CONSTRUCTIONISM AND THE PEDAGOGY OF TEXT ANALYSIS IN THE DH CLASSROOM

Aris Xanthos
University of Lausanne
Department of language and information sciences
aris.xanthos@unil.ch

Innovative Teaching Methods and Practices in Digital Humanities
(DARIAH workshop at DH 2014)
PEDAGOGICAL CONTEXT

Setting: Unil, Faculty of Arts

Domain: computer-assisted text analysis

Audience: undergraduates, no formal training in CS

Format: 1, 2, or 4 semesters depending on concentration
COURSE STRUCTURE: SEMESTER 1

- Basic concepts, methods, tools, and practices:
 - corpus building (planning, acquisition, sampling, legal issues, ...)
 - corpus exploration (segmentation, indexing, concordances, collocations, regular expressions, ...)
 - corpus annotation (XML, TEI, ...)
 - basic quantitative notions (type and token, absolute and relative frequency, document-term matrix, factorial analysis, complexity measures, ...)

- Emphasis on practical work: \(\sim 2/3^{rd} \) tutorial sessions and 1/3\(^{rd}\) lectures
COURSE STRUCTURE: SEMESTER 2

- Students work on small but complete projects (alone or in pairs), usually involving the following steps:
 - formulation of a (simple) research question
 - data collection and preprocessing (incl. annotation)
 - corpus analysis using specialized software (e.g. *AntConc*) as well as more general tools (e.g. *Excel*)
 - oral presentation of results

- Part of the work is carried out in the classroom between oral presentations
COURSE STRUCTURE: 2ND YEAR

- Only for students in a Humanities computing program

- Semester 3: introduction to (Perl) programming for text analysis (text file manipulation, text preprocessing and recoding, text segmentation, frequency counting, ...)

- Semester 4: advanced topics and algorithms (e.g. Markov chains, entropy, random sampling, string edit distance, ...)
PEDAGOGICAL APPROACHES TO TEXT ANALYSIS

- Distinction based on the underlying technologies:
 - either specialized text analysis software (e.g. Voyant Tools)
 - or the text processing facilities of a general-purpose programming language (e.g. Perl or Python)

 - Ramsay, S., *Programming with Humanists: Reflections on Raising an Army of Hacker-Scholars in the Digital Humanities* (pp.227–239)
STRENGTHS AND WEAKNESSES

- Specialized software:
 - productivity (resulting from user-friendly design)
 - hiding complexity may hinder understanding:

 When using text analysis tools, especially those that are interactive, students can likewise arrive at some display or result that they cannot recapitulate and, therefore, they don’t really understand. (Sinclair & Rockwell, 2012: 253)

- General-purpose programming language:
 - getting things done presupposes and/or fosters understanding
 - slow learning curve
IN SEARCH OF A MIDDLE GROUND

- (Idealized) requirements:
 - engage students in construction-like activities
 - faster learning curve than general-purpose programming

- Steps toward a solution:
 - design a specialized programming environment for text analysis
 - adopt a (mostly) graphical user interface
THE TEXTABLE PROJECT

- Initial subsidy from Unil’s Teaching Innovation Fund ("Fonds d’innovation pédagogique = FIP") in 2012
- Public release of Textable 1.0 in 2012, in the form of an add-on for Orange Canvas (open source data mining package)
- Renamed to Orange Textable in autumn 2013
- Further funding from the Faculty of Arts, as well as maintenance funding from FIP in late 2013
- Current version is 1.4.2 (released in April 2014)
VISUAL PROGRAMMING INTERFACE

The user builds a "visual program" (called a *schema*) made of interconnected computational units:
Widget Configuration

Each widget instance can be configured individually, e.g. the *Segment* widget uses a regular expression to specify the units that it attempts to retrieve:

![Segment widget configuration](image)
Regular expressions (regexes) are used in the configuration of several widgets (*Segment, Recode, Select, ...*)

A very small subset of regular expressions covers most basic needs, as indicated by tooltips:
LOOKING BACK ON TEACHING WITH TEXTABLE

- Main tool used for semesters 1 and 2 since 2012–2013
- Actively used by almost all students for their projects
- Projects relying on *Textable* have usually been more ambitious and conducted in a more autonomous fashion
- Students evoke somewhat tedious beginnings until “something clicks” and usage becomes productive and stimulating
- *Textable* has turned out to be very useful as a communication support (for teacher and students alike)
PERSPECTIVES

How to adapt the 2nd year of my courses given that:

- *Textable* can’t be as powerful than a general-purpose programming language
- *Textable* makes some results much easier to obtain than with a programming language

Textable is programmed in Python and *Orange Canvas* has a widget for Python scripting

Re-organize 2nd year around Python scripting within *Orange Canvas* for extending *Textable*
Thank you for your attention!

http://langtech.ch/textable