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Machine learning (ML) is increasingly being applied to data analysis and discovery in scattering physics, 
but the lack of standardized tools and frameworks presents ongoing challenges [1]. This talk will explore 
the current landscape of ML in scattering, focusing primarily on the inverse problem, which is at the 
core of data analysis and data-driven discovery. I will showcase different approaches to the inverse 
problem for several experimental techniques, including X-ray and neutron reflectometry [2–5] and 
grazing-incidence wide-angle X-ray scattering (GIWAXS) [6–8]. I will discuss how advances in 
computational power, efficient simulations, and modern probabilistic machine learning tools [9, 10] 
reshape our approach to data analysis [2, 11] and enable novel types of experiments [12]. The particular 
focus is on approximate Bayesian and post-Bayesian methods that provide an efficient and reliable 
framework for fast analysis of various scattering techniques. 
After the development of electron-spin resonance (ESR) in a scanning tunneling microscope in 2015 [1] 
a myriad of potential applications appeared, exploiting the extremely high spatial resolution of the STM 
and high energy resolution of ESR. 
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