and market prices based on

the liquidity made available by market participants.

Implementing an LOB exchange directly on the blockchain is hardly feasible, as it

is very costly and slow due to the time-consuming mining process and gas fees paid

to miners. Furthermore, blockchain technology by its very conception has a limited

storage capacity, a resource that is sorely needed in order-based exchanges. Crypto

exchanges such as Binance, Coinbase, or Kraken that still provide an LOB mechanism

have to operate it off-chain and are thus centralized entities. This comes at the expense

of the benefits offered by decentralized networks. Unlike CEXs, AMMs rely on a

simple conservation function that algorithmically computes the asset price based on

the liquidity available in the exchange. The most common conservation function is the

so-called constant product function xy = k, which is used by Uniswap. In AMMs,

the liquidity comes from the LPs, who deposit their assets into the reserve of a smart

contract or liquidity pool. These available reserves determine the market price of

the assets and allow users to directly swap assets without having to interact with a

counterparty or third party. To incentivize users to provide funds to the liquidity

pools, LPs are compensated by a small fee charged on each transaction. Nonetheless,

providing liquidity is not free of risk. Price divergence between the time of provision

and withdrawal leads to an IL. This arises from the fact that the LP receives more of

the least valuable asset and less of the most valuable asset at the time of withdrawal.

In other words, the IL is the relative loss with respect to the holding return, before
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accounting for revenues from transaction fees. This source of risk is similar to the

adverse selection faced by market makers in a market with information asymmetry; in

both cases losses occur only when flows have a permanent price impact.

The importance of DEXs has continued to icnrease since their inception. As of early

May 2021, there were more than 23 billion U.S. dollars deposited in liquidity pools

across Uniswap, Sushiswap, and Pancakeswap combined. This volume is striking, given

that Uniswap was created in late 2018 and was then the only DEX system. The follow-

ing section discusses the advantages and inconveniences involved with DEXs compared

to order-book-based CEXs.

B. Salient Features of DEX

DEXs based on AMM provide their users with a fundamentally different experience

from standard CEXs based on LOB. Below, we discuss a number of the relevant ad-

vantages and drawbacks of DEXs.

First of all, contrary to CEXs, the custody of assets remains fully with the user, as no

third party is required to execute the trade. This feature implies that users can take

full advantage of the censorship-resistant and trustless nature of crypto assets based

on blockchain technology (Pagnotta and Buraschi, 2018). It also neutralizes the risk of

malicious agents (hackers) attacking the exchange and stealing assets, as the exchange

does not possess the assets of its customers. Consequently, it allows users to save on

the fees commonly associated with the deposit and withdrawal of assets in CEXs.

Second, DEX users can provide liquidity to the exchange in a completely passive fash-

ion. Hence, liquidity provision is accessible to agents with any level of sophistication

and does not require investing in expensive hardware or developing complex algorithms.

By contrast, in LOB-based exchanges, LPs are usually highly specialized, and entry

costs are significant in terms of both sophistication and capital. Market makers need

high-speed computers and state-of-the-art algorithms to update their quotes as quickly
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as possible and avoid being picked off by high-frequency traders (Foucault et al., 2017).

Third, platform fees charged to each transaction are distributed to LPs in proportion

to their shares (Adams et al., 2020). There is thus no welfare reduction stemming from

profits accrued by the exchange itself, as there is no limited liability company associated

with it. This may translate into economically significant gains for both traders and LPs.

Fourth, users can quote any pair of ERC-20 tokens at any time, immediately, and with

no screening procedures. Consequently, new tokens are likely to be tradeable sooner

in DEX, while CEX approval procedures may require significant time. Moreover, DEX

may allow trading on tokens that are not available on CEXs. On the one hand, this

constitutes an advantage by enlarging the space of investment opportunities, improving

diversification, and speeding up the process that makes the market more complete. On

the other hand, this has the drawback of exposing users to potentially malicious assets.

Fifth, since DEX transactions are processed by smart contracts and directly recorded on

the blockchain, users bear the cost of the non-trivial gas fees required to compensate

miners. This fact implies that transactions are subject to an execution delay, the

duration of which depends on the speed of the underlying blockchain, the chosen gas

price, and the level of network congestion.

C. Related Literature

We contribute to the nascent but growing literature on cryptocurrencies by providing

a comprehensive analysis of their market quality. Concerning price efficiency, prior re-

search provides evidence against it focusing on Bitcoin (e.g. Urquhart (2016), Bariviera

(2017), and Nadarajah and Chu (2017)). Nadarajah and Chu (2017) explore a larger set

of cryptocurrencies and document wide price variation. Dyhrberg et al. (2018) assess

whether and when Bitcoin is investible and at what trading costs. Hautsch et al. (2018)

focus on the institutional aspect represented by the distributed ledger technology. They

stress that consensus protocols to record the transfer of ownership create settlement
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latency, exposing arbitrageurs to price risk. Trading activity and arbitrage deviations

are also the core of the analysis in Makarov and Schoar (2020). Using tick data for 34

exchanges across 19 countries, they find arbitrage deviations of Bitcoin prices that were

(i) large, persistent, and recurring, (ii) different across countries and regions, and (iii)

apparently demand-driven. Using tick-level Bitcoin data from February 2013 to April

2018, Krückeberg and Scholz (2020) provide a detailed analysis of arbitrage spreads

among global Bitcoin markets. Arbitrage spreads concentrate during certain periods

such as the early hours of a day and for new exchange market entries.

Regarding market liquidity, Borri and Shakhnov (2018) analyze daily data on Bitcoin

prices from 109 exchanges and show that (i) daily returns are widely dispersed, and

(ii) temporal variation increases with illiquidity. Brauneis and Mestel (2018) assess the

market efficiency of a set of cryptos using unit root tests and compute some liquidity

proxies. They show that less liquid cryptos are less efficient. Brauneis et al. (2021) per-

form a comprehensive study measuring cryptocurrency market liquidity. They conduct

a horse-race comparison among low-frequency transactions-based liquidity measures to

ascertain which one was the closest to the actual (high-frequency) benchmark measure.

In addition to Brauneis et al. (2021), a few other studies use order book data to study

market liquidity of cryptocurrencies. For instance, Marshall et al. (2019) find that

Bitcoin endures substantial variation in liquidity across different exchanges and that

changes in currency liquidity influence Bitcoin liquidity.

We add to the literature by jointly studying centralized and decentralized crypto ex-

changes based on innovative blockchain-based venues that serve as a form of AMM.

Thus far, only a few papers have studied AMM exchanges. On the theoretical side,

Aoyagi and Ito (2021) examine the conditions for the coexistence of such CEX and

DEX exchanges, and Evans (2020) outlines the pay-offs of LPs on AMM exchanges.

Evans et al. (2021) analyze the loss of privacy, worse pricing, and latency of AMM trad-

ing. By focusing on Uniswap, Angeris et al. (2019) formalize the common conditions of

AMM functioning including the need for Uniswap prices to closely follow the reference
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market price. Capponi and Jia (2021) model the impact on utility for LPs and traders

of the curvature of the pricing function on Uniswap.

The closest paper to our study is Lehar and Parlour (2021), who compare AMM and

a limit-order market. Our work differs from theirs in three main aspects. First, we

propose a different theoretical model that postulates distinct and intuitive theoreti-

cal predictions outlining how liquidity provision arises from transaction fees, expected

transaction volume, and IL. Second, while they only consider Binance as a represen-

tative CEX market, we analyze data from three CEX systems (Binance, Kraken, and

Coinbase). Third, and most importantly, a crucial aspect of our analysis is the time

series variation of gas fees, which those authors do not consider. While they find

the liquidity provision in Uniswap to be more stable than in Binance, we find that

CEX and DEX transaction costs are characterized by the same degree of predictability.

Moreover, by properly accounting for oscillations in the gas price, transaction costs on

Uniswap turn out to be only partially predictable and stable. We also find a signif-

icant co-movement of the effective transaction costs on Binance and the price of gas

on the Ethereum blockchain, which is suggestive evidence of gas prices as a proxy for

the aggregate demand of immediacy. Finally, Lehar and Parlour (2021) conclude that

Uniswap features price efficiency because the market prices for the same cryptocurren-

cies traded on Uniswap and Binance are very much aligned. Our analysis comprising

arbitrage bounds and triangular arbitrage deviations identifies a lower price efficiency

in DEX markets.

Our contribution to the literature is three-fold: First, we provide a systematic analysis

of price efficiency by studying the triangular no-arbitrage conditions based on a unique

and very comprehensive set of cryptocurrencies. We determine the arbitrage bound-

ary conditions and test their violations. Second, we investigate market liquidity and

transaction costs considering all relevant features and trading costs of centralized and

decentralized crypto exchanges. By doing so, we quantify the conditions and trans-

action size under which DEXs become competitive with CEXs. Third, we theorize
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equilibrium conditions including trading volume and protocol fees to efficiently provide

liquidity on AMM exchanges.

D. Mathematical Foundations of AMM Markets

This AMMs, such as Uniswap, use the constant product rule, which enables an algebraic

determination of market price and transaction price based on the available reserves

(Adams et al., 2021). Consider a liquidity pool that contains x tokens of X and y

tokens of Y . The combined amount of both tokens in the pool determines the current

market price Pxy or Pyx, which can be expressed as

PXY =
y

x
and PY X =

x

y

Let us denote as f the protocol fees charged by the DEX (f = 0.003 for Uniswap), and

let ϕ = 1−f . These fees are immediately applied to the traded amount ∆x > 0, so that

the net quantity of token X that goes into the swap transaction is ϕ∆x. Each trade

(swap transaction) is automatically regulated by the constant product rule, which states

that the product of the reserves must remain constant before and after any transactions.

Hence, when trading an amount ∆x > 0 of token X in exchange for token Y , the output

quantity ∆y is mathematically determined through the following equation

xy = k = (x+ ϕ∆x)(y −∆y) .

Solving for ∆y, one obtains that the output amount is given by

∆y = y
ϕ∆x

x+ ϕ∆x
. (1)

The transaction price is therefore lower than the quoted price and is given by

TXY (∆x) =
∆y

∆x
=

ϕy

x+ ϕ∆x
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and the quoted half-spread (as a percentage of the quoted price) can be computed as

SXY (∆x) =
PXY − TXY

PXY

=
ϕ∆x

x+ ϕ∆x
. (2)

III. Data and Summary Statistics

Because DEXs are based on smart contracts deployed on blockchains, records of every

single interaction with those contracts is available to the public. This rich dataset

includes as primitives the creation of exchange pairs, the addition/removal of liquidity

from LPs, and swap transactions between two quoted tokens. Building on those, one

can reconstruct liquidity levels, quoted prices, transaction prices, and trading volume at

the pair level at any point in time. We leverage the application programming interface

of TheGraph.com to obtain data for Uniswap from the Ethereum MainNet blockchain.

We download data on liquidity pool reserves and volumes at an hourly frequency for

the pairs made of the five crypto-tokens that are subjects of our analysis.

For CEXs, by contrast, data are proprietary. We obtain minute-frequency Open, High,

Low, Close, and Volume data and full LOB snapshots from Kaiko for all pairs quoted on

the largest crypto exchanges in terms of traded volume, including Binance and Kraken.

A. Summary Statistics

Figure 1 displays daily volumes for the AMM-based exchanges in our sample (Uniswap

v2, Pancakeswap, and Sushiswap). For Uniswap v2, which was deployed on the Ethereum

MaiNnet on May 2020, the plot shows a 10-fold increase from around 100 million USD

on August 2020 to roughly 1 billion at the end of the sample (December 2021). Similar

upward trends are displayed for Sushiswap and Pancakeswap, which were deployed in

September 2020. Figure 2 reports trading volumes for the LOB-based exchanges in our

sample (Binance, Kraken, and Coinbase). Binance is the dominant exchange in terms

of volumes across the entire sample, rising from roughly 4 billion to 23 billion USD.
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Volumes on Coinbase and Kraken are comparable; both present a significant upward

trend. Figure 3 displays trading volumes for both the AMM- and LOB-based exchanges

in our sample, averaged across the three exchanges in each category. The average DEX

volume rises sharply by about two orders of magnitude within the sample period, while

the average CEX volume shows roughly a 10-fold increase in the same period. All in

all, the data show that trading volume has been increasing sharply for all the CEXs

and DEXs in our sample. Even though the DEX increase is significantly steeper, the

wedge within the two categories remains around one order of magnitude at the end of

our sample.

Table II presents the daily average trading volume in millions of USD over the January–

December 2021 period, which is the focus of our market quality analysis, for the pairs

we consider. These pairs provide a representative sample, as they generate roughly one

third of the volume on each exchange.

IV. Transaction Costs

One dimension of market quality is market liquidity; that is, the ease with which an

asset can be traded at a price close to its consensus value (Foucault et al., 2013). As a

proxy for market illiquidity, we employ the effective transaction costs associated with a

single trade, expressed as a percentage of the traded amount. These account for both

the price impact associated with a given trade size and any kind of commissions charged

by the protocol or the exchange. Due to their fundamentally different mechanics,

transaction costs on LOB and AMM markets are modeled using distinct methodologies.

A. Variables Definition

For LOB markets, we observe the full depth of ask and bid quotes present in the order

book at any point in time, so that the quoted half-spread associated with a market

order can be computed directly using the volume-weighted average price (VWAP).
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More specifically, we define the transaction price TXY for a sell order of size ∆x as

TXY (∆x) =

∑N
i=1 vipi
∆x

such that
N∑
i=1

vi = ∆x ,

where vi and pi represent the volume and the price of each filled limit order i. The

quoted half-spread for a sell order is thus given by

SXY (∆x) =
PXY − TXY (∆x)

PXY

, (3)

where PXY is the quoted mid-price.3 Finally, we define the transaction costs as the

sum of the quoted half-spread and the percentage transaction fees f charged by the

exchange:

TCXY (∆x) = SXY (∆x) + f, (4)

For AMM exchanges we also need to account for gas fees paid directly to miners that are

required to interact with a smart contract and record the transaction on the relevant

blockchain. The dollar value of those fees depends on the computational complex-

ity of the smart-contract function being used, the execution priority chosen by the

trader, and the prevailing gas price at the execution time. For our purposes, we are

interested in the gas fees required to execute a swap transaction; that is, invoking the

swapExactTokensForTokens function of the relevant router contract.4 We denote the

gas fees as g, expressed in units of the traded token X. The transaction costs on

AMM markets are computed as the sum of the quoted half-spread S defined in (2), the

percentage protocol fee f , and the gas fee g as a fraction of the trade size

TCXY (∆x) = SXY (∆x) + f +
g

∆x
. (5)

3For the sake of simplicity, we consider only sell orders. The half-spread can in principle be quantitatively
different for buy orders in an LOB-based market if the available liquidity is asymmetric around the mid-price.
Nevertheless, re-running the analysis using buy orders does not have a significant impact on our analysis.

4Depending on the nature of the token, the exact router function may be different. For instance, for tokens
featuring fee re-distribution like SafeMoon, the swapExactTokensForTokensSupportingFeeOnTransferTokens

function must be used. Nevertheless, the amount of gas required is not significantly different.
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The dollar value of gas prices on the Ethereum blockchain exhibit strong time series

variation, depending on both the dollar price of the native token (ETH) and the level

of network congestion. Figure 4 plots the evolution over time of the gas fees (in USD)

required to execute a swap transaction on Uniswap. For our empirical analysis, we

assume that the quantity of gas required to execute a swap transaction is constant

across all currency pairs at Γ = 110,000 gas units.5 We then approximate the gas cost

of a swap during each hour of our sample period, multiplying Γ by the average gas

price paid across all blocks verified during that hour. We compute TCXY in AMM and

LOB exchanges at the hourly frequency for the six pairs in our sample and for different

trade sizes (103, 104, 105, 106), expressed in USD.

B. Results

Figure 5 displays log levels of transaction costs for different trade sizes on the AMM-

based exchange Uniswap and the LOB-based exchanges Binance and Kraken. The

panel on the top left shows that Uniswap is extremely expensive for small-size trades,

with transaction costs at roughly 300 bps for all considered pairs. This finding does

not come as a surprise, since gas fees, on average, constitute a large percentage (3.2%)

of the traded amount. The panel on the top right shows that LOB-based exchanges

are also superior to Uniswap for mid-sized transactions of 10,000$. The situation de-

picted in the panel on the bottom left, for a more significant trade size of 100,000$, is

somewhat different. While Binance proves the most convenient choice for five out of

six pairs, Uniswap delivers lower transaction costs for the LINK-ETH pair. The panel

on the bottom right reinforces the finding, showing that Uniswap is competitive with

its centralized counterparts for the four pairs involving Ethereum. It is worth noticing

that Binance offers the lowest average transactions costs for all trade sizes, especially

for the pairs involving the stable coins USDT and USDC.

5We estimate 110,000 by collecting all swap transactions executed on the Uniswap v2 Router contract using
the latest 1,000 blocks, and taking their average gas usage. The variation across pairs is minimal for the pairs
we consider (± 10,000 gas units at most). This figure is significantly larger than the gas required by a simple
transfer function on a ERC20 contract, which costs around 10,000 gas units.
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V. Price Efficiency

Finite liquidity and transaction fees constitute frictions limiting arbitrage forces, al-

lowing deviations from efficient prices to persist and blurring the informativeness of

transaction prices. We explore deviations from the law of one price by focusing on

triangular arbitrage and relate it to liquidity levels. A triangular arbitrage opportunity

arises when the law of one price is violated for a closed triplet of currency pairs X/Y ,

Y/Z, and Z/X. A direct measure of the deviation from price efficiency in this context

is the deterministic function of liquidity levels θ, defined as

θ = PXY PY Z PZX − 1 , (6)

where PAB is the quoted price of A in units of B. A situation in which θ 6= 0 does not

necessarily imply the existence of an arbitrage opportunity, since an arbitrageur faces

price impact and transaction fees. The idea behind our definition of arbitrage bounds

is that, at each point in time, a triangular trade is profitable only if the deviation

from the efficient price is sufficiently large. In other words, the net expected profit

θ of a triangular trade has to be higher than the associated costs of executing the

three associated transactions. Assuming that arbitrage opportunities do not arise in

equilibrium, the observed price levels should never allow for such a triangular trade to

be profitable. We can thus derive a mathematical expression for arbitrage bounds by

imposing the no-arbitrage condition (in the spirit of Hautsch et al. (2018)).

We first define and compute the cumulative execution cost R(∆x) > 0 of a triangular

trade in a given triplet; that is, executing three transactions: X → Y, Y → Z, and

Z → X. Two components of such a cost, regardless of exchange type, are related to

the spread and the transaction fees. For AMM markets, we also have to consider a

third component, the gas fees, which are discussed below. The total quoted spread for
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a triangular trade on X, Y , and Z, is given by

SXY Z(∆x) = 1−
(

1− SXY (∆x)
)(

1− SY Z(∆y)
)(

1− SZX(∆z)
)
, (7)

where the input quantities for the second and third transaction are, respectively,

∆y = ∆x · TXY (∆x) and ∆z = ∆y · TY Z(∆y) .

Note that equation (7) is simply the sum of the three spreads – associated with each

transaction of the triangular trade – appropriately discounted ; that is, adjusted to

account for the fact that input amounts of the second and third trades are smaller than

∆x as a result of the spreads of the previous transactions. The total fees charged, as a

percentage of the initial amount ∆x, are

FXY Z(∆x) = f
(

1 + (1− SXY (∆x)) + (1− SXY (∆x) · (1− SY Z(∆y))
)
. (8)

Given the execution cost R(∆x), a triangular arbitrage is profitable if and only if

θ > R(∆x) or θ < −R(∆x) ,

and arbitrage bounds for that triplet are defined as θH , θL = ±R(∆x). Since the

level and the nature of transaction costs depends on the structure of the exchange, we

define empirical proxies for triangular arbitrage bounds separately for AMM and LOB

exchanges.

A. Arbitrage Bounds for LOB Markets

Arbitrage bounds on LOB markets depend on the quoted spreads, defined in (3) and

based on the available liquidity in the LOB, and the transaction fees charged by the

exchange. The total quoted spread and the total fees charged, as a percentage of the

17



initial amount ∆x, are defined as in (7) and (8), respectively. Thus, the execution cost

of a triangular trade of size ∆x is given by

R(∆x) = SXY Z(∆x) + FXY Z(∆x). (9)

Note that the fact that we use the best quoted spread implies that the trade size

∆x is infinitesimal. This choice is based on the assumption that, in the absence of

fixed transaction costs, arbitrageurs are also willing to perform arbitrage trades with

infinitely small dollar amounts, thus minimizing their price impact. Hence, the lower

and upper arbitrage bounds for θ are given by

.θH , θL = ±
(
SXY Z(∆x) + FXY Z(∆x)

)
. (10)

B. Arbitrage bounds for AMM markets

Arbitrage bounds on AMM markets depend on (i) the quoted spread S, defined in (2)

and based on the liquidity available in the three pools; (ii) the protocol fees f charged

by the exchange; (iii) the gas fees g associated with the interaction with the underlying

blockchain (Ethereum MainNet, in the case of Uniswap). The total quoted spread

and the total fees charged, as a percentage of the initial amount ∆x, are defined as in

(7) and (8), respectively. The total gas fees are simply the gas fee for a single swap

multiplied by the factor 3. Thus, the total execution cost can be described as (see

Appendix B for more details)

R(∆x) = SXY Z(∆x) + FXY Z(∆x) + 3g/∆x. (11)

As in models with entry costs, arbitrageurs face a trade-off between the cost of gas

fees and the price impact. The former is reduced (in %) by increasing ∆x, while

the latter increases with ∆x. Assuming rationality, they choose the optimal trade

size ∆x? for which the cost R(∆x) is minimized. We solve the optimization problem
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numerically, finding the optimal ∆x? for each situation in our panel. We then compute

the percentage loss by making such an optimal trade; that is, R(∆x?). Hence, the lower

and upper arbitrage bounds for θ are given by

θH , θL = ±
(
SXY Z(∆x?) + FXY Z(∆x?) + 3g/∆x?

)
. (12)

C. Arbitrage Bounds and Price Efficiency

The width of the region between the above defined arbitrage bounds can be thought

of as a proxy for the severity of price inefficiencies. More precisely, we consider the

half-width, computed as

B =
θH − θL

2
. (13)

Wider bounds for a given triplet imply that the relative prices deviate more from the

efficient ones before arbitrageurs can make a profitable arbitrage trade and push the

prices closer to the efficient levels. We construct bounds at the daily frequency for the

six triplets in our sample, separately for each exchange. We then compare the bounds

to the realized price deviations θ at the hourly frequency and find that the quoted

prices are within the bounds for the vast majority of the observations, thus validating

the empirical relevance of our proxy. Graphical representations of the resulting bounds

for the triple USDC-USDT-ETH are provided in Figures 7, 8, and 9.

D. Results

We estimate arbitrage bounds at the hourly frequency for the five triplets in our sample

and then take the average over the period from January 2021 to December 2021. The

calculation is based on (10) for the LOB-based Binance and Kraken and on (12) for the

AMM-based Uniswap. Figure 6 presents the results, displaying the log-levels of price

inefficiency for each triplet, as proxied by the size of arbitrage bounds defined in (13).

It is evident that the AMM-based Uniswap is far less price-efficient than its centralized
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counterparts. For the most liquid triplets (ETH-USDC-USDT and BTC-ETH-USDC),

the width of Uniswap’s arbitrage bounds is below 200 bps, while for the less liquid ones

it rises above 1,000 bps. These estimates are much higher than those for CEXs, which

are lower than 100 bps for almost all the considered triplets. Binance was particularly

dominant in terms of price efficiency, with bounds ranging from 30 to 50 bps.

The first reason for such a significant discrepancy between AMM- and LOB-based

exchanges is transaction fees. The protocol fees of 30 bps charged by Uniswap are

higher than those charged by CEXs (10 bps for Binance and for 26 bps for Kraken). As

triangular arbitrages require three transactions, these wedges become a more significant

determinant of the net profitability of the trade.

The second – and quantitatively most important – cause of such a low level of price

efficiency enjoyed by Uniswap is related to the high level of the gas fees required to

compensate miners on the Ethereum blockchain. To make up for such a significant

fixed cost, triangular arbitrage on ETH-based AMM markets requires trading sizeable

amounts in dollar terms. This, in turn, means that arbitrageurs have to bear significant

trading costs arising from their temporary price impact. Such a limit to arbitrage

is a direct consequence of proof of work; that is, the cryptographic zero-knowledge

proof currently employed by the Ethereum network. Miners have to cover the costs

of expensive hardware and significant energy consumption and thus require high gas

prices in equilibrium.

On the contrary, no fixed costs are charged on CEXs, since transactions are recorded

in their internal databases rather than on the blockchain. This allows arbitrageurs

to exploit triangular arbitrage opportunities by transacting even infinitesimally small

amounts. In fact, arbitrage bounds are only slightly larger than transaction fees mul-

tiplied by the factor 3, suggesting that trading costs arising from quoted spreads are

not as relevant.
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VI. Conditions for DEX Supremacy

In this section, we present a simple theoretical model of liquidity provision on AMM

markets, highlighting the main economic trade-off faced by LPs. Solving the model

gives rise to a rational linkage between the level of liquidity available in the pools, the

fees charged by the protocol, and the total trading volume by market participants. We

show that the derived relationship holds strongly in the data. This result allows us

to pin down the quantitative conditions of the required growth rate of future trading

volume to make Uniswap competitive with CEX in terms of market quality.

A. Equilibrium Liquidity

We model a representative LP who faces the problem of providing the optimal quantity

to the exchange pair X/Y . We assume the LP is risk-neutral and that the market is

perfectly competitive, as in Kyle (1985) and Glosten and Milgrom (1985). At time t = 1

the total liquidity in the pools is equal to x, and the LP can add or remove liquidity.

At time t > 1, users start to trade on the pair until the trading stops at t = 2. Let

the random variables V denote the total traded volume (in units of X) and ∆P denote

the gross percentage change in the quoted price PXY , respectively, between t = 1 and

t = 2. The profits and losses of the LP depend on two factors. On the one hand, LPs

are compensated by pocketing transactions fees applied to traded amounts. On the

other hand, a permanent price change leads to an IL for the LP. The IL arises from

the fact that providing funds to a liquidity pool is less profitable relative to holding

the tokens (Loesch et al., 2021). The resulting IL is given by (see Appendix A for a

mathematical derivation)

IL = 2

√
∆P

∆P + 1
− 1 < 0.

It is important to note that IL measures the level of adverse selection faced by LPs,

similar to that faced by market makers in LOB markets. In fact, IL = 0 if the order
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flow is uninformed and gives rise to only a temporary price impact (∆P = 1), while it

increases in magnitude in presence of informed order flow, causing a permanent price

change (∆P 6= 1).

Let E[V ] denote the expected volume and E[IL] the expected IL, both known at time

t = 0. The net expected percentage return E[R] from providing an amount x of liquidity

is equal to

E[R] =
f

x
E[V ] + E[IL]

. The assumption of perfect competition results in zero expected returns for the LP,

hence the equilibrium level of liquidity is

x = −f E[V ]

E[IL]
, (14)

and we should observe the above relationship for which the provided liquidity increases

with the expected trading volume and (percentage) protocol fees remunerating the LP,

while it decreases with the IL risk. The equilibrium condition (14) has a clear economic

interpretation that is conceptually related to standard microstructure models featuring

market makers. First, the level of liquidity x provided by the LP determines the quoted

spread available to traders, as in (2). Second, as noted above, the expected IL can be

thought as a proxy for the level of adverse selection risk faced by the LP. Thus (14)

simply says that spreads are increasing in the level of adverse selection; in other words,

LPs require a compensation for the losses caused by informed trading.

We use daily liquidity data to test the predictions of our model, proxying for E[V ]

with the rolling average of daily traded volume and for E[IL] with the rolling average

of the daily IL, estimated over the previous two weeks. We regress daily log values

of empirically observed liquidity on the ones predicted with (14), for 100 exchange

pairs over the period from May 2020 to March 2022. Results are reported in Table IV

and Figure 10, showing a highly significant positive correlation between predicted and

observed liquidity levels, with a remarkable R2 coefficient equal to 87.59%. The results
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are robust to the inclusion of pair and time fixed effects.

B. Supremacy Conditions

Re-arranging equation 14, we can link trading volume to liquidity and protocol fees as

E[V ] =
−E[IL]x

f
∝ x

f
. (15)

In particular, the equation implies that an exogenous increase in trading volume should

lead to an increase in equilibrium liquidity x, a decrease in fees f (if allowed by the

protocol), or a combination of the two. This makes intuitive sense; since higher trading

volume corresponds to more fees proceedings pocketed by LPs, their incentive to provide

liquidity would still be positive after a decrease in f (thus reducing the proceedings

to the previous equilibrium level) or an increase in x (reducing the expected returns

per addition units of liquidity provided). We can thus use the above relationship to

derive conditions on the time-series dynamics of trading volume under which Uniswap

would become as good as Binance in terms of transaction costs and price efficiency.

In particular, we focus on scenarios for which the expected increase in trading volume

on DEXs from 3 to 600 times with respect to the trading volume consistent with the

growth rate as during the last period of our sample. Following our model, a given

increase ∆V in volume gives rise to a decrease in fees f , an increase of liquidity x, or

a combination thereof. Moreover, we include three possible values for the dollar value

of gas fees g, which is exogenous to the other parameters because it is determined by

technological evolution.

C. Results

Table VI presents predicted levels of transaction costs for each parameters combina-

tion. More precisely, hypothetical transactions costs for a 10,000$ transaction executed

through Uniswap are reported, expressed in bps. The current situation is represented
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by the last row, with fees equal to 30 bps and unitary gas and liquidity multipliers.

The third row from the bottom, which assumes a reduction of gas fees by a factor 500,

shows that transaction costs are roughly halved for most of the pairs. This assumption

seems reasonable in the context of Ethereum 2.0 adoption.6 This result quantifies the

fact that the currently high level of gas fees represents a significant friction for DEX

efficiency. As shown in Figure 12, such a reduction in transaction costs would lead to

a situation in which Uniswap is strictly dominated by Binance, but only partially by

Kraken. Our second scenario (B) is depicted in Figure 13 and assumes, in addition to

low gas fees, a six-fold increase in volume leading to a six-fold reduction in protocol

fees to 5 bps, which is a viable assumption in the context of Uniswap v3.7 Under these

assumptions, Uniswap would be highly competitive with CEXs, offering significantly

lower transaction costs with respect to Binance and Kraken for the majority of pairs.

Figure 14 presents scenario C, assuming a more sizeable 30-fold increase in trading

volume, resulting in a three-fold reduction in protocol fees to 10 bps and a 10-fold

increase in pool liquidity. The results show that Uniswap would offer roughly the same

level of transaction costs as Binance for most of the pairs. This corroborates one of our

previous main findings; that is, the most important friction undermining DEXs arises

from high levels of protocol fees rather than low levels of liquidity. All in all, given an

increase in trading volume, it would thus be preferable to reduce fees (as in scenario

B) versus attracting more LPs. Our conclusion applies to the trade size we consider in

this analysis (10,000$), but it would likely differ for larger transactions. For those, an

increase in available liquidity could provide more benefits to traders with respect to a

reduction in the protocol fees.

6The introduction of Ethereum 2.0, with ZK Rollups and data sharding implemented, is expected to allow
for around 10 million transaction per seconds, while the current Ethereum network only supports around 20.
In equilibrium, therefore, the gas price is expected to deflate by a factor of 500,000. However, it is fair to
expect that the number of active wallets and transactions in the network would also grow significantly at
that point, thus positively impacting the gas price. Assuming – as an upper bound – a 1,000-fold increase in
network activity, we thus get to an effective reduction in the gas price by a factor of 500.

7We chose 5 bps since it is one of the possible values that market participants can select on Uniswap v3.
This new version of the exchange, introduced in late 2021, allows LPs to choose among three distinct liquidity
pools for the same exchange pair, featuring 5, 30, and 100 bps. This new feature effectively allow LPs to
exploit the trade-off highlighted in our model, lowering their required fees to attract or respond to an increase
in trading volume.

24



Moving to price efficiency, the results are reported in Table VII, which presents pre-

dictions on the degree of price inefficiency for each scenario. More precisely, the table

presents the size of arbitrage bounds for each exchange triplet, computed as in (13).

These are based on (10) for the LOB-based Binance and Kraken and on (12) for the

AMM-based Uniswap. The current situation is represented by the last row, with fees

equal to 30 bps and trivial gas and liquidity multipliers. The third row from the

bottom, which assumes a reduction in gas fees by a factor of 500, shows that price

efficiency increases significantly for all triplets. Lower gas fees for USDC-USDT-ETH

and USDC-BTC-ETH result in a 30% increase in efficiency, while the benefits for the

other triplets are greater than 80%. This heterogeneous effect of gas fees depends on

the diverse size of optimal triangular trades. Since the first two triplets enjoy higher

liquidity, the optimal trade size is larger, reducing the impact of gas fees – a fixed cost

– on the profitability of potential triangular arbitrages.

Overall, these results highlight the fact that high levels of gas fees represent a significant

friction for price efficiency on DEXs and that this effect is more important for triplets

involving low-liquidity pairs. As shown in Figure 16, such an improvement in price

efficiency would lead to a situation in which Uniswap is still dominated by CEXs. The

second scenario (B) is depicted in Figure 17 and assumes, on top of low gas fees, a

six-fold increase in volume leading to a six-fold reduction in protocol fees to 5 bps.

The plot shows how, under these assumptions, Uniswap would offer more efficient

prices with respect to Kraken but would still be dominated by Binance for most of

the triplets. Figure 18 presents scenario C, assuming a more sizeable 30-fold increase

in trading volume, resulting in a three-fold reduction in protocol fees to 10 bps and a

10-fold increase in pool liquidity. Under these assumptions, benefits for Uniswap price

efficiency are larger for less liquid triplets, while they are reduced for the most liquid

ones. This suggests that price efficiency on DEXs may be limited by both high protocol

fees and by low liquidity, depending on which friction is more pronounced for the pairs

composing the triplets.
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VII. Transaction Cost Determinants

In equation (5), we showed that the DEX transaction cost is the sum of three compo-

nents: the quoted half-spread, the percentage protocol fee, and the gas fee as a fraction

of the trade size. In addition, we found that the dollar value of gas prices exhibits strong

time series variation. The natural question that arises is how the bid-ask spread and

gas costs impact transaction costs (while the protocol fee is exogenously fixed). This

question is particularly relevant for market participants who want to predict transac-

tion costs. To shed more light on this issue, we analyze the degree of predictability of

effective transaction costs on Binance and Uniswap, focusing on the marginal impact

of gas prices on the latter. We build two simple proxies for the stability of transaction

costs offered by cryptocurrency exchanges, based on the performance of a linear fore-

casting model. These measures can also be interpreted as the degree of predictability

in transaction costs; that is, the ability of market participants to forecast the effective

cost of trading, conditional on the current level of transaction costs. First, we compute

the one-lag auto-correlation coefficient ρ of transaction costs associated with a 10,000

$ trade, for every exchange-pair couple. Second, we run for each exchange and each

pair the following time series regression at the hourly frequency:

TC(t) = α + β TC(t− 1) + ε(t)

. For Uniswap, we repeat the exercise and impose a time-invariant gas price equal to

the sample average. Figure 19 plots the cross-pair average ρ and average R2 for each

exchange, including the synthetic Uniswap with a fixed gas price (purple bar) and a

gas price that changes over time (pink bar). These results clearly show that Uniswap

and Binance enjoy a very similar level of stability in transaction costs, while Kraken is

less auto-correlated. More importantly, once the time series variation is removed due

to fluctuating gas prices, we observe almost perfect predictability of transaction costs

on Uniswap. Three considerations emerge from this simple analysis: First, transaction
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costs are largely but not completely predictable on both CEXs and DEXs. Second, their

degree of prediction is very similar; failure to consider gas costs leads to the erroneous

conclusion that transaction costs and liquidity in general are fully predictable and more

stable than on CEXs. Third, this result confirms the importance of considering gas

costs, especially when studying DEX market quality. It also generalizes the findings

of Lehar and Parlour (2021), who showed that the liquidity provision on Uniswap

is extremely stable but did not account for gas costs. We conclude our analysis by

examining whether gas fees can also affect transaction costs in CEX markets. This is

an interesting question since, as shown in equation (5), the CEX transaction cost is

determined only by the quoted half-spread and the percentage transaction fees. On the

other hand, gas levels may capture the aggregate demand for immediacy in the overall

cryptocurrency market. For instance, in the presence of new fundamental information,

market participants rush into trading and have incentives to pay higher gas prices

to gain priority of execution. In LOB markets, new information is associated with

widening bid/ask spreads and thus increased transaction costs (Glosten and Milgrom,

1985). If gas prices proxy for new information, they should therefore also exhibit

positive time series correlations with CEX spreads and not only with DEX spreads.

To test our hypothesis, we run an hourly frequency regression of transaction costs of

Binance on hourly levels of gas prices. Table V shows that transaction costs in Binance

are indeed positively related to Ethereum gas prices, thus providing suggestive evidence

that the latter proxy for overall demand for immediacy. Future research can study the

mechanisms that determine gas costs more thoroughly and how they determine the

supply of and demand for liquidity.

VIII. Conclusion

Our analysis of the market quality of cryptocurrency exchanges highlights a number of

important conclusions on the weaknesses and future potential of decentralized venues

based on automated market making. First of all, the data shows that Uniswap and the
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other prevalent DEXs experienced a steep rise in adoption and trading volume during

the last year, accompanied by a significant increase in available liquidity. Second, we

provide evidence showing that DEXs are not yet of sufficient quality to compete with

the largest CEXs regarding transaction costs and price efficiency. These two facts

can be reconciled by the observation that DEXs provide a number of advantages over

CEXs, especially in terms of security, censorship resistance, and accessibility. It is thus

reasonable to speculate that end users value these features and are willing to pay a

premium by using decentralized rather than centralized venues.

We highlight multiple factors determining the degree of market quality of DEXs, in-

cluding the amounts of capital staked in liquidity pools and the level of transaction fees

charged by the platform. Nevertheless, high levels of gas fees required by proof-of-work

blockchains constitute the most significant friction harming the market quality of DEXs.

Price efficiency is particularly harmed since large amounts of capital are required to

make arbitrage trades profitable despite the fixed cost associated with transactions.

This is particularly relevant for triangular price deviations, which require three distinct

transactions to be executed. While high gas prices are not the main determinant of

transaction costs for small trades, those involving large amounts are less impacted by

gas fees in percentage terms.

Our equilibrium model of liquidity provision in DEXs clarifies the risk-return trade-

off faced by LPs, based on IL and the expected profits from trading fees. As the

former depends only on the relative volatility of the exchange pair while the latter is

decreasing in the total pool size, our theory implies an optimal level of stacked liquidity

in equilibrium. We show that such a stylized model explains most of the empirical

variation of liquidity levels in the cross-section of exchange pairs and over time.

The insights provided by our theoretical model allow us to link hypothetical levels of

trading volume to the implied amount of stacked liquidity and trading fees required by

LPs in equilibrium. We analyze a number of future scenarios based on realistic assump-

tions for future levels of trading volume routed through DEXs, concluding that they
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could soon become as efficient as CEXs under relatively modest increases in volume,

provided that gas costs decline thanks to new proof-of-stake blockchains. We argue

that, given the positive outlook toward a future improvement in efficiency and the val-

ued utility in terms of security and censorship resistance, DEXs based on AMM could

soon offer a competitive alternative to CEXs. More broadly, the innovative market

structure of decentralized crypto exchanges could be applied to other asset classes in

the future.
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Appendix

A. LP Returns and IL

Assume an LP owns a share s of a liquidity pool containing tokens x and y at time t = 0 and

the current price is P0 = y0
x0

. At time t = 0, the value of her position in a unit of y is

s(x0P0 + y0) = 2sy0

. At time t = 1, the value of her position in a unit of y changes to s(x1P1 + y1) = 2sy1. The

liquidity provision return can be expressed as

RLP =
2sy1
2sy0

=
y1
y0

. Given the constant product rule xy = k, we can rewrite the market price P0 as

P0 =
y20
k

⇒ y0 =
√
kP0

. Similarly, at t = 1, the value in a unit of the LP position is

y1 =
√
kP1

. Hence, the LP return depends solely on the price change between t = 0 and t = 1:

RLP =
y1
y0

=

√
kP1√
kP0

=
√

∆P

. The return RH from holding the tokens is

RH =
1

2
(∆P + 1)

. The IL from providing liquidity instead of holding on the tokens is therefore

IL =
RLP

RH
− 1 = 2

√
∆P

∆P + 1
− 1

. Thus, the maximal IL is 0 when there is no price change (∆P = 1); otherwise IL ≤ 0.
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B. Arbitrage bound on AMMs

To derive the expression for the price impact ρ, notice that market price and effective trans-

action price are given by

PXY =
y

x
and TXY =

x

x+ (1− f)∆x

. We define the price impact ρX as follows:

ρX = 1− SXY = 1− ∆x

x+ (1− f)∆x
=

x

x+ (1− f)∆x

As the transaction price can be expressed using the price impact and market price, we rewrite

the output amount from the first trade as follows:

∆y =
(1− f)∆xy

x+ (1− f)∆x
= (1− f)ρXPXY ∆x

Using the previous expression, we can express ρY as a function of ∆x:

ρY =
y

y + (1− f)∆y
=

y

y + (1− f)2ρXPXY ∆x
.

Similarly, for ρZ ,

ρZ =
z

z + (1− f)∆z
=

z

z + (1− f)3ρXρY PXY PY Z∆x
.

The cumulative price impact and total spread are given by ρ = ρXρY ρZ and SXY Z = 1− ρ.

Using the previously defined price impact, we define the total platform fees charged as

FXY Z(∆x) = f(1 + ρX(1− f) + ρXρY (1− f)2).

Notice that the fact that the trade sizes for the second and third trades decrease due to the

price impact and previous platform fees charged.

Therefore, we can represent the cost of an triangular trade R(∆x) as follows:

R(∆x) = SXY Z(∆x)+FXY Z(∆x)+3g/∆x) = 1−ρ+f(1+ρX(1−f)+ρXρY (1−f)2)+3g/∆x.

Based on the cost of the triangular trade, we can express the arbitrage bounds

θH , θL = ±
(
ρ− 1− f(1 + ρX(1− f) + ρXρY (1− f)2)− 3g/∆x

)
.
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Tables and Figures

Table I. Liquidity pools. The table reports summary statistics on the liquidity pools underlying
the 1,000 most liquid exchange pairs in our sample. We report the total value of liquidity in USD, the
number of swap transactions, and the time since the pool was initiated in days.

N Mean Std 1% 10% 50% 90% 99%

Liquidity (Million USD) 1000 6.71 41.52 0.01 0.03 0.99 8.32 114.54
Transactions (thousands) 1000 37.54 121.69 7.24 8.28 18.13 62.77 238.35
Age (days) 1000 193.05 96.03 2.33 47.04 204.09 333.69 347.26

Table II. Trading volume per pair. The table reports the daily average trading volume in million
USD over the January–December 2021 period for each pair in our sample. The percentage of the
aggregate volume represented by these pairs on each exchange is reported below. For pairs involving
USDC on Kraken, we report the volume for the corresponding pair based on USD, since volumes in
USDC-based pairs are close to zero.

Pair Binance Kraken Uniswap

ETH-USDC 60.39 202.87 120.9
ETH-USDT 2223.72 11.39 114.58
ETH-BTC 538.05 33.43 36.16
LINK-ETH 9.65 0.78 14.1
USDC-USDT 156.27 0.0 5.61
BTC-USDC 119.36 257.39 2.17

Fraction of Total Volume 24.71% 30.45% 29.15%

Table III. Impermanent loss. The table shows summary statistics of daily impermanent loss
for 100 pairs traded on Uniswap over the period between May 2020 and March 2022, aggregated at
different levels.

Level N Mean Std 1% 10% 50% 90% 99%

Pair-Day 42,299 -0.00162 0.01254 -0.02180 -0.00239 -0.00013 -0.00000 -0.00000
Pair 100 -0.00210 0.00291 -0.01383 -0.00428 -0.00135 -0.00019 -0.00000
Day 351 -0.00201 0.00324 -0.01752 -0.00435 -0.00107 -0.00042 -0.00012
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Table IV. Model fit. The table reports results from a panel regression of observed liquidity levels
in logs onto log liquidity levels predicted by our model and computed as in (14). Both the dependent
and independent variables are computed at the pair-day level for 100 exchange pairs over the period
from May 2020 to March 2022. We saturate the regression model with day and pair fixed effects.
T-stats are reported in parentheses, based on robust standard errors double-clustered at the pair and
day levels. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable Log(Liquidity) Log(Liquidity) Log(Liquidity) Log(Liquidity)

Log(Predicted Liquidity) 0.88*** 0.56*** 0.89*** 0.53***
(37.97) (9.46) (39.39) (9.27)

Constant 5.92***
(21.71)

Observations 42,299 42,299 42,299 42,299
R-squared 0.88 0.46 0.89 0.41
Pair Fixed Effects - Yes - Yes
Date Fixed Effects - - Yes Yes
Ses Clustered By Pair-Date Pair-Date Pair-Date Pair-Date

Table V. Binance transaction costs and gas prices. The table reports results on hourly time
series regression of transaction costs on Binance (averaged across pairs) on the average price of gas
from Ethereum blocks validated during the same hour. We saturate the regression model with day
fixed effects. T-stats are reported in parentheses, based on robust standard errors. Asterisks denote
significance levels (***= 1%, **= 5%, *= 10%).

(1) (2)

Dependent Variable Binance TCs Binance TCs

Constant 12.38*** 12.39***
(115.81) (91.12)

Gas Price 0.01*** 0.01***
(6.39) (5.177)

Observations 6,802 6,802
R-squared 0.15 0.83
Date Fixed Effects - Yes
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Table VI. Uniswap hypothetical transaction costs. The table displays hypothetical transactions
costs for a 10,000$ transaction executed through Uniswap, expressed in bps. They are computed as in
(5), first at the hourly frequency and then averaged over the period from January 2021 to December
2021 for different gas fee reduction factors (Gas), platform fees (Fees, in bps), and liquidity multipliers
(Liq). Each row represents a potential future scenario requiring an increase in trading volume, as
predicted by our model, equal to ∆V .

BTC BTC ETH LINK USDC USDC
Fees Liq Gas ∆V ETH USDC USDT ETH ETH USDT

5 100 500 600 5.06 5.59 5.06 5.08 5.06 5.09
5 100 10 600 7.68 8.21 7.68 7.70 7.68 7.71
5 100 1 600 31.73 32.25 31.73 31.75 31.73 31.75
5 10 500 60 5.16 10.42 5.15 5.36 5.13 5.40
5 10 10 60 7.78 13.03 7.76 7.98 7.75 8.02
5 10 1 60 31.82 37.08 31.81 32.02 31.80 32.06
5 1 500 6 6.09 58.34 5.98 8.09 5.83 8.53
5 1 10 6 8.71 60.96 8.60 10.71 8.45 11.15
5 1 1 6 32.75 85.00 32.65 34.75 32.49 35.19

10 100 500 300 10.06 10.59 10.06 10.08 10.06 10.09
10 100 10 300 12.68 13.21 12.68 12.70 12.68 12.71
10 100 1 300 36.73 37.25 36.73 36.75 36.73 36.75
10 10 500 30 10.16 15.41 10.15 10.36 10.13 10.40
10 10 10 30 12.78 18.03 12.76 12.98 12.75 13.02
10 10 1 30 36.82 42.07 36.81 37.02 36.80 37.06
10 1 500 3 11.09 63.31 10.98 13.09 10.83 13.53
10 1 10 3 13.71 65.93 13.60 15.71 13.45 16.14
10 1 1 3 37.75 89.98 37.64 39.75 37.49 40.19
30 100 500 100 30.06 30.59 30.06 30.08 30.06 30.09
30 100 10 100 32.68 33.21 32.68 32.70 32.68 32.71
30 100 1 100 56.73 57.25 56.73 56.75 56.73 56.75
30 10 500 10 30.16 35.40 30.15 30.36 30.13 30.40
30 10 10 10 32.77 38.02 32.76 32.97 32.75 33.02
30 10 1 10 56.82 62.06 56.81 57.02 56.79 57.06
30 1 500 1 31.09 83.21 30.98 33.08 30.83 33.52
30 1 10 1 33.70 85.83 33.60 35.70 33.45 36.14
30 1 1 1 57.75 109.87 57.64 59.74 57.49 60.18
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Table VII. Uniswap hypothetical price inefficiency. The table displays hypothetical levels of
price inefficiency on the Uniswap exchange, expressed in bps. They are estimated as in (12), first at
the hourly frequency and then averaged over the period from January 2021 to December 2021, for
different gas fee reduction factors (Gas), platform fees (Fees, in bps), and liquidity multipliers (Liq).
Each row represents a potential future scenario requiring an increase in trading volume, as predicted
by our model, equal to ∆V .

USDC USDC USDT LINK USDC
USDT BTC BTC USDT USDT

Fees Liq Gas ∆V ETH ETH ETH ETH BTC

5 100 500 600 15.23 15.51 19.72 18.72 19.76
5 100 10 600 16.72 18.68 48.38 41.33 48.69
5 100 1 600 20.46 26.67 120.27 98.14 121.25
5 10 500 60 15.56 16.64 29.93 26.78 30.07
5 10 10 60 19.06 26.67 120.27 98.14 121.23
5 10 1 60 27.69 51.88 344.97 276.52 347.97
5 1 500 6 16.69 20.21 62.18 52.23 62.61
5 1 10 6 26.97 51.88 344.97 276.52 347.97
5 1 1 6 52.86 131.35 1029.11 827.75 1038.35

10 100 500 300 30.21 30.49 34.69 33.69 34.74
10 100 10 300 31.69 33.66 63.33 56.29 63.64
10 100 1 300 35.41 41.63 135.17 113.06 136.14
10 10 500 30 30.54 31.62 44.90 41.75 45.04
10 10 10 30 33.99 41.63 135.17 113.06 136.13
10 10 1 30 42.77 66.83 359.70 291.30 362.71
10 1 500 3 31.66 35.19 77.12 67.18 77.55
10 1 10 3 41.94 66.83 359.70 291.30 362.71
10 1 1 3 67.82 146.24 1043.31 842.11 1052.60
30 100 500 100 89.97 90.25 94.44 93.44 94.48
30 100 10 100 91.47 93.41 122.99 115.97 123.30
30 100 1 100 95.12 101.36 194.61 172.57 195.60
30 10 500 10 90.30 91.38 104.61 101.47 104.75
30 10 10 10 93.75 101.36 194.61 172.57 195.57
30 10 1 10 102.37 126.48 418.47 350.27 421.48
30 1 500 1 91.42 94.93 136.74 126.83 137.17
30 1 10 1 101.67 126.48 418.47 350.27 421.48
30 1 1 1 127.45 205.65 1100.00 899.42 1109.41
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Figure 1. DEX volume. The figure presents traded volumes for the AMM-based exchanges in
our sample; namely, Uniswap, PancakeSwap, and SushiSwap, for the period from August 2020 to
December 2021. The displayed traded volumes are the sum of the volumes for all trading pairs listed
on each exchange. The vertical axis uses log-scale and is reported in million USD.
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Figure 2. CEX volume. The figure presents traded volumes for the LOB-based exchanges in our
sample; namely, Binance, Kraken, and Coinbase, for the period from August 2020 to December 2021.
The displayed traded volumes are the sum of the volumes for all trading pairs listed on each exchange.
The vertical axis uses log-scale and is reported in million USD.
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Figure 3. CEX VS DEX volumes. The figure presents traded volumes for both the AMM-based
and LOB-based exchanges in our sample, averaged across the three exchanges in each category, for
the period from August 2020 to December 2021. The displayed traded volumes are the sum of the
volumes for all trading pairs listed on each exchange. The vertical axis uses log-scale and is reported
in billion USD.
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Figure 4. Gas fees. The figure presents the time series evolution of the gas costs of a swap
transaction in our sample, in USD. This is computed at the hourly frequency, multiplying the units
of gas required to execute a swap – roughly 110,000 – by the average gas price (in USD) associated
with transactions in the blocks validated during each hour. Since the number of gas units is constant
over time, the time series variation comes from oscillating gas prices in ETH and the fluctuation of
the USD/ETH exchange rate.
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Figure 5. Transaction costs. The figure presents transaction costs, computed as in (4) for the
LOB-based Binance and Kraken and on (5) for the AMM-based Uniswap. These are computed at the
hourly frequency for the six pairs in our sample and for different trade sizes (103, 104, 105, and 106 US
dollars), then averaged over the period from January 2021 to December 2021. The vertical axis is in
log-scale and reported in bps.
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Figure 6. Price inefficiency. The figure presents price inefficiency levels, proxied by the size
of arbitrage bounds computed as in (13). These are based on (10) for the LOB-based Binance and
Kraken and on (12) for the AMM-based Uniswap. They are estimated at the hourly frequency for the
five triplets in our sample, then averaged over the period from January 2021 to December 2021. The
vertical axis is in log-scale and reported in bps.
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Figure 7. Arbitrage bounds. The figure presents the arbitrage bounds and θ the deviations from
the law of one price for the triplet USDC-USDT-ETH on the LOB-based Kraken over the period from
January 2021 to December 2021. Arbitrage bounds are computed as in (10) on a daily basis using
an infinitesimal trade size ∆x and assuming a transaction fee of 10 bps, which is provided to users
whose 30-day trading volume is above 1,0000 BTC (equivalent to around 300 million USD at the time
of writing). Triangular price deviations θ based on (6) are computed at an hourly frequency.
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Figure 8. Arbitrage bounds. The figure presents the arbitrage bounds and θ the deviations from
the law of one price for the triplet USDC-USDT-ETH on the LOB-based Binance over the period from
January 2021 to December 2021. Arbitrage bounds are computed as in (10) on a daily basis using
an infinitesimal trade size ∆x, assuming some Binance users are able to trade without incurring the
transaction fee (i.e., zero bps). Triangular price deviations θ based on (6) are computed at an hourly
frequency.
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Figure 9. Arbitrage bounds. The figure presents the arbitrage bounds and θ the deviations from
the law of one price for the triplet USDC-USDT-ETH on the AMM exchange Uniswap over the period
from January 2021 to December 2021. Arbitrage bounds are computed as in (12) on a daily basis
using an optimal trade size ∆x. Triangular price deviations θ based on (6) are computed at an hourly
frequency.
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Figure 10. Model fit. The figure presents a scatter plot of observed levels of liquidity (y-axis) and
those predicted by our model and computed as in (14) (x-axis), based on 42, 299 daily observations of
100 exchange pairs quoted in the AMM-based Uniswap over the period from May 2020 to March 2022.
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Figure 11. Transaction costs – Reality. The figure presents transaction costs for a traded
amount of 10,000$, for the six pairs in our sample. These are computed as in (4) for the LOB-based
Binance and Kraken and on (5) for the AMM-based Uniswap.

ETH-USDC ETH-USDT ETH-BTC LINK-ETH USDC-USDT BTC-USDC
Pair

10

20

30

40

50

60

70

80

90

Tr
an

sa
ct

io
n 

Co
st

s (
bp

s)

 1/500 Gas Fees on Uniswap ( V = 1)
Binance
Kraken
Uniswap

Figure 12. Transaction costs – Scenario A. The figure presents transaction costs for a traded
amount of 10,000$, averaged over the period from January 2021 to December 2021, for the six pairs
in our sample. These are computed as in (4) for the LOB-based Binance and Kraken and on (5) for
the AMM-based Uniswap, assuming a hypothetical scenario in which the gas fee required to execute
a swap transaction is reduced by a factor of 500. Such a scenario could materialize in 2022, when
the proof-of-stake version of Ethereum (Ethereum 2.0) is expected to be deployed. The remaining
parameters (liquidity and protocol fees) reflect the empirical values recorded over the period from
January 2021 to December 2021.
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Figure 13. Transaction costs – Scenario B. The figure presents transaction costs for a traded
amount of 10,000$, averaged over the period from January 2021 to December 2021, for the six pairs
in our sample. These are computed as in (4) for the LOB-based Binance and Kraken and on (5) for
the AMM-based Uniswap, assuming a hypothetical scenario in which the gas fee required to execute
a swap transaction is reduced by a factor of 500 and the protocol fees of Uniswap are reduced to 5
bps. According to our equilibrium model, such a scenario could materialize if trading volume increases
six-fold relative to the levels recorded in January and December 2021. Further, the low level of gas fees
could become possible after the proof-of-stake version of Ethereum (Ethereum 2.0) is deployed, which
is expected to occur in 2022. Protocol fees are assumed to be unchanged and reflect the empirical
values recorded over the period from January 2021 to December 2021.
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Figure 14. Transaction costs – Scenario C. The figure presents transaction costs for a traded
amount of 10,000$, averaged over the period from January 2021 to December 2021, for the six pairs
in our sample. These are computed as in (4) for the LOB-based Binance and Kraken and on (5) for
the AMM-based Uniswap, assuming a hypothetical scenario in which the gas fee required to execute
a swap transaction is reduced by a factor of 500, reserves staked in Uniswap’s liquidity pools enjoy a
10-fold increase, and protocol fees are reduced to 10 bps. According to our equilibrium model, such a
scenario could materialize if trading volume increases 30-fold relative to the levels recorded in January
and December 2021. Further, the low level of gas fees could become possible after the proof-of-stake
version of Ethereum (Ethereum 2.0) is deployed, which is expected to occur in 2022. Protocol fees are
assumed to be unchanged, and reflect the empirical values recorded over the period from January 2021
to December 2021.

44



ETH-USDC-USDT BTC-ETH-USDC ETH-LINK-USDT BTC-ETH-USDT BTC-USDC-USDT
Triplet

0

200

400

600

800

1000

Ar
bi

tra
ge

 b
ou

nd
s (

bp
s)

Reality ( V = 1)
Binance
Kraken
Uniswap

Figure 15. Price inefficiency – Reality. The figure presents price inefficiency levels proxied by the
size of arbitrage bounds and computed as in (13). These are based on (10) for the LOB-based Binance
and Kraken and on (12) for the AMM-based Uniswap. They are estimated at an hourly frequency for
the five triplets in our sample, then averaged over the period from January 2021 to December 2021
and expressed in bps.
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Figure 16. Price inefficiency – Scenario A. The figure presents price inefficiency levels averaged
over the period from January 2021 to December 2021 for the five triplets in our sample. These
are estimated as in (10) for the LOB-based Binance and Kraken and on (12) for the AMM-based
Uniswap, assuming a hypothetical scenario in which the gas fee required to execute a swap transaction
is reduced by a factor of 500. Such a scenario could materialize in 2022, when the proof-of-stake
version of Ethereum (Ethereum 2.0) is expected to be deployed. The remaining parameters (liquidity
and protocol fees) reflect the empirical values recorded over the period from January 2021 to December
2021.
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Figure 17. Price Inefficiency – Scenario B. The figure presents price inefficiency levels averaged
over the period from January 2021 to December 2021 for the five triplets in our sample. These are
estimated as in (10) for the LOB-based Binance and Kraken and on (12) for the AMM-based Uniswap,
assuming a hypothetical scenario in which the gas fee required to execute a swap transaction is reduced
by a factor of 500 and the protocol fees of Uniswap are reduced to 5 bps. According to our equilibrium
model, such a scenario could materialize if trading volume increases six-fold relative to the levels
recorded in January and December 2021. Further, the low level of gas fees could become possible
in 2022, when the proof-of-stake version of Ethereum (Ethereum 2.0) is expected to be deployed.
Protocol fees are assumed to be unchanged and reflect the empirical values recorded over the period
from January 2021 to December 2021.

ETH-USDC-USDT BTC-ETH-USDC ETH-LINK-USDT BTC-ETH-USDT BTC-USDC-USDT
Triplet

0

20

40

60

80

100

120

Ar
bi

tra
ge

 b
ou

nd
s (

bp
s)

10X liquidity, 10 bps Protocol Fees, and 1/500 Gas Fees on Uniswap ( V = 30)
Binance
Kraken
Uniswap

Figure 18. Price inefficiency – Scenario C. The figure presents price inefficiency levels averaged
over the period from January 2021 to December 2021 for the five triplets in our sample. These are
estimated as in (10) for the LOB-based Binance and Kraken and on (12) for the AMM-based Uniswap,
assuming a hypothetical scenario in which the gas fee required to execute a swap transaction is reduced
by a factor of 500, reserves staked in Uniswap’s liquidity pools enjoy a 10-fold increase, and protocol
fees are reduced to 10 bps. According to our equilibrium model, such a scenario could materialize if
trading volume increases 30-fold relative to the levels recorded in January and December 2021. Further,
the low level of gas fees could become possible after the proof-of-stake version of Ethereum (Ethereum
2.0) is deployed, which is expected to occur in 2022. Protocol fees are assumed to be unchanged and
reflect the empirical values recorded over the period from January 2021 to December 2021.
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Figure 19. Predictability of transaction costs. The figure presents results on the degree of
predictability of transaction costs on different exchanges. For each exchange-pair couple, considering
hourly transaction costs for a 10,000$ transaction, we compute the auto-correlation coefficient ρ and
run the time series regressions TC(t) = α+β TC(t−1)+ε(t). We then plot the average auto-correlation
coefficient ρ (left panel) and the average R2 from the time-series regressions (right panel).
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