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Chapter 1

Introduction

Economic history has been de�ned by innovations. This is particularly true for
general purpose technologies (GPTs) spurring sustained growth as a result of
their pervasive use in the economy. Typical examples include the steam engine,
electricity and information and communication technology (ICT). GPTs can be
broadly characterized by the following three features (Bresnahan, 2010; Jovanovic
and Rousseau, 2005a; Lipsey et al., 2005):

1. Pervasiveness: The technology a�ects a broad range of sectors throughout
the economy and disposes of a wide variety in application.

2. Scope of improvement : Advances in the GPT reduce costs in the user in-
dustries.

3. Technological complementarities: Its utilization requires the design of new
or the re-design of existing products and processes.

The present thesis revolves around the �rst characteristic, the notion of perva-
siveness, as the crucial feature that distinguishes a general purpose technology
from other radical innovations, and proposes methods to trace its trajectory at
the sector level.

Introduced by Bresnahan and Trajtenberg (1995), the concept of GPTs drew
strong scienti�c attention in the late 1990s, during the rise of the IT era and
in the aftermath of the strong productivity slowdown in the U.S. In an attempt
to understand these trends in productivity, a new growth narrative developed
around GPTs (see, e.g., Aghion and Howitt (1998a); Helpman and Trajtenberg
(1998a,b)) that strongly focused on innovational spillovers between the sector pro-
viding this technology and its application sectors: Technical progress in the �rst
sector increases R&D activities in the latter industries, as complementary inputs
need to be developed for the e�cient utilization of the technology. Nevertheless,
even though the impact of a GPT is inherently attributed to its pervasive use
throughout the economy, technical complementarities in the production process
are little accounted for in these models. Moreover, the heterogeneous nature of
technological change is reduced to a simple productivity parameter that increases
with each arrival of a new GPT.

On an empirical level, historical studies have o�ered rich insights into the
evolution of GPTs. For instance, David andWright (2003) investigate the di�erent
di�usion paths of electricity in the U.S., U.K. and Japan, and draw conclusions
regarding the future evolution of ICT. Rosenberg and Trajtenberg (2004) examine
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the positive e�ects of the Corliss engine on economic growth in the U.S. in the
late 19th century. Lipsey et al. (2005) undertake an extensive historical survey on
general purpose technologies in the Western world, covering the time span from
10,000 BC until 2010.

The few quantitative studies in this �eld have also centered on innovational
spillovers between the GPT and other technologies. Feedback e�ects have primar-
ily been examined by use of patent and patent citations data (see, e.g., Hall and
Trajtenberg (2004); Moser and Nicholas (2004)). In this context, an innovation
(protected by a patent) is conceived as `general', if it spurs innovation activities
in a broad range of other technological �elds (as measured by patent citations).
However, as Bresnahan (2010, 781) points out, knowledge �ows are not able to
capture technological complementarities that occur through the application of the
respective GPT in production.

The minor consideration of the role of a GPT in the production chain, on the
one hand, and the focus on innovation spillovers, on the other hand, serve as the
main motivation for this dissertation. Centering on the pervasive character of
a GPT and its di�usion process, complementarities between the GPT-providing
sector and the application sectors are studied in the marketplace instead of at the
innovational level. The project therefore addresses the research problem within
a multi-sector framework, in which a general purpose technology is examined in
the following way:

1. Rather than modeling a GPT as a process innovation that spawns prod-
uct innovations in form of complementary inputs, the GPT is treated as a
product innovation which is produced by a speci�c sector by means of other
commodities and triggers changes in production methods throughout the
economy.

2. Reverting to commodity �ows instead of intangible knowledge assets, a GPT
is investigated in the form of technology embodied in intermediates and
capital goods.

3. The study of vertical integration of industries allows tracing the di�usion
and e�ects of GPTs through the intersectoral network.

4. By analyzing the linkages between the GPT-producing sector and the user
sectors over time, we take on an evolutionary perspective, stressing the
carrier population � not the single carrier of a technology � as a crucial
object of study.

Based on this framework, di�erent concepts are developed that allow tracking
general purpose technologies over the long term and on the meso level. The
elaborated methods are applied to input-output tables and capital �ow data for
Denmark from 1966 until 2009 in order to trace the evolution of the current GPT
at work, ICT. Denmark was chosen due to its leading innovator role within the
European Union.1 This top position comes largely as a result of cutting-edge
engineering in the �eld of biotechnology and wind power generation, whereas

1Denmark ranks second behind Sweden and above Germany and Finland among the four
innovation leaders in the European Union (European Commission, 2014).
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with regard to information and communication technologies, Denmark relies to a
large extent on imports. This fact allows us to study the consequences of ICT
for economic growth primarily via its impact on the production network and less
through �nal demand. Furthermore, the empirical �ndings feed a stylized growth
and di�usion model which analyzes the changes triggered by the emergence of a
GPT in an evolutionary multi-sector framework.

Regarding the structure of the thesis, all chapters are self-contained and can
be read separately. However, they appear in chronological order of their writing;
reading in this way therefore also sheds light on the development of the arguments
underlying the present work.

Chapter 2 serves as an introduction into the topic, as it surveys the theoretical
literature on general purpose technologies and distinguishes the concept from
other approaches on radical technological change. In this regard, it gives a critical
overview of the way that mechanisms behind this form of innovation-driven growth
have been modeled.

Part I, considered as the core of this dissertation, contains three essays on
uncovering GPTs and their role for economic development from a mesoeconomic
perspective: Chapter 3, co-authored by A. Rainer†, analyzes the impact of
this type of technological change on labor productivity growth. An evolutionary
multisectoral framework is presented as an alternative to the concepts discussed
in chapter 2. The Sra�an static model is extended by the replicator dynamics
of evolutionary game theory to describe how the increasing population of carriers
of the new technology on the �rm level causes changes in the production method
on the sectoral level. The theoretical framework lays the ground for a structural
decomposition analysis, assessing the impact of ICT on aggregate and sectoral
labor productivity growth. Social consequences of a GPT are discussed on the
example of skill-induced wage dispersion during the rise of the IT-era.

Given the empirical evidence that ICT became consequential only after the
di�usion rate had slowed down, chapter 4 proceeds with the notion of pervasive-
ness in the context of input-output analysis. We argue that conventional linkage
analysis is not concise enough to comprise the case of general purpose technologies
since the density, but not the structure of the inter-industry network is taken into
account. An extended linkage indicator is therefore proposed that captures the
widespread use of a commodity in production as a descriptive tool for studying
pervasive technological change. The method allows deriving a ranking of indus-
tries according to their pervasive role in the economy. Additionally, we examine
the di�usion path of ICT throughout the economic system.

Chapter 5 represents a continuation of this work in so far as a tool is devel-
oped which maintains the industry ranking without losing the information on the
intersectoral level. In this context, we analyze structural change by means of a
social network approach where the production system is represented in a hier-
archical order, as a so-called `technical tree', and explore the characteristics and
dynamics of this evolving technical tree over time. The application to the Danish

†University of Graz, Graz Schumpeter Centre, Universitaetsstrasse 15/FE, A-8010 Austria:
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4 CHAPTER 1. INTRODUCTION

economy underscores the capability of the method for detecting general purpose
technologies by the locus of their production.

The results presented in part I are supplemented by a statistical companion
containing further tables and �gures.

The empirical evidence gathered throughout this work serves subsequently as
an input for modeling growth and di�usion in the presence of GPTs (see chap-
ter 6 in part II, also co-authored by A. Rainer†). The classical multisectoral
approach introduced in chapter 3 is further elaborated for the model to be able
to reconstruct the retarded di�usion process of a GPT, technical progress in the
GPT-producing sector, as well as skill-induced wage disparities. It is shown that
the characteristics of a GPT and the corresponding empirical �ndings can be
theoretically explained in a multi-sector evolutionary framework.



Chapter 2

Modeling Major Technological

Change: A Survey on General

Purpose Technologies

The present chapter deals with theoretical concepts centered around general purpose technolo-

gies (GPTs), a term introduced by Bresnahan and Trajtenberg (1995). GPTs are characterized

by the following features: (1) wide range of applicability: by a�ecting most sectors; (2) scope of

improvement: advances in this technology lower the costs of its users over time; (3) technological

complementarities: GPTs stimulate the new design or redesign of other products and processes.

Before discussing the models that explicitly deal with GPTs other theories related to major

technological change will be brie�y reviewed.

2.1 Introduction

Ever since, economic development has shown an uneven path: Periods represented
by high growth rates and booming sectors have been followed by an overall down-
swing in the economy and depression. Joseph A. Schumpeter identi�ed innovative
activities as the heart of his theory on business cycles (Schumpeter, 1997). In-
novations, coming in swarms, boost at �rst those industries in whose production
they are utilized. Gradually, these new technologies di�use throughout other sec-
tors so that in the end, the whole economy grows at a greater pace than before.
The more radical and all-encompassing an innovation is, the bigger the change in
the overall production system.

Technologies which a�ect all sectors and foster innovative activities throughout
the whole socio-economic system are called general purpose technologies (GPTs
henceforth). Prominent examples include the steam engine, electricity, and more
recently information and communication technology (ICT). New generation tech-
nologies, and speci�cally nanotechnology (Youtie et al., 2008), have high potential
to become GPTs in the near future.

The term itself was introduced into the economic literature by Bresnahan and
Trajtenberg (1995). In their seminal paper they stress the important role of GPTs
in causing `innovational complementarities,' i.e. raising the R&D productivity in
user sectors. In a decentralized economy, however, increasing returns to scale
and the generality of purpose also generate coordination problems among up-
and downstream sectors. As a conclusion, not only the industrial organization
of inventing industries has to be examined more closely, but it is also crucial to
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analyze sectoral interrelations more carefully, since �the locus of technical change�
matters (Bresnahan and Trajtenberg, 1995, 85). In a �rst attempt, the authors
restrict their analysis to a partial equilibrium framework, in which one sector
supplies the GPT at a speci�c technology level (or quality) to a set of application
sectors. The producer of the GPT is assumed to have monopoly power in setting
the price of the GPT as well as its quality level. Subsequently, the downstream
sectors determine how much to invest in their own level of technology in order
to maximize the rents related to the use of the GPT. Due to these `strategic
complements' (Bulow et al., 1985), a dual inducement mechanism sets in: Quality
improvements in the GPT sector lead to rising R&D activities in the application
sectors, which in turn increase the payo� for the GPT producer and gives him
an incentive for further improvements. The generality of purpose also creates
horizontal externalities between the user industries, in so far as the more sectors
operate the GPT (and thereby enhance their own technology level), the higher the
investments in the GPT itself become and hence the rise in its quality. Despite
this mutual dependence, the GPT-providing sector and the application sectors
nevertheless stand in a hierarchical order to one another, as the key technology
together with the induced product and/or process innovations downstream form
a technology tree.

Bresnahan and Trajtenberg show that when no technological information is
exchanged among up- and downstream sectors, each Nash-equilibrium results in
a lower GPT level and less innovative activities within the application sectors,
compared to the social optimum. Coordination between the agents in form of
technological contracting would reduce the level of underprovision of the GPT. Ex-
tending the analysis from a static Cournot-game to a model of dynamic oligopoly
as proposed by Maskin and Tirole (1987), the authors study the role of infor-
mational �ows, which increase the predictability of technological enhancements
and lead to higher technological progress in both producer and user sectors of the
GPT.

Even though Bresnahan and Trajtenberg concentrate on the incentive mecha-
nisms for innovations and the role of industrial organization in this context, their
concept of general purpose technologies has given rise to a bunch of dynamic
theories emphasizing the complementary nature of major technological change.
Given the generality of purpose, the GPT requires subtechnologies to facilitate
its e�cient employment in production. These spillovers can be captured by the
term of technological complementarities, which arise �in any situation in which the
past or present decisions of the initiating agents that alter the technologies under
their control (a) alters the value of other existing technologies and/or (b) cre-
ates the opportunity to alter the nature of other existing technologies and/or (c)
creates opportunities for developing new technologies� (Lipsey et al., 2005, 103).
Technological complementarities thus subsume both innovational and technical
externalities between the GPT-providing sector and the application sectors.

The present paper attempts to discuss the body of literature on existing GPT-
models. It thereby extends previous reviews on this topic (most notably by Lipsey
et al. (1998, 2005)) without claiming completeness. The chapter is organized as
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follows: Section 2.2 distinguishes the notion of GPT from related theories in
the economics of technological change. Section 2.3 reviews the most prominent
models of GPTs. Section 2.4 entails concluding remarks and suggests speci�c
aspects towards which future models of GPTs could be directed.

2.2 Related Theories

The concept of general purpose technologies is not the only approach that captures
radical technological change; there exists a variety of theories that center around
drastic technological breakthroughs. The present section brie�y summarizes the
most important ones.

Technoeconomic Paradigms

Introduced by Dosi (1982) and Perez (1983), technoeconomic paradigms (TEPs)
have become a core notion in evolutionary economics (see, e.g., Freeman and
Perez, 1988; Freeman and Soete, 1994; Perez and Soete, 1988). A TEP entails
a much broader concept than the GPT, as it is de�ned as a �systemic relation-
ship among products, processes, organizations, and institutions that coordinate
activity� (Lipsey et al., 2005, 372). Changes in the TEP, generated by a set of
radical innovations and some new technological systems, thus not only lead to new
products or processes, but create whole new industries and organizational forms.
They can be understood as the �creative gales of destruction� in Schumpeter's
long wave theory (Freeman, 1991).

Similar to Kuhn's concept of paradigm shifts, each era is characterized by
certain phases: A new TEP comes up within the old era, provided that the cur-
rent structure has generated an innovation-sympathetic environment. However,
it does not immediately break up the existing regime; it rather takes a long pe-
riod of gestation in which it competes with the incumbent TEP. In this time,
the core innovation is being used in some industries and bit-by-bit takes over the
whole economy, initiating a `structural crisis of adjustments', in which capital
equipment and skill pro�le get adapted, and the �rm management, the industrial
organization and the institutional landscape change. This process takes some
time, since, on the one hand, the present environment may be resistant to the
new technological breakthrough, and on the other hand the di�erent parts of the
system do not change in a coordinated fashion. Furthermore, one or a set of new
key inputs evolve, which are available in abundance and show a wide range of
applicability, and whose prices continuously fall alongside with the evolution of
the new paradigm. The path-dependent, irreversible transformation of the system
is based on an evolutionary approach. As Freeman points out, only the persistent
search for minimum costs resembles neoclassical economics (Freeman, 1991, 225).

In their later book As Time Goes By: From the Industrial Revolutions to the

Information Revolution (2001), Freeman and Louca go further by describing the
Western economic history from 1750 up to now as a sequence of �ve technoeco-
nomic paradigms, each generating a long wave (industrial revolution; railroads,
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steam and mechanization; steel, electricity and minerals; mass production, the
automobile and oil; information and communication technology). Again, a sys-
temic approach is at the core of the theory, distinguishing �ve subsystems within
the society: science, technology, economy, politics and culture. As each of the
parts evolves along its own trajectory, the arrival of a new TEP triggers o� a
structural crisis due to maladjustment. Certain social mechanisms ensure that
the subsystems become synchronized again. Since these coordination processes
are speci�c to each wave, no common characteristics can be derived and therefore,
as Lipsey et al. criticize, the approach is an �ex-post rationalization of whatever
happens� (Lipsey et al., 2005, 376), rather than a whole theory.

Relating the concept at hand to general purpose technologies, there are cer-
tainly many similarities; both assume that economic regimes are technologically
constrained and eventually run into diminishing returns. Like the TEP theory,
the subsequently described macroeconomic models of GPT explain long waves
where growth is rejuvenated by drastic technological change; however, in the the-
ory of technoeconomic paradigms the breakthrough is even more invasive, since
adjustment processes are not only dealt with on the �rm and industry level, but
also encompass the organizational, institutional and political structure. However,
understanding the concept of general purpose technologies as a lean version of the
TEP theory would not do justice to the former. As Lipsey et al. (2005) points out,
due to the holistic perspective the framework is not able to capture the technology
tree as modeled by Bresnahan and Trajtenberg; while one TEP era is character-
ized by a set of co-evolving (major and minor) techniques, GPT models entail a
strict hierarchy between the actual key technology and complementary technolo-
gies. Thus, the piece-meal treatment of major technical change in GPT models
allows for a more detailed examination of a technological paradigm, focusing on
the production side.

Macroinventions

In his book The Lever of Riches: Technology and Economic Progress, Mokyr
(1990) strongly emphasizes the di�erence between minor innovations and radical
technical change and its importance for the study of economic growth. Denying
the adequacy of the Newtonian equilibrium approach in this context, he follows an
analogy-as-heuristic concept in the �eld of evolutionary economics (Mokyr, 1990).
In contrast to Boulding (1981) and Nelson and Winter (1982), who de�ned the
commodity or the �rm as the analogon to a species, the technique itself is the
unit upon which selection occurs, and technological change is nothing else than
the successive emergence of new techniques.

Just as biological evolution shows periods of stasis interrupted by periods
of drastic evolutionary changes, technological history has been all but smooth.
Mokyr borrows Richard Goldschmidt's distinction between micro- and macromu-
tations (1940) to explain this uneven path of technological change: Microinven-
tions thereby refer to incremental changes that improve, adapt or streamline exist-
ing techniques, reduce costs, material and energy use, improve form and function
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and increase durability (Mokyr, 1990, 13). When they cumulate, they are able
to cause technological change, i.e. generate a technique that can be su�ciently
discriminated from previous ones.1 Macroinventions, on the other hand, are able
to explain the phases of radical change. They emerge ab nihilo, and have no clear
antecedent (Mokyr, 1990, 13). Moreover, they are mostly not location-speci�c,
i.e. they do not depend on particular climatic or topographic conditions.

While microinventions represent an improvement within a species, macroin-
ventions are per se the new species. However, they can only sustain the selection
process if they are economically as well as technically feasible and �t into the
institutional setting. The potential of this new technology lies in its impact on
subsequent innovations, as it stimulates the emergence of further adaptive mi-
croinventions and raises their productivity.2 Mokyr emphasizes the complemen-
tary character of both types of innovations: Without the emergence of macroin-
ventions, microinventions would �nally reach a technological ceiling, and without
subsequent microinventions, macroinventions would fail to be pro�table. Based on
an extensive historical survey, Mokyr concludes that technological breakthroughs
tend to cluster: For example, the Middle Ages and the Industrial Revolution are
both characterized by a large number of macroinventions, while in between these
eras evolution was driven by microinventions and gradual change. This can partly
be explained by critical-mass models where one agent after the other jumps on the
bandwagon of innovation. Drastic institutional or organizational changes might
also increase the receptiveness of the economy to macroinventions (Mokyr, 1990,
298). An important di�erence between both lies in the fact that microinventions
can be (and have already been) examined by traditional economic tools: They
react on price signals and market imbalances and are by-products of learning-
by-doing and learning-by-using;3 thus, given the socio-economic environment, the
direction of technical change and the probability of success is more or less expli-
cable. In contrast, a macroinvention � the rise of a genius idea � is by all means
unpredictable. Just as genetics in evolutionary biology fails to unravel the mys-
tery of mutation, economic analysis can never fully explain the phenomenon of
macroinventions. It can only postulate a certain framework of social, economic
and political factors that tend to promote their emergence.

Mokyr's distinction between micro- and macroinventions has faced some crit-
icism, the most severe of which concerns the presumption that inventions of the
�rst type are a matter of intention, whereas technologies of the latter can only be
created by an act of genius or serendipity (see, for example, Lipsey et al. (2005)
and Sokolo� (1991)). Likewise, the idea that technological breakthroughs have
no clear-cut parentage has been contested.

Macroinventions and general purpose technologies are evidently very similar
concepts: The strong interrelation between micro- and macroinventions is basi-

1As an example, Mokyr mentions the gradual evolution of a sailing ship to a steamship over
a period of �ve decades.

2This idea can already be found in Usher (1920).
3The importance of learning-by-doing for incremental innovations was also stressed in Lund-

vall (1988).
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cally re�ected by the notion of technological complementarities. In both theories,
the new technology is under continuous improvement over its lifetime. Interest-
ingly, they also share the idea that technology is supply-constrained. But whereas
Mokyr argues that demand is not able to generate innovations, Bresnahan and
Trajtenberg do not consider the demand side just for the sake of simplicity. What
is not explicitly stated in the approach at hand is the pervasive character of
the new innovation; while the dynamo and the steam engine di�used through-
out the whole economy, the screw propellers or the hot-air balloon, also classi�ed
as macroinventions, were not so widely used. Moreover, Mokyr assigns most of
the productivity gains to microinventions, simply because they dominate in num-
ber. In contrast, general purpose technologies are perceived as the real engines
of economic growth. Even more, growth eventually ceases in most of the GPT
models without the arrival of a new big innovation. Whatever the di�erences, the
two concepts unite in proposing radical technological change as the true `lever of
riches'.

General Technological Change

A further approach dealing with major technological progress is the model by
Antonelli (2003). The author distinguishes between technical and technological
change, where the latter can be further di�erentiated between general and contin-
gent technological change. According to Antonelli (2003, 80), the type of change
is mainly determined by four criteria: (1) technological vs. scienti�c opportuni-
ties; (2) internal vs. external sources of new knowledge; (3) learning-by-doing vs.
learning-by-using; (4) switching costs regarding �xed (tangible and intangible)
capital, and the degree of irreversibility. Whenever scienti�c opportunities are
broadly available and easy to access, when learning-by-doing takes place and the
switching costs and irreversibility are low, then entrepreneurs are likely to act in
favor of general technological change rather than contingent technological change.

The ideas unfold in a neoclassical equilibrium framework with bounded ra-
tionality and myopic expectations, where innovations cause and are fed by out-
of-equilibrium conditions.4 This disequilibrium is a direct result of a change in
demand and, most relevant, in relative factor prices. In this case, technological
change necessarily has to occur in order to adjust to the new market situation.
The decision whether to invest in the introduction of a new general technology
or a contingent (biased) technology is taken against the background of a speci�c
factor market.

The argument is the following: If a �rm operates close to the technology fron-
tier, with a technique that already considers the speci�c endowments of labor
and capital (both being available in abundance), it will introduce a new general
technology in order to remain competitive. This general technology is most often
only locally neutral, so that if the factor market diverges to a large extent from

4Technical and technological change can both be explained in the same local space. Whereas
the �rst means a change in factor intensity, i.e. a movement along the same isoquant, the latter
is re�ected by a shift of the isoquant.
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the original one, �rms are likely to shift their research activities to the develop-
ment of a contingent technology which improves the performance of an existing
innovation. They do so by adjusting the general technology to the speci�c local
factor market, instead of inventing a totally new production method. Thus, the
approach emphasizes the interplay between adoption (of a new general technol-
ogy) and adaption (the generation of a contingent technology) and can be used to
model general purpose technologies alongside with its complementary innovations
as a sequence of new general technologies and contingent technologies. The rela-
tive factor prices determine the external path dependence (Arthur, 1989; David,
1985), while the irreversibility of capital a�ects the internal path-dependence.
Moreover, it allows for cross-country comparisons, in so far as it can explain,
given speci�c factor endowments, why some economies always push the technol-
ogy frontier, while others are more likely to imitate. Given that factor markets
di�er across economies, the new technology di�uses at a higher rate, the more
similar the factor endowments are between the place of origination and the place
of adoption.

Furthermore, Antonelli (2003) examines the horizontal and vertical e�ects, i.e.
the e�ects among di�erent application sectors and between up- and downstream
industries. The horizontal e�ect di�ers with regard to the type of innovation:
Contingent technological change can prevent other �rms from imitation, as the
innovation is speci�c to local factor endowments, whereas a general technology
evolves over an epidemic di�usion path. When relative price changes matter, it is
also important to investigate the vertical relationship between the industry which
supplies the intermediary input that is strategic in the implementation of the new
technology and those sectors which introduce the new GPT. Together with the
industrial dynamics of monopolistic competition, barriers of entry and exit, etc.,
the pattern and time path of di�usion can be derived on the basis of absolute
and relative factor prices. Assuming that the market for the new intermediate
input is monopolistically organized, the production costs in downstream sectors
may rise after the introduction of the GPT, whereas the suppliers of capital goods
complementary to the old technology face declining demand and decreasing prices
for their products. Gradually, they get driven out of the market, while entries
in the new intermediary sector lower the price for the new capital good and thus
increase the adoption rate of the new technology in the downstream sectors (due
to rising pro�tability). The result is a sigmoid di�usion path as a sequence of
probit di�usion processes that generate Schumpeterian growth cycles.

Antonelli's concept is an attempt to link economics of technological change
to economics of innovation. His model of induced technical change is a broader
concept than the theory of GPTs in so far as it also deals with the type of and
ground for innovation. It thus endogenizes the arrival of a technology by linking
it to the demand side, an assumption which has seriously been questioned since
Hick's induced innovation approach (most noteworthy by Schumpeter). In the
present concept, the change in relative prices rules economic development, and
it is not clear in which way it actually depends on the size of the technological
innovation.



12 CHAPTER 2. MODELING MAJOR TECHNOLOGICAL CHANGE

2.3 Models of General Purpose Technologies

The theory of general purpose technologies is very much linked to explaining the
long waves in economic history. It was only during the mid-90s that pervasive
technologies became a widely-debated issue in economics, not least because of
the rising impact of ICT, and because of the fact that the existing theories could
explain neither the changing productivity pattern of this technology throughout
its lifetime nor its di�usion path over the whole economy. Since the possible
output slump featured in these models is the ultimate consequence of the �gales
of creative destruction�, Verspagen (2004) calls them the American counterpart
of Schumpeterian economics.

While methodological approaches of technological change due to incremental
innovations are amply available, the theoretical literature on GPTs is relatively
sparse. The present section reviews the existing approaches that exemplify the
channels through which a GPT a�ects economic growth: either through the cre-
ation of new (intermediate) products or through upgrades in the quality of the
products, in the light of Schumpeterian growth theory; or through knowledge
accumulation modeled in an evolutionary framework.

Expanding Product Variety

Models in this line treat a new technology as a process innovation that triggers
product innovations in other sectors: The GPT cannot be operated until compati-
ble components have been developed for it, hence technological complementarities
are eminent. In contrast to innovations that represent a quality-improvement over
a product, in this approach the invented good bears a horizontal, and not a ver-
tical relation to the existing one, because it is the product variety that increases.

Model by Helpman and Trajtenberg (HT) Helpman and Trajtenberg
(1998a) lift the concept of GPTs by Bresnahan and Trajtenberg (1995) from
the partial analysis to a full-�edged model, by incorporating the technology tree
into a general equilibrium framework, in which growth is linked to successive
improvements in the operation of the GPT. The technology can only be used suc-
cessfully in the production process after a critical mass of complementary inputs
have been produced which render the switch from the old to the new technique
possible. Thus, a recession period characterized by declining output and incomes
can precede the phase of productive utilization of the GPT. This becomes man-
ifest in recurrent growth cycles in the long run, where productivity slows down
in the �rst phase due to adoption problems and then increases at a higher rate,
until the di�usion process comes to a standstill and the technology is replaced by
a new one. In Helpman and Trajtenberg (1998b), the existing model is extended
in order to analyze the di�usion of a GPT over heterogeneous �nal good sectors
and to deduct its impact on macro aggregates. Since the technique is adopted
gradually, a cyclical growth pattern is again established, whose length depends
on the di�usion rate over the di�erent sectors. As soon as growth is fading out
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in the second phase, the �rms start anew to invest in R&D, so that growth is
rejuvenated.

The formal approach is based upon an endogenous growth model of expanding
product variety, developed by Grossman and Helpman (1991, ch. 3) and entailing
Romer's concept of monopolistic competition (Romer, 1990). In order to keep the
model simple, it is assumed that one general purpose technology after the other
arrives at pre-determined time intervals. Thus, the authors abstract from deal-
ing with the generation of the new technical rule itself, and basically build their
framework upon three activities: the �nal good sector producing a homogeneous
commodity by means of a speci�c GPT alongside with compatible inputs, the
so-called components; (in-house) research units developing blueprints for the new
components; the latter are subsequently produced by the �rms operating in the
manufacturing sector. The demand for components is speci�ed by a Dixit-Stiglitz
consumption index (Dixit and Stiglitz, 1977) which imposes an equal and con-
stant elasticity of substitution between any two components, independent of the
technology in use. The GPT itself enters the production function only in the form
of a productivity parameter, whereby those GPTs that arrive later also perform
better. Together with the number of di�erent components available, total �nal
output is determined. All �rms in the component-manufacturing sector operate
under monopolistic competition: Each �rm owns the blueprint for a speci�c com-
ponent which is produced by one unit of labor only. As the speci�cation of factor
demand values all components equally, pro�t maximizing behavior results in a
single price for all intermediate products. As a consequence, each component is
used in equal quantity. Thus, having once successfully introduced the blueprint,
entrepreneurs share the market power equally among them and the value of each
�rm is determined by the future pro�ts from manufacturing the blueprint. As-
suming perfect foresight, the development of the new blueprint will take place
whenever the expected pro�t stream covers at least the research costs. Then,
the entrepreneur reallocates the only primary production factor, homogeneous
labor, from manufacturing to developing components. Constant returns to scale
together with free entry ensures that the entrepreneur cannot gain extra pro�ts
by undertaking R&D. The more components are available for a speci�c GPT, the
higher is its productivity in the �nal good production.

When a new GPT arrives, it cannot be immediately operated, as the available
components are not compatible with it; hence prior to its utilization, the number
of components developed and manufactured for it has to exceed a certain threshold
that makes the new technology superior to the incumbent one. Only then does
the switch from one GPT to the next take place. However, a technology cannot be
in�nitely improved, as its average productivity is decreasing with every further
product development. The economy moves from one static equilibrium to the
next, in each of which cost minimization of the �nal good producers leads to the
utilization of the most productive technology; pro�t maximization among �rms in
the application sector determines the optimal labor-allocation; and intertemporal
utility maximization of consumers actuates the demand path for the �nal good.

Analyzing long-term economic growth implies studying the equilibrium tra-
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jectory correlated with the arrival of a GPT until the introduction of the next
one. Depending on whether the technology has already been exploited to its full
potential or not before the arrival of a new one, the overall cycle assigned to
the lifetime of a technology can be divided either into three or just two phases
(the latter is indicated in �gure 2.1). Phase 1 is the period where a new GPT
enters the stage; perfect foresight makes the �rms shift labor resources to the
development of new components, while the �nal good sector still operates with
the incumbent technology and the corresponding inputs. This phase is character-
ized by constant pro�ts (due to the constant supply of old components), rising
nominal wage rates and an increasing product variety. As soon as the number of
available components has reached a critical mass, the economy enters phase 2 of
the cycle, in which production takes place under the new technology, and labor is
divided between manufacturing new components and continuing the development
of blueprints. In this period, suppliers of new components can gain pro�ts while
the wage rate is declining again. In the case that the meanwhile established GPT
cannot be further improved before the end of its lifetime, a third phase indicates
the subperiod, where the �nal good is still produced with the incumbent tech-
nology, but all research activities have ceased and await the arrival of the next
GPT. It follows that the wage rate, pro�ts and the number of components are
constant. Since the e�ciency parameter of the GPT and the arrival rate are ex-
ogenous, both phases are of constant length in a stationary equilibrium, i.e. each
technology evolves along the same time interval. Real GDP falls at the beginning
of each cycle and keeps decreasing throughout the �rst phase, on the one hand
because pro�ts immediately jump to zero (see �gure 2.1), and on the other hand
because of the negative correlation with the wage rate (which is increasing) as la-
bor resources are redirected to R&D. In phase 2 the growth trend is reversed and
output is continuously rising. Thus, the model perceives the slump as an �integral
feature� (Helpman and Trajtenberg, 1998a, 71) of a GPT which results from the
necessity of complementary investments and the deployment of resources.

The model is subsequently extended to skill-induced wage di�erentials5 and a
continuum of �nal good sectors each producing with the same set of components,
but at di�erent productivity levels. In this case, there is no abrupt switch from
one GPT to the other at the beginning of phase 2; rather, the new technology
disperses over time across the �nal good sectors, while the incumbent technology is
operated in the remaing sectors (and components for it keep being manufactured),
and the adoption rate increases with the number of manufactured components.

In Helpman and Trajtenberg (1998b), the authors study further the growth pro-
cess induced by a GPT by investigating the relation between the order of adoption

5A more stylized model that seeks to explain wage inequality between di�erent skills by
the emergence of a GPT is presented in Jacobs and Nahuis (2002). Within this neoclassical
framework, output declines upon arrival of the GPT because skilled workers leave production
and start engaging in R&D activities, in order to raise the �rm-speci�c knowledge stock. This in
turn increases productivity (and output) over time. Wage inequality occurs immediately after
the emergence of the new technology, since the productivity in R&D increases the skill premium,
while wages of unskilled workers drop as skilled labor is directed to knowledge accumulation.
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Figure 2.1: Phases of two successive GPTs (π denotes pro�ts, n the number of components).
Source: Helpman and Trajtenberg (1998a, 66)

and the pace of di�usion. The existing framework is modi�ed so as to allow for
a variety of �nal good sectors, each of which utilizes tailor-�t components. Every
sector is speci�ed by a set of four parameters that de�nes the order of adoption:
(1) a productivity parameter that gives the comparative advantage of the new
GPT over the old one; (2) the stock of available inputs compatible with the old
GPT; (3) a demand parameter; and (4) an R&D parameter that re�ects the costs
of new product development. Thus, the sectors are exogenously ranked according
to their potential of being early adopters or laggards. Correspondingly, the tech-
nology will be adopted sooner by a �nal good sector, the better the new GPT �ts
into the current production structure; the less components have been developed
for the old GPT so far (so that the required �critical mass� is rather small); and
the lower the spending share for intermediate products and research costs.

As before, two GPTs may well co-exist, so that the only primary input labor
has to be allocated among manufacturing old as well as new components and
the development of new sector-speci�c blueprints. The mathematical framework
is such that not more than one sector engages in R&D at the same time; as
a consequence, one �nal good sector after the other undergoes the two-phase
cycle, where prior to the technology switch, the number of new sector-speci�c
components developed in the �rst phase has to exceed a certain threshold. Thus,
the di�usion process over the economy can be described by a sequence of sectoral
waves whose length is, in contrast to the former model, endogenously determined
by resource allocation. In the basic approach of a single �nal good sector, the cycle
refers to the time period between the arrival of a technology and its replacement
by the next one, while in the present model it is determined by the speed of
di�usion of one and the same technology over di�erent sectors. As soon as all
�nal good sectors have adopted the new GPT and the economy approaches the
steady state, each sector except for the last one enters a further round of product
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development, triggering a second R&D wave (see �gure 2.2). The evolution of
real wages also occurs in sectoral waves, in each of which the real wage stagnates
in the phase prior to the technology switch and rises thereafter. Like in the
previous model, real GDP declines in the �rst phase and rises in the second, and
this pattern is repeated for each subsequent sector introducing the new GPT.
However, throughout the whole cycle, the average growth rate and real wages are
increasing.

To summarize, the model is able to embed the concept of general purpose
technologies as proposed by Bresnahan and Trajtenberg into a (formally complex)
general equilibrium framework. It thus provides a basis for investigating the di�u-
sion process of a pervasive technology across all sectors of the economy and allows
deducing its impact on prices of the �nal commodity and of capital and labor in-
puts, on the stock market, on the variables of distribution and on GDP. Helpman
and Trajtenberg (1998b) further showed that the basic model can be extended
to cope with skill-induced wage di�erentials (which spread with the appearance
of a GPT such as in the course of the ICT revolution). However, the present
framework still lacks explaining externalities between component-manufacturing
sectors and excludes feedback e�ects from the application sectors (i.e. the �nal
good sectors) to the GPT: Innovational spillovers are one-way, re�ected by the
productivity of the technology rising with the number of supporting components.
Assigning to each GPT a constant productivity parameter, the major technolog-
ical breakthrough itself remains in the black box, while the model focuses on the
complementary inputs which facilitate its implementation. Moreover, the arrival
rates are exogenously determined, so that the model cannot explain why and when
a new technology is introduced. Successive GPTs always have the same lifetime
and just di�erentiate according to the pre-determined productivity parameter,
thus the performance of one technology is an upscale copy of the preceding one.
In this perspective, the history of technological change is a sequence of identically
evolving technologies each arriving in equal time intervals. A drawback of the
model is the predicted slump of the economy immediately upon the emergence of
a new GPT. The feature of the formal framework that real GDP declines whenever
one sector, whatever its size and relevance, starts introducing the new technology,
cannot be defended empirically, and has stimulated further research in the theory
of GPTs.

Model by Aghion and Howitt (AH) On the basis of the model by Helpman
and Trajtenberg (HT-model hereafter), Aghion and Howitt (1998a) elaborate a
simple Schumpeterian approach comprising three evolution stages of a GPT: in-
novation, complementary component-building and technological spillovers. This
model does not only allow for endogenizing the timing of introduction regarding
the GPT, but also considers the important fact that the adoption of the GPT
by a �rm does not take place in isolation, but by imitating other �rms that have
already implemented the technology successfully.

According to Aghion and Howitt, the HT-model bears two inconsistencies
concerning the predicted slow-down after the arrival of a new GPT: First, the
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Figure 2.2: Di�usion of a single GPT over three sectors (Y/P denotes real income, n the
number of components). Source: Helpman and Trajtenberg (1998b, 105)

size of a possible productivity slump cannot be explained simply by the shift of
labor from manufacturing to R&D, as the research sector is in reality too small
to induce a fall in output; and second, slumps do not occur immediately upon
the emergence of a new technology; controversially, historical studies show a lag
of several decades from the point of its arrival, until its far-reaching e�ects are
actually measurable (David, 1990). The �rst problem can be explained by risky
experimentation on a large scale (Atkeson and Kehoe, 2008), increased temporary
unemployment, or obsolescence of physical and human capital (Howitt, 1998). As
concerns the second question about the timing of the slowdown, the authors argue
that most notably technological spillovers play a critical role, i.e. �rms learn from
each other how to adopt the new technology. In their view, the experience of other
entrepreneurs with the introduction of a technology serves as a template upon
which �rms can start developing their own adoption process. Over all sectors, this
type of social learning may � or may not � cause a slump during the �rst phase
of implementation, depending on the speed of di�usion of the new technology.

In order to model technological spillovers, Aghion and Howitt revert to their
basic Schumpeterian growth model with a continuum of sectors each producing
a share of the aggregate output by means of the GPT currently at work.6 The
discovery of a new technology is subject to a Poisson process with a constant
arrival rate. A short time interval between successive GPTs thereby discourages
research, as monopoly rents can only be reaped over a few periods; whereas a
decrease in the arrival rate ensures the di�usion of the technology over the whole

6This generalized version in Aghion and Howitt (1998b, ch. 2) deals with endogenous techno-
logical change and Schumpeter's notion of creative destruction. Within this model it is possible
to analyze GPTs, but not exclusively. It also abstracts from endogenizing the arrival times.
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economy. After a GPT arrived, each sector has to invent its own intermediate
input in order to use the new technology successfully. However, in contrast to
the HT-model, developing a blueprint now requires the afore-mentioned template
which prevents the researchers starting from point zero again.

After the successful introduction, a new GPT simply scales up the production
function of the consumption good; thus, as in the HT-model, the technology
directly enters the �nal good sector(s) as a constant e�ciency parameter, so that
the increase in productivity along the lifetime of the GPT is driven by the number
of supporting components.

Analogous to the three stages of the innovation process, the authors di�eren-
tiate between three states each sector has to undergo: Throughout the �rst state,
the old GPT is in use and no change in output with respect to the new technol-
ogy occurs. The second state denotes the phase when a new template has already
been discovered either independently (given by a Poisson arrival rate equal for
each sector) or by imitating similar �rms, but still the old technology is operated;
and the third state refers to the successful implementation of the new GPT with
a corresponding increase in productivity. As concerns the time path, the rate
of independent discovery is very low, so that the emergence of a GPT does not
have an immediate e�ect on the economy; rather, agents wait until others have
already gained experience with the unknown technology. The probability of a
�rm moving from the �rst to the second state thereby increases with the number
of its observations of successful �rms. Once the template is achieved, the �rm has
to invest labor in the development of components (the process of which is also
subject to a certain success rate), in order to �nally reach the last state of intro-
ducing the new technology. During this transition phase, no output is produced
at all. Since a �xed number of workers are devoted to R&D, the endogenous allo-
cation of labor only concerns the manufacturing of the old and new components
respectively, since both technologies are simultaneously operated in the economy.
Di�erential equations give the evolution of the sectors in the second and third
state of the innovation process. Figure 2.3 presents both paths on the basis of the
simulations carried out in Aghion and Howitt (1998a). Social learning thereby
prevents the �rms from engaging in experimentation instantly after a new GPT
appears. Instead, entrepreneurs wait until they can bene�t from the experience
of others with the new technology, and the likelihood of imitation increases with
the pool of successful adopters. Hence, the fraction of sectors with templates
rises slowly, peaks in the middle, and diminishes as more and more sectors have
succeeded in installing the new GPT. This results in the di�usion path of the new
GPT evolving along a logistic curve. These dynamics subsequently determine
the growth of aggregate output. In contrast to the HT-model, the slump does
not occur immediately upon arrival of the new GPT, but starts delayed due to
the externalities of experimentation. If social learning does not take place, if the
labor resources required for developing the template are low and uncertainty in
this experimentation phase is ruled out, output grows at a constant rate and no
slump occurs at all. As can be seen in �gure 2.4, technology di�usion over the
whole economy causes one entire cycle of GDP growth, while in the HT-model
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GDP develops in waves where each sectoral adoption induces a fall in output.
However, the reason for the slowdown is the same: The higher the number of
sectors engaged in R&D, the lower the output. The magnitude of the recession
thereby also depends on the e�ciency gains brought on by the new technology
and the degree of substitutability between the components.

In fact, many further characteristics of the HT-model are inherent in the
present framework: The demand function for intermediate goods is also of Stiglitz-
Dixit type, so that inputs are assumed to substitute each other at a constant
rate, while in reality, many components (e.g. soft- and hardware) complement
each other in the production process. Technical externalities among application
sectors are still not considered, as sectoral spillovers only occur regarding inno-
vative activities. Again, the increase in productivity can be traced back to the
emergence of a new GPT itself accompanied by the rising number of compatible
inputs; while the nature of technological change is totally abstracted from and
replaced by a constant e�ciency parameter. Furthermore, the arrival of a GPT
occurs at pre-determined time intervals which are long enough to let (almost) all
sectors adopt the incumbent technology before.

Accounting for the size of the slump, Aghion and Howitt (1998a) further
extend the basic model to deal with skill di�erentials, costly job search and obso-
lescence of capital. If skilled labor is necessary to introduce the new technology,
but not elsewhere, then the economy takes longer to overcome the recession, due
to short supply of quali�ed workers. Unemployment is explained as a side-e�ect
of creative destruction, i.e. workers in the manufacturing sector temporarily lose
their jobs when the new GPT is introduced as they do not possess the essential
skills to produce the new component. Moreover, not everybody suceeds in �nding
a new job and structural unemployment increases the size of the slowdown, as
manufacturers of new components run out of labor. Creative destruction also
refers to both human and physical capital and means the partial irreversibility
of tailor-�t inputs in the course of the arrival of a new technology. Sunk costs
enlarge the slump at the peak of experimentation.

Rise in Product Quality

Quality-ladder models consider the vertical relation between the invented good
and the existing one. An entrepreneur is willing to invest in R&D to improve the
state-of-the-art good, i.e. to enhance the spectrum of services to the consumer.
If the innovation process is successful, the �rm is able to drive the supplier of
the lower-quality good out of the market and to set up limit (or quality-adjusted)
pricing. However, the stream of monopoly pro�ts lasts only until somebody else
comes up with a product of better quality. Step by step, the product thereby
climbs up the quality ladder and the size of the jump re�ects the extent of im-
provement.
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Figure 2.3: Di�usion of a GPT and related R&D activities (t denotes time, the vertical line
shows the peak in research activities). Source: Aghion and Howitt (1998a, 132)
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Figure 2.4: Evolution of output (the vertical line corresponds to the peak in research activities
of �gure 2.3). Source: Aghion and Howitt (1998a, 134)

Model by Petsas Opposed to the previous models of expanding goods variety
in intermediate goods, the model by Petsas (2003) features the rising product qual-
ity of �nal consumption goods that channels the impact of a new GPT throughout
the economy. The technology itself shows the typical sigmoid di�usion path, how-
ever, the rate of di�usion among �rms is exogenous to the model. The economy
converges to a long-run steady state equilibrium, but during the transition, in
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which per capita consumption rate falls and the interest rate increases, output
growth (measured in GNP) exhibits again a cyclical evolution. The novelty in the
approach lies in the fact that population growth is taken into account and leads to
diminishing returns with regard to research activities, i.e. with the growing size
(or scale) of the market it gets more and more di�cult to substitute old goods
for new products (Petsas, 2003, 580).7 Thus, neither the rate of innovation nor
long-run output growth follow the same exponential path of population growth,
so that the economy converges again to a steady state.8

The framework by Petsas basically features the same setup as the quality-
ladder model by Grossman and Helpman (1991, ch. 4): Final goods are produced
by a continuum of industries; and each sector has to allocate the only resource
input labor between manufacturing of the goods of highest quality and R&D,
in order to foster the innovation of the next generation of �nal commodities.
Households are modeled as dynastic families that maximize intertemporal utility.
Each member supplies labor in exchange for wages, consumes only top-of-the-line
products and saves by holding assets of innovative �rms (Petsas, 2003, 584). The
GPT unexpectedly enters the economy in a steady state with constant output
growth rates and constant R&D expenditures, where only the old technology is
in use; and a�ects all �rms in each sector by increasing (1) the size of all future
innovations, and (2) labor productivity in research and thus the arrival intensity
of innovations, which in turn enhances the long-run growth rate of the industry.
Analogously to Aghion and Howitt (1998a), an epidemic model gives the sigmoid
di�usion path of the GPT over all industries at a predetermined rate. As to
the industry structure, �rms in a sector operate under perfect foresight in an
imperfectly competitive market and can be di�erentiated according to the quality
of their product. In order to improve the state-of-the art commodity, the agents
have to redirect labor resources to R&D, where free entry applies and production
takes place under constant returns to scale. The winner of the R&D race de�nes
and produces the new state-of-the-art good. Each industry follows the same
memoryless Poisson process of technical innovation, where the research output is
dependent on the GPT under use and the number of workers devoted to R&D.
However, with the rising scale of the economy, undertaking research becomes
more di�cult. Hence, the probability of successful innovation increases with the
adoption of the new technology, but falls over time due to population growth. As
a consequence, the long-run growth rate is a�ected by the rate of innovation as
well as the sigmoid di�usion pattern of the GPT, and the economy converges to
a new steady state after all industries have switched to the new technology. In
contrast to the model by Helpman and Trajtenberg and the model by Aghion and
Howitt, a positive growth rate prevails even in the absence of a new GPT.

As a conclusion, the approach at hand is a noteworthy contribution to the
body of literature on GPT, in so far as it tackles with the scale e�ects present

7As argued, this absence of scale e�ects matches historical evidence better (see for example
Jones (1995)).

8On the contrary, implementing positive population dynamics in the HT-model (1998a) or
the model by Aghion and Howitt (1998a) would let the GDP cycle disappear in the long-run.
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in all other models. Clearly, rising product quality is just the other side of the
coin: the formal framework and the results are similar to the models based on
expanding goods' variety. The big di�erence lies in the channels through which
the GPT is supposed to act in this approach: A technical breakthrough has a
direct impact on the productivity of R&D workers and the size of innovations,
and therefore it is possible to deduce its overall e�ect on the economy. So the
model is able to capture the pervasiveness of a GPT, but not the feedback e�ects
from the user sectors to the technology, so that once more general purpose tech-
nologies fall � from time to time � like manna from heaven and stay as they are
until the end of their life-cycle. Since there is no intermediate goods sector, in-
novational complementarities consist in `improving the improvements' in quality,
i.e. in increasing the magnitude of innovations in the consumer goods sector. In
comparison to the other models, where new components necessarily have to be
discovered in order to make use of the new technology, the essentialness of GPT
is missing here: Product quality would rise nevertheless over time, though slower
in the absence of a new technology, and the economy would still grow, but at a
lower rate.

Model by Schaefer, Schiess and Wehrli A quality-ladder model of Schum-
peterian growth is also used in a recent article by Schaefer et al. (2014) to examine
the e�ects of a sequence of GPTs on long-term growth. Each new technology lifts
the economy from one steady state to another and induces oscillating cycles during
the transition. Additionally, the model features two stylized facts in the history of
radical technological change: (1) New GPTs draw on existing technologies (thus
the arrival is endogenized), and (2) the interval between successive GPTs has
been decreasing over time, due to the ever rising stock of knowledge (Carlaw and
Lipsey, 2011).

The approach shares a similar framework with Petsas (2003), however, the
likelihood of success in R&D does not depend on the market size, but on the
location of the speci�c �rm on the quality ladder: The higher the quality im-
provement attained, the more di�cult it becomes to succeed in research. Once
having achieved a better quality of the product, the leading �rm in each industry
produces and supplies the sectoral output to the �nal good sector. Aggregating
over all companies engaged in the intermediate and �nal good sector, respectively,
allows deriving a macroeconomic quality index, which re�ects the cumulated ap-
plied knowledge stock. As for the winner of the quality race, the �ow of monopoly
rents ends with the next successful innovation in the respective industry. The
higher the rate of innovation, i.e. the probability of research success, the sooner
the incumbent �rm is replaced by a challenger and the shorter is the pro�t stream.
The arrival and evolution of a new GPT depends on the applied knowledge stock
currently available, as well as on the degree of complementarity with the incum-
bent GPT. Thus, structural breaks in the evolution path occur whenever old and
new technologies are fairly incompatible, i.e. the knowledge acquired in the past
is of little use for the operation of the new GPT; and because the lack in experi-
ence with the new GPT leads to a drop in the average level of knowledge. Along
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its lifetime, the e�ciency of the GPT evolves along a logistic curve, driven by an
increase in R&D expenditures for the development of complementary inputs. The
arrival of a GPT is determined by a Poisson process and thus contains an element
of uncertainty, but also � in contrast to the other models � depends positively
on the level of applied knowledge. Given a continuous increase in this stock over
time, the period between any two GPTs therefore becomes shorter and shorter.

As the authors argue, the assumption of the path dependence of successive
GPTs re�ects the history of innovations way better. Regarding the characteristics
of general purpose technologies, the concept is able to capture the notion of inno-
vational complementarities between the technology and the application sectors,
where the GPT enters the production of the �nal good sector only indirectly over
its impact on intermediate products. The di�usion of the GPT is modeled by the
number of quality improvements in the di�erent intermediate goods: The technol-
ogy is nevertheless ad hoc pervasive, because all industries instantaneously start
the quality race upon arrival, and no a priori changes in the production structure
are required. As a consequence, just one GPT is operated at any point in time.
Finally, the technology itself does not undergo any further improvements while in
use.

All in all, Schaefer et al. (2014) enhance the existing literature on GPTs by the
important aspect that the time interval between pervasive innovations has been
decreasing over time. In their model, however, the history of technological change
resembles a sprint relay where one GPT passes the torch of economic development
on to the next breakthrough technology, each of which runs an increasingly shorter
distance than its predecessor. Moreover, there is no coevolution of GPTs taking
place. But this is an essential, likewise stylized, fact of innovative activities:
The development of technologies can be strongly interwoven (see, for example,
the ongoing discussion of the relation between ICT and clean technology as of
`greening ICT' and `ICT for green').

Increase in Knowledge Stock

In a series of articles, Lipsey, Bekar and Carlaw model GPTs in an evolutionary
framework covering the notion of uncertainty and path dependence inherent in
technological change (Carlaw and Lipsey, 2011, 2001, 2003, 2006). Since the
methodological concept di�ers profoundly from the previous ones, it represents the
second generation of GPT models, drawn more from historical evidence. In this
regard, the approach allows for successive implementations of di�erent GPTs that
are endogenously developed and whose creation bears uncertainties concerning
arrival times and performance. Agents act on bounded rationality, while in all
other models the individuals are able to foresee the whole performance of the
GPT already at its arrival. Furthermore, sustained growth does not necessarily
imply the invention of a new GPT, which is the case for the �rst generation of
models. On the methodological level, while previous approaches use dynamically
stationary equilibrium concepts, the model by Lipsey et al. does not imply any
concept of equilibrium or balanced growth. In each period a di�erent transitional
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competitive equilibrium is achieved, and the economy never ends in a steady state.
At about the same time as Bresnahan and Trajtenberg (1995), Lipsey and

Bekar (1995) dealt with pervasive technical change under the notion of enabling
technologies, which indicates the power of radical innovations in triggering struc-
tural breaks. On the basis of extensive historical studies the authors identify two
important features of these technologies, both also imminent in the concept of
GPTs, namely the wide range of applicability and the need of complementary
products. Nevertheless, Lipsey and Bekar argue that not all GPTs necessarily
have far-reaching e�ects on the economy in the sense that they induce deep struc-
tural adjustments upon the economic system. Though this �rst approach has
been brought more in line with the existing concept of GPTs, it still retains a
more holistic view of technological progress and its impact on structural change.
The authors analyze technological change induced by a GPT not only by focusing
on its own performance, but with regard to other technologies in use, the facili-
tating structure and public policy. Thus, examining in great detail the e�ects on
each class of this so-called structuralist-evolutionary system, Lipsey et al. (2005)
di�erentiate between two types of new GPTs, complementary and transforming
technologies, the latter being assigned the motor of drastic structural change. As
each of this kind of GPT, such as electricity and ICT, shows similarities in perfor-
mance and di�usion, a stylized evolution path for a new transforming technology
is deducted and embedded into a formal model.

The formal model (Carlaw and Lipsey, 2011; Lipsey et al., 2005) consists of
three di�erent sectors, one producing a single consumption good, an R&D sector
where applied knowledge is used to make the GPT feasible for the speci�c purpose
of producing the �nal commodity, and one pure research sector, where the GPT
itself is developed. Intersectoral relations re�ect the technology structure of the
economy. However, commodity and research outputs are all produced by means of
one generic constrained input which has to be allocated between the three sectors,
and all production functions exhibit diminishing returns to scale with regard to
the resource input, and constant or diminishing returns to scale to the knowledge
stock they use.

The GPT does not directly enter the production function of the �nal com-
modity, but only indirectly because the new technology (i.e. the current stock of
pure knowledge), a�ects ad hoc the stock of applied knowledge, which in turn con-
tributes to the production of the consumer good. The impact of the GPT on the
marginal productivity of applied knowledge thereby evolves along a logistic e�-
ciency curve, opposed to the linear development of components in the approaches
of expanding product variety. Thus, the level of output and the growth cycle is
determined by the e�ciency curve and not via the di�usion process across �rms
and sectors. The third sector is devoted to the development of a new GPT by
means of a certain stock of applied knowledge and a generic resource input, and
captures the notion of uncertainty.9

9Uncertainty is introduced in the following way (Lipsey et al., 2005, 455): The �ow of pure
knowledge produced by a given e�ort is subject to random �uctuations; the arrival of a new
GPT �uctuates around a typical length; and the impact of a newly introduced GPT on the
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Hence it is the direct interrelatedness of the applied and the pure knowledge
sector which represents technological complementarities and the feedback e�ects
on the GPT. Under perfect competition, the generic resource is allocated across
the three sectors by agents maximizing their expected payo�s to investments at
each point in time. As the discount factor is set to zero, the problem is reduced to
dealing with intersectoral, but not intertemporal tradeo�s: Shifting resources from
the consumption to the applied knowledge sector will lower consumptive output
in the current period, but will increase the future productivity in the consumption
sector, thus leading to a higher average growth rate of output. Diverting inputs to
the production of pure knowledge will a�ect the impact, but not the timing, of the
new GPT. In the absence of perfect foresight, the expectations are formed upon
the current marginal products and given the random variables that obstructs the
correct anticipation of the future productivity, the economic system results in a
non-stationary equilibrium.

Unlike all other models on GPT, the present concept addresses the problem of
competing GPTs, whereby the new generation still dominates the old one in the
long run, but not necessarily in the short run, as its full impact is not immediately
revealed upon arrival.

In Carlaw and Lipsey (2011), the authors go further by allowing the concurrent
deployment of many complementary GPTs, each assigned to a di�erent technology
class.10 Every sector therefore covers a number of distinct activities, in the form of
laboratories in the pure knowledge sector, R&D facilities in the applied knowledge
sector, and the production of di�erent commodities in the consumption good
sector. Each 'lab' operates in a speci�c technology class and invents a new GPT
every once in a while, whose productivity evolves along the logistic path. However,
in order to model di�usion, the e�ciency of the GPT varies across R&D facilities.
As soon as a new GPT is invented, each R&D facility decides whether to stick
to the old technology or switch to the new one, by comparing the productivity
levels of the incumbent and the challenging GPT in the speci�c technology class.
As long as the old GPT under use has a higher e�ciency pro�le, the new GPT is
not adopted. Given the evolution of a GPT over its lifetime, the new technology
spreads through the R&D facilities at a rate that not only depends on its own
productivity pro�le, but also on the environment to employ it.

The concept by Lipsey et al. (2005) represents a clear break with all other
models, as it does not entail permanent increasing returns to knowledge and
does not presume a linear relationship between resource accumulation devoted
to R&D and the growth rate. The model predicts sustained growth, also in the
absence of a new GPT, and di�ering average growth rates along the sequence of
GPTs. Given its holistic view, the approach shows many parallels to the notion of

productivity of applied knowledge is determined in part endogenously by resource allocation
and in part exogenously by two random factors that a�ect the location and the height of its
e�ciency curve.

10Based on historical evidence, the following classes are suggested as broad categories of
technology: (1) materials, (2) information and communication technologies, (3) power sources,
(4) transportation equipment, and (5) organizational forms.
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technoeconomic paradigms: It not only distinguishes between similar phases, but
also the historic speci�city and the non-ergodicity of technological innovation is
accounted for and unfolds in a spectrum of possible outcomes, in contrast to the
stylized results inherent in the �rst generation of models. The loss in generality
is thus outweighed by the gain in explanatory power.

2.4 Conclusion

The present chapter aimed at discussing the existing literature on major techno-
logical change, focusing on the most prominent models of general purpose tech-
nologies. The original concept by Bresnahan and Trajtenberg (1995) has been
extended by the models at hand in various ways: Most importantly, the di�usion
path of the GPT and its e�ects on macro-aggregates cannot be modeled within a
partial equilibrium framework. Uncertainty was not considered in Bresnahan and
Trajtenberg (1995) either, where the main focus lies on the coordination problem
linked to asymmetric information and the public good character of commercial
research.

In the full-�edged approaches, GPT-driven growth is modeled in di�erent
ways: Either by the switch from one technology to the next, rendering current
means of production obsolete, by a jump in the quality ladder, or by a shift of
the e�ciency curve (table 2.1 compares the models with regard to the most im-
portant features). These concepts go beyond the hitherto existing literature on
endogenous growth by taking into account the complementary structure of tech-
nologies (Carlaw and Lipsey, 2011). However, as Janssen (1998) indicates, the
economic system is an undeterministic, heterogeneous, irreversible system which
is in constant disequilibrium and contains evolutionary characteristics. This holds
a fortiori true when a GPT enters the system. The approaches listed in the �rst
section have all considered the path-dependent nature of technological change,
whereas most of the models explicitly dealing with GPTs do not. Except for
Lipsey et al. (2005), technical change is not studied as a phenomenon per se, but
by presupposing Harrod-neutral technical progress to sustain a long-run steady
state. Modeling the GPT as a process innovation that triggers the design of com-
plementary inputs still does not give much of an explanation of the sources and
nature of the groundbreaking innovation itself. The jump in the productivity
parameter gives a priori credit to a technology that only exists through its com-
ponents. It is thus rather a manifestation of what Lipsey et al. (2005, 99) call a
`general purpose principle', a concept that serves as the basis of many technologies,
such as mechanization. Firms in the intermediate sector make use of this princi-
ple by embodying it in the production of compatible inputs. The introduction of
complementary products in innovation-driven growth models match historical ev-
idence better than the �rst models of endogenous growth (see Lucas, 1988; Romer,
1990), yet the technology speci�cation is rudimentary: Components are developed
and produced by labor only. In Helpman and Trajtenberg (1998a,b) and Aghion
and Howitt (1998a) these intermediates are imperfect substitutes, which means
that no component ever leaves the production of the consumption good. Simi-
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larly, it may be questionable if quality-ladder models are an appropriate tool for
capturing GPTs, since these approaches cannot re�ect their feature of generating
new products that di�er far more than just in quality. More precisely, the inter-
net revolution would not have been possible simply by improving the quality of a
bulb. Thus, the heterogeneity of technologies is not accounted for. More contro-
versially, the present models are not able to encompass the broad characteristics
of a GPT su�ciently. Whereas the scope of improvement is evident throughout
this literature, either through the expanding variety and the increase in quality of
components, or in the accumulation of applied knowledge, technological spillovers
focus to a large extent on innovational complementarities. For another example of
spillovers, horizontal externalities between component producers are just present
in the model by Aghion and Howitt (1998a), where the number of observations
of competing �rms increases the probability of the successful discovery of an own
template. On the other hand, the vertical feedback e�ects from the user sectors
to the GPT itself can be fully captured only in the model by Lipsey et al. (2005).
Pervasiveness, the most distinct feature of this type of radical innovations, seems
to have faded into the background. The baseline model of Helpman and Trajten-
berg (1998a), for example, consists of only one �nal good sector employing the
GPT, which makes it impossible to study the di�usion process of the technology.

Given these shortcomings, modeling GPTs within an input-output framework
would enrich the insights into the e�ects of major technological change by extend-
ing the rudimentary technology structure presented in the �rst generation of GPT
models. Inter-industry relations allow, on the one hand, the analysis of technical
complementarities, which was already outlined by Hirschman (1958); and, on the
other hand, the endogenous production of the GPT itself. In this framework, a
new GPT represents a product innovation that induces process innovations in the
user sectors. Furthermore, the heterogeneity of industries and vertical integration
of sectors o�er a more nested technology tree underpinning the investigation of
di�usion processes. An input-output approach in the line of classical economics
and based upon the seminal work of Sra�a (1960) may serve as a reference point
where commodities are produced by means of other commodities. The creation
of a GPT can thereby be captured by the production of a new commodity that is
subsequently used in an increasing range of sectors downstream. The e�ciency of
the GPT evolves di�erently in each sector, similar to the approach of Lipsey et al.
(2005). The change in relative prices indicate the direction of technical change,
just as in Antonelli (2003). The model can also explain how changes on the pro-
duction side have an impact on the distribution side. A major advantage of this
approach is that it o�ers a uni�ed framework for the theoretical and empirical
investigation of general purpose technologies.
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Chapter 3

On the Economic Purpose of

General Purpose Technologies:

An Evolutionary Multisectoral

Framework

General purpose technologies (GPTs) are technical breakthroughs that are able to spur and
sustain growth as a result of their pervasive use in the economy. This paper attempts to
study the e�ects of these innovations on the economic system at a theoretical and empirical
level. First, the di�usion process of a GPT is reconstructed by an evolutionary multisectoral
framework: An input-output approach is combined with the replicator dynamics of evolutionary
game theory, in order to give a rationale how the adoption of an innovation at the �rm level leads
to a changing production mode at the industry level. Subsequently, a structural decomposition
analysis for Denmark from 1966 to 2007 tracks the impact of the current GPT, the information
and communication technologies (ICT), on aggregate and sectoral labor productivity growth.
Findings show that the broad di�usion of ICT a�ected growth signi�cantly only after 2000,
owing to skill-biased technical change and capital deepening.

Keywords | general purpose technologies, labor productivity, structural decomposition

analysis, ICT, evolutionary economics, Sra�a

3.1 Introduction

History has witnessed a number of radical innovations that changed the mode of
production and the structure of the economic system. Prominent examples are
the steam engine, electricity or more recently, ICT. Given the pervasive use and
potential for increasing the overall innovation rate, this type of major technologi-
cal change can be captured by the notion of general purpose technologies (GPTs).
The distinct evolution pattern of GPTs generates profound economic and social
consequences: The arrival of ICT, for instance, has been associated with the pro-
ductivity slowdown in advanced economies (especially in the U.S.) experienced
in the 1980s; as the irreversibility of tailor-�t inputs for incumbent production
processes and the obsolescence of capital, as well as the short supply of skilled
labor hampered its e�cient utilization right from the beginning (Helpman, 1998).

This chapter is co-authored by A. Rainer | University of Graz, Graz Schumpeter Centre,
Universitätsstrasse 15/FE, A-8010 Austria: andreas.rainer@uni-graz.at.
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Only after these barriers were overcome, could a phase of substantial growth be
observed in the beginning of the 1990s. On an empirical level, a wide spectrum of
studies have dealt with the immediate and long-term e�ects of ICT on productiv-
ity growth (see, e.g., Jorgenson and Timmer (2011), Jorgenson et al. (2007), Basu
and Fernald (2007), Inklaar and Timmer (2007)). Most of these studies focus on
Anglo-American countries, in particular the U.S., and identify IT as an important
source for both capital deepening and total factor productivity growth in the late
1990s and after 2000.

Even though the ICT revolution took several decades to show up in the pro-
ductivity accounts, the wages of skilled workers has risen signi�cantly from the
emergence of this GPT onward. The most common explanation is that the em-
ployment of ICT makes great demands on the quali�cation of the workforce: New
skills are required that �rst need to be accomplished through investments in educa-
tion and training. The relation between the emergence of a GPT and skill-biased
technical change have been extensively discussed in the theoretical (Aghion and
Howitt, 1998a; Aghion et al., 2002; Helpman and Trajtenberg, 1998a,b; Jacobs
and Nahuis, 2002) and empirical literature. Increasing computerization has not
only led to higher levels of both skills and wages in the workforce (Allen, 2001;
Autor and Krueger, 1998; Berman and Griliches, 1994; Krueger, 1993; Majum-
dar, 2008), but also to the substitution of low-skilled by higher-skilled workers
(Levy and Murnane, 1996), and rising wage inequality both among and within
di�erent education groups (Autor and Krueger, 1998; Murphy and Welch, 1992).
Another strand of research investigated the e�ects of speci�c GPTs (without re-
ferring to this notion explicitly) within a dynamic input-output setting. Twenty
years ago in their seminal work on the future e�ects of computerization on the
labor force, Leontief and Duchin (1986) developed an input-output model to test
four scenarios for how automation would impact the volume and composition of
the workforce in the U.S. from 1980 until 2000. As evidenced by these empirical
�ndings, rapid technical change due to advances in information and communica-
tion technologies has resulted in a di�erentiated quali�cation pro�le of the labor
force. In a similar study for West Germany, Kalmbach and Kurz (1990) analyzed
the direct and indirect e�ects of micro-electronics on size and structure of the
labor force. In their model, strong emphasis is put on the role of private invest-
ment behavior for the di�usion process of this technological breakthrough. Pan
(2006) suggests a dynamic input-output framework where R&D investments are
endogenized and drive the evolving dominance of a new technology, embodied in
�xed capital, in sectoral production. The approach is subsequently applied to the
Chinese economy by projecting the impact of non-fossil energy on the electricity
sector.

This paper aims at investigating in detail the role of GPTs for productivity
growth and wage dispersion. An evolutionary, multi-sectoral approach is devel-
oped that explains the economic dynamics triggered by the emergence of a GPT
on theoretical grounds. The Sra�an static model is augmented by the replicator-
dynamics approach of evolutionary game theory to describe how the increasing
population of carriers of the new technology at the �rm level causes changes in
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the production method on the sectoral level. The theoretical framework lays the
ground for a structural decomposition analysis, assessing the impact of ICT ex

post on aggregate and sectoral productivity for a small open economy, Denmark,
between 1966 and 2007. We revert to labor productivity growth as a measure of
economic development, since ICT has had a special impact on the labor market:
On the one hand, labor intensity of production decreased through automation
owing to ICT-capital, while on the other hand the IT boom has increased the de-
mand for quali�ed workers. Annual changes in labor productivity are decomposed
into technical change, (non-investment) �nal demand, shifts in the employment
of low and high skilled labor, factor substitution, and technical change embodied
in capital goods. Furthermore, the e�ects of technical change within the ICT
sector and capital-deepening of ICT are studied on an intersectoral level. Finally,
we also discuss transitional wage disparities between low and higher-skilled labor
during the rise of the IT era.

The paper proceeds as follows: Section 3.2 introduces the multisectoral evo-
lutionary framework. Section 3.3 describes the structural decomposition analysis
and the underlying data, while a detailed presentation of the decomposition and
the industry classi�cation can be found in appendix 3.A and 3.B, respectively.
Section 3.4 displays the most important results with a special emphasis on the
GPT at work, ICT. Concluding remarks are given in section 3.5.

3.2 Methodology

The workhorse models on general purpose technologies (Aghion and Howitt,
1998a; Helpman and Trajtenberg, 1998a,b) explain observed di�usion patterns
of this type of radical innovations as a result of R&D activities. This section aims
to provide a sound theoretical explanation of the micro-funded di�usion process
by means of an evolutionary framework based on �rm growth processes.

The model we propose centers around the vertical integration of sectors each
of which produces a di�erent commodity by a di�erent production process. Since
pervasive utilization throughout the economy is one of the major characteristics
de�ning a GPT, analyzing the economic implications of GPTs in a multi-sector
setting is inevitable. Therefore a classical input-output model developed by Sra�a
(1960) serves as the basis of our investigation.

In an N -sector economy, let amn ∈ (0, 1) be the amount of good m (produced
in sector m) and ln the amount of labor to produce one unit of output in sector n.
Given this state of technology, the relationship between relative prices, a general
rate of pro�t, and the implicit wage rate can be scrutinized in the following price
equation:

(1 + r)pTan + w ln = pn (3.1)

r gives the uniform rate of pro�ts, w the wage rate, and the n-th entry pn of
the price vector p ∈ RN+ denotes the price of commodity n. If more than one
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process for producing commodity n exists, choice of technique determines the
cost-minimizing production system. It is thereby implicitly assumed that all �rms
operating in sector n would instantaneously use the most e�cient production
method. In the following, we will introduce a framework that captures the intra-
and intersectoral dynamics upon the emergence of a new technology.

An Evolutionary Multisectoral Model of Technological Di�usion

The emergence of a GPT is accompanied by a newly skilled workforce necessary
to operate the innovative technology. Skill diversi�cation, including the existence
of wage premia, is considered by allowing for K di�erent skills. lmk > 0 then
denotes the quantity of skill k necessary to produce one unit of output of sector
m. Suppose now, for each sector n a number In of processes exists to produce the
respective good. At time t a fraction qinn (t) of the output of sector n is produced
by process in. If a

in
nm is the input of good m and linnk the input of skill k labor to

produce one unit of good n by means of process in, then

ānm =

In∑
i=1

qinn (t)ainnm and l̄nm =

In∑
i=1

qinn (t)linnm

are the respective input coe�cients of the average technology operated in sector
n at time t.

Assuming prices to be still determined by unit costs of production, one gets
the following modi�ed price equation for the commodity produced in sector n
under a given rate of pro�t r:

(1 + r)pT ān + wuT l̄n = pn (3.2)

u= u = w/w is the wage vector with the k-th entry wk denoting the remuneration
of skill k per unit of labor.

Intrasectoral dynamics What remains to be answered is the time develop-
ment of the market shares qinn (t) of the di�erent technologies operated within a
sector. Extra pro�ts ρinn gained by some speci�c technology induce �rm growth
as follows:

(1 + r + ρinn )pTainn + wuT linn = pn (3.3)

with vectors (ainn , l
in
n ) of input coe�cients of technology in in sector n. Firm

output xinn now grows according to extra pro�ts. Consequently,

ẋinn
xinn

= ρinn

and due to xinn = qinn xn and ẋn =
∑In

in=1 ẋ
in
n one gets ẋn/xn = ρ̄n. Here xn

denotes total output of sector n, and ρ̄n =
∑In

i=1 q
in
n ρ

in
n is the average extra
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pro�t generated in sector n. Acknowledging ẋinn = q̇inn xn + qinn ẋn, the evolution
of the system in the presence of technical change is described by the replicator
dynamics:1

q̇inn
qinn

= ρinn − ρ̄n (3.4)

The arrival of a new GPT Within this evolutionary multi-sector framework,
a new GPT represents a product innovation and implies the emergence of a new
sector producing this technological breakthrough. The adoption of this new tech-
nology by other sectors constitutes a process innovation, as old production meth-
ods are getting replaced. Thus, the emergence of a new pervasive technology
triggers a phase of adjustment on the meso level, during which �rms in the dif-
ferent sectors start one by one introducing the new GPT, which modi�es the
incumbent production method. This phasing-in of a new process is re�ected by a
continuous change in the average level of the technical coe�cients ān, l̄n of sector
n.

In the following, we investigate the evolution of the technique empirically in
a time-discrete manner, so that the system of production at time t is determined
by

(1 + r)Ā(t)p + L̄(t)u = p (3.5)

The relationship between r and w can be depicted by means of wage-pro�t
curves:2 De�ning a �xed commodity basket d ∈ RN+ as numéraire by dTp = 1
and a rate of pro�t r, the w − r relationship

w̄ (t) =
1

dT (I− (1 + r)A (t))−1 L (t) u
(3.6)

is obtained.
Equation (3.6) distinguishes from the tautological concept of real wage-pro�t

curves (see Michl (1991)): While the �rst are directly derived from the production
system, the latter are based on the division of total income (as stated in national
accounts) into wages and pro�ts.3 Both approaches allow for investigating changes

1A more detailed derivation and explanation of equation (3.4) is provided by Rainer (2012).
2This system deviates from the `normal' or long period position (Kurz and Salvadori, 1995,

46) of the economy, as characterized by viability of production and absence of extra pro�ts
(and thus choice of technique). However, it still entails a uniform rate of pro�ts and wages,
as bene�ts from technological change are assumed to be covered in the changing shares of the
di�erent production methods available in each sector at a speci�c point in time (see equation
(3.4)).

3For recent studies see, e.g., Ferretti (2008) who derives the wage-pro�t frontier for a set of
18 industrialized countries over a time span of 45 years (1961�2005) in order to show technical
change. Vaona (2011) analyzes pro�t dynamics and its impact on the direction of technical
change (capital or labor-saving) by means of wage-pro�t curves for Denmark, Finland and Italy.
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Figure 3.1: Wage-pro�t curve for Denmark from 1966 to 2006

in labor and capital productivity, however, equation (3.6) based on the Sra�an
system also renders possible an intersectoral analysis.

Di�erent kinds of technical change are pictured by the dynamics of the w−r re-
lationship: Harrod-neutral or purely labor-saving technical progress is represented
by a clockwise rotation of the curve, whereas Solow-neutral or purely capital-
saving technical progress corresponds to an anti-clockwise rotation. Hicks-neutral
or factor-saving technical change leads to a parallel shift outwards. If two curves
� related to di�erent technologies � intersect, then technical progress is not un-
ambiguous and one has to draw on the actual income distribution to scrutinize
the sort of change (Degasperi and Fredholm, 2010).4

Figure 3.1 shows the corresponding wage-pro�t frontier for Denmark from
1966 to 2006. The intersection with the axes determines the maximum wage rate
(for r = 0), and the maximum rate of pro�ts (for w = 0), respectively. Until
1986 the curve rotates clockwise around a more or less stable maximum rate of
pro�t in the range of 0.92, this means that in the 20 years between 1966 and 1986
labor-saving technological change took place. For 1996 the w − r relationship
shows unambiguous technical progress, because both intersection points moved
outwards. Since then, however, the maximum rate of pro�ts has decreased and
the curves of 1996 and 2006 intersect at a rate of pro�t equal to 0.36. Comparing
this value to the gross pro�t rate for 2006 which ranged around 10 percent, it
is clear that the latter technique turns out to be labor-saving and capital-using
relatively to the former production system.

In the case of a zero pro�t rate, equation (3.6) denotes the maximum wage

4Degasperi and Fredholm (2010) develop a method of productivity accounting and propose
wage-pro�t frontiers based on the classical approach to show the economic evolution of several
OECD countries over a period from 1970 to 2005.
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rate (i.e. the vertical intercept in �gure 3.1) and reads

w̄ (t) =
1

dT S̄ (t) L̄ (t) u
(3.7)

with the Sra�a inverse S̄ ≡
(
I− Ā

)−1
. The maximum wage rate is thus a func-

tion of physical quantities of embodied (Ā) and commanded (L̄) labor. Moreover,
it re�ects the purchasing power of one unit of labor due to the commodity basket
dT it is able to buy. Therefore the wage rate represents both the technical charac-
teristics of the production system as well as consumption choices of the economy
(Pasinetti, 1993, 24).

Note that the higher w̄, the less direct and indirect labor inputs are necessary
for the production of the commodity bundle. From a dynamic perspective, an
increase in the maximum wage rate over time thus indicates productivity gains
due to technical progress. In this regard, the relative change in the maximum wage
rate from one period to the next provides a measure for annual labor productivity
growth:

glt =
w̄t − w̄t−1
w̄t−1

= w̄t

(
1

w̄t−1
− 1

w̄t

)
(3.8)

This measure di�ers from the conventional indicator of labor productivity growth
in so far as it considers not only the labor quantities that are directly employed
in the respective sector, but also takes into account the labor input in upstream
production. This means that an industry exhibits a higher labor productivity (as
de�ned by (3.7)) whenever the supplying industries operate less labor-intensely.

Structural Decomposition Analysis

Structural decomposition analysis (SDA) has been a prominent tool in input-
output analysis for associating changes in one variable, most often gross output
or value added, to changes in other variables (Dietzenbacher and Los, 1997, 1998;
Miller and Blair, 2009; Rose and Casler, 1996). Examples of structural decom-
position analysis of labor productivity are given in Jacob (2003) for the case of
Indonesia, or Yang and Lahr (2008, 2010) for the case of China.

In this paper, SDA is used to trace labor productivity growth by means of
changes in the maximum wage rate, as stated in (3.7). In order to also investigate
the role of �nal demand as driver for structural dynamics, the Leontief model
is introduced into the analysis. In the latter, gross output x is calculated from
the demand side, as opposed to the Sra�an model, where x is derived from the
supply side5:

xTA+ yT = xT ⇐⇒ xT = yT (I−A)−1

5In the following, the bar above variables � indicating average coe�cients � is dropped for
the sake of better reading.
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y gives total �nal demand (from private households and government, investment
and exports). Furthermore, total employment l can be calculated as the sum of
(weighted) labor inputs Lu embodied in the gross output vector x:

l = diag (Lu) x = diag (Lu) H y (3.9)

H ≡ (I−AT )−1 = ST denotes the Leontief inverse.
Combining (3.9) with (3.7), the maximum wage rate is given by

w̄ =
1

dT S L u
=

1

dT S l̂ x̂−1 e
=

1

dT S l̂ [diag(Hy)]−1 e
(3.10)

where the symbol ˆ indicates a diagonalized vector and e ∈ RN is a vector with
coe�cients en = 1 for all n = 1, . . . , N . Considering two di�erent snap shots in
time, from (3.8) and (3.10) labor productivity growth glt can be derived as

glt = wt dT
[
St−1 l̂t−1 [diag(Ht−1yt−1)]

−1 − St l̂t diag(Htyt)]
−1
]
e (3.11)

Given (3.11), the relative change in the maximum wage rate can be decom-
posed into four partial factors: (1) technical change as indicated by a change in
the direct input matrix A (∆S ≡ St−St−1), (2) change ∆l ≡ lt− lt−1 of total em-
ployment, (3) substitution e�ect, indicated by a change in AT (∆H ≡ Ht−Ht−1)
and (4) change ∆y ≡ yt − yt−1 of �nal demand. This initial decomposition is
extended by di�erentiating between low and high-skilled labor, and capital �ows
of ICT and Non-ICT related investments. The decomposition can be found in
detail in appendix 3.A.

3.3 Data

National Accounts

Denmark belongs to the innovation leaders in the European Union, ranking sec-
ond (behind Sweden) in the most recent Innovation Union Scoreboard (European
Commission, 2014). With regard to ICT, the country was chosen as a case study
for the following two reasons: Firstly, it is a small open economy acting as a net
importer of ICT products.6 ICT can therefore be analyzed from a more general
perspective, since the focus is on the impact of a GPT as an input of production
and not on its impact on �nal demand. Economies such as the U.S., Japan or
Finland � which are net exporters of ICT products � would cause a bias with
regard to our research question: It is their extensive trade with these products
that a�ects economic development, and not primarily the pervasive use of this
GPT in production.

Moreover, Statistics Denmark also provides a very good database that �ts
the purpose of this work: Annual input-output tables for 130 sectors in NACE

6The only exceptions are central processing units. For a detailed analysis of Denmark's
position among Europe with regard to ICT activities see Koski et al. (2002).
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Rev. 1.1 classi�cation (which largely corresponds to ISIC Rev. 3.1), in constant
prices of the year 2000, entailing domestic and import �ows, and covering a long
period of time (1966 to 2007).7 Applying the criterion of Jovanovic and Rousseau
(2005b), whereby the emergence of a GPT can be dated to the year when the new
technology reaches a one percent share in the industrial sector's stock equipment �
which in Denmark's case was in 1979 � we can therefore also study the pre-arrival
time.

The 130 sectors in the original classi�cation were subsumed under 53 indus-
tries for the sake of better illustration of the results and in order to ensure the
non-singularity of the system (the list of industries is given in table 3.B.1). Con-
cerning the de�nition of the ICT-producing sector, a broad classi�cation scheme is
used, including not only the ICT-manufacturing sector, but also computer-related
business activities and software consultancy. The following industrial and service
classes comprise the notion of ICT in the scope of the present analysis: (1) Mfr. of
information and communication technology (ICM): mfr. of o�ce machinery and
computers, mfr. of radio and communications equipment (2) ICT-related services
(ICS): Computer activities, software consultancy and supply.8

Investments in ICT capital deserve a special consideration, since most ICT
products are not used up within one period, but remain in the production process.
Thus the analysis needs to include investment �ows as well. From 1993 to 2007
real investment matrices, in constant prices of year 2000, were available in �ve
categories: (1) buildings other than residential, (2) machinery, (3) transport, (4)
software, and (5) construction. The classi�cation of delivering sectors is identical
to the one in the input-output scheme. However, the set of investing sectors
corresponded to the national standard classi�cation of 53 sectors, whereby three
industries (health, research and education, culture) are further disaggregated,
resulting in 56 sectors in total. As a �rst step, the investment matrices were
reclassi�ed according to the 53 sectors in the Sra�an classi�cation, which was
in most cases a one-to-one correspondence.9 Investment demand before 1993
was only available at an aggregate level in the aforementioned categories (1)�(5).
For these years, the sectoral shares in the demand for the respective asset were
calculated from the purchases of intermediate products. It is therefore assumed
that sectors with higher demand for intermediate products related to a speci�c
technology also invest more in capital goods of this technology. These estimations
were backed up with investment data (industry by industry) from 1966 to 1992.

7The years 1970 until 1972 had to be excluded due to the lack of data reliability, because for
these periods the results indicate a hardly viable system (i.e. with a pro�t rate close to zero or
negative).

8This de�nition is widely accepted among empirical studies on ICT (see, e.g., Jorgenson et al.
(2007)).

9The only industry that needed to be split up further was electricity, since in the original
classi�cation it is grouped together with gas and water supply. The assigned share was therefore
derived from total deliveries of these two sectors to investment demand. However, the distribu-
tion of the respective output across sectors was assumed to be the same for the electricity and
the gas and water-supply industry.
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Employment Data

Regarding employment, total working hours of employed persons and self-
employees were obtained from Statistics Denmark. For the discrimination of the
labor force by education attained we used the Denmark labor input data provided
by the EU KLEMS database (Edition 2008). This dataset comprises the shares
in total working hours for three di�erent quali�cation levels over a time span of
26 years (1980�2005). Since these data are only broken down for 15 sectors, each
subsector was assumed to be characterized by the same labor composition. For
the purpose of this paper, the only discrimination was made between low-skilled
and higher (i.e. middle and high)-skilled workers; no di�erences in age and gen-
der are considered. Low-skilled labor thereby refers to basic schooling, whereas
middle and high-skilled labor comprises short, middle and long-cycle higher ed-
ucation as well as vocational education and training (for further details on the
labor accounts see the EU KLEMS manual, pp. 24�31). For both quali�cation
levels, the ratio between the respective wage share and the share in total working
hours is calculated, in order to obtain the compensation level of the respective
skills compared to the industry average. Additionally, for the period from 1983
until 2002 data on skill levels were complemented by labor force surveys conducted
by the International Labor Organization, which report the type of occupation by
economic activity.10

A Note on the Numéraire

The empirical analysis in this paper requires the speci�cation of a numéraire. A
number of di�erent commodity bundles were tested. By means of sensitivity anal-
ysis the speci�cation of the numéraire is chosen whose application �ts best sectoral
labor productivity growth as derived from the system of national accounts. Thus,
the index �nally selected is the share of each industry in the net product of the
year 2000. This numéraire also makes sense intuitively due to its analogy to a
consumer price index, and the year 2000 is chosen as the reference period, since
the monetary input-output tables are set out in constant prices as of 2000:

dn =
xn −

∑53
j=1 znj∑53

n=1 yn

Figure 3.2 presents the growth of labor productivity (LPG) obtained from
the national accounts,11 together with the productivity measure derived from the
Sra�an system (solid line). The LPG measure deviates in two years (1981 and

10For the period from 1983 to 1993, occupations by industry are classi�ed according to
ISCO68/ ISIC Rev. 2.1, for 2000�2002 according to ISCO88/ Rev. 3.1. The high aggrega-
tion (one-digit) level of occupation data did not allow a reclassi�cation in any direction (either
ISCO68 or ISCO88) as the logic of the scheme changed signi�cantly in the revision process
for ISCO88, pooling occupations according to skill levels rather than by economic activity (for
further details see Ganzeboom (1996)).

11More precisely, for each period GDP at market prices is divided by total hours worked in
the respective period.
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Figure 3.2: Labor productivity growth (LPG) from 1966 to 2007. Figures from the Sra�an
system and the system of national accounts

1983) from the indicator based on national accounts, but otherwise represents a
good �t to the conventional �gures (with a correlation coe�cient ρ = 0.85).

3.4 Results and Discussion

The results of the SDA are presented �rst on the aggregate level (subsection 3.4)
and then on the meso level (subsection 3.4).

Aggregate Results

Figure 3.2 shows that labor productivity growth has been steadily decreasing in
the past 40 years: 4.0% per annum in the 1960s compared to around 1% in the
last decade. These historically low growth rates also lag behind other countries:
Whereas Denmark ranked eighth among OECD countries in terms of labor pro-
ductivity in 2000, it dropped back to position 12 by 2011 (McGowan and Jamet,
2012, 5). Table 3.1 contains the growth rate of aggregate labor productivity on
an annual average in �ve-year intervals from 1966 to 2007 (�rst row). Accord-
ing to the focus of the paper, the 53 sectors are aggregated into ICT-producing,
ICT-using and Non-ICT industries12 (see appendix 3.B). Lines 2�9 present the
decomposition of aggregate labor productivity growth into (1) technical change,
(2) changes in labor composition, (3) substitution, and (4) �nal demand. The
sign and magnitude of these factors depict the change over time in the amount of
vertically integrated labor embodied in the speci�ed commodity basket.

12The division into ICT-using sectors and Non-ICT sectors was done according to the share
of ICT equipment in total investments in the year 2000 (with the threshold being 5%).



42 CHAPTER 3. ON THE ECONOMIC PURPOSE OF GPTS

While technical change led to a reduction in total labor input and thus had
a positive impact on LPG until the 1990s (except for the period 1975�1980),
it became labor-using afterwards. Interestingly, technical progress in the ICT-
producing industries stimulated labor productivity growth in the early 1990s, but
this positive e�ect was compensated by the negative fabrication e�ects in the
ICT-using industries. Conversely, the contribution of technical change in the ICT
sector to LPG was negative between 1995 and 2000, while technical change in
ICT-using industries had a positive impact (but was outpaced by the negative
e�ects recorded in the remaining industries).

Employment also a�ected productivity growth in both directions:13 Over the
whole period of study, one can observe a decline in the employment of low-skilled
labor, and an increase in hours of higher-skilled workers (therefore the negative
sign). However, whereas in the �rst decade of study the economy operated in a
manner that was labor saving, the early 1980s were characterized by a rise in total
working hours: High-skilled persons, particularly scientists and engineers as well
as technicians and clerical workers, were strongly demanded in the ICT-producing
and ICT-using industries. These �ndings indicate a �rst phase of adjustment
where industries started to experiment with the new technology. The second half
of the 1980s features a positive e�ect of employment shifts on labor productivity.
One could observe a strong decrease in unskilled labor, especially by workers in
the agricultural sector, mining and transport, and still (though less pronounced) a
rise in high-skilled labor. At an occupational level, the demand for sales workers
increased throughout all sectors, re�ecting the transition to a service economy.
Between 1990 and 1995 as well as 2000 and 2005, the reduction in low-skilled
labor outweighed the increase in higher-skilled workers. This period, re�ecting the
peak of the ICT era, experienced an ongoing surge for scientists and technicians, as
well as managerial workers, but also a reduction in the employment of clerks, who
mainly perform secretarial duties. As this is particularly observable in the ICT-
using industries, the analysis shows that automation indeed replaced traditional
jobs.

During the whole time span, labor productivity has been driven by an in-
crease in gross output which, except for the early 1970s, outpaced the e�ect of
employment shifts between di�erent skill levels. The output e�ect can be further
disentangled into a substitution and �nal demand e�ect. The substitution e�ect
re�ects the changing diversi�cation of commodity inputs across sectors and has
had a positive impact on labor productivity growth (except for the period 1970�
1980). This e�ect was again most pronounced in ICT-using industries, where
`old' factors of production were substituted by new technology in the course of
computerization. The most important source of LPG, however, was �nal demand.
This result to some extent supports the hypothesis that changes in demand pat-
terns drive the evolution of the economic structure (Pasinetti, 1993) as well as
the direction of innovative activities (Antonelli, 2003); the latter is evidenced
by the �nding that the e�ect of investment demand for ICT products on labor

13Note that for the SDA di�erent relative wages u were omitted as weights, since we are
interested in the absolute change of working hours per skill level.
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productivity change grew by factor seven over the entire period under study.
The remainder of table 3.1 presents the sectoral origins of growth. As also

shown in �gure 3.3, the contribution of Non-ICT industries to LPG is signi�cant
given their share in total value added of about 70% over this period. But it has
been continuously declining, from 2.9% in the 1960s to 0.13% in the �rst decade
of the 21st century. On the other hand, the contribution of ICT-using industries
(which account for another one third of value added) was signi�cant right from
the beginning with a share in aggregate LPG of 24% or 1.99 percentage points
between 1970 and 1975. This is due to the fact that at that time o�ce machinery
already played an important role in these sectors and the new ICT replaced the
old technology step by step. In the following 20 years, the impact of ICT-using
industries rose slightly (see �gure 3.3), until the mid-1990s, where their contribu-
tion to labor productivity growth dropped to 15%. The period between 1995 and
2000 can be seen as the second phase of adjustment to the new technology, marked
by signi�cant advances in ICT, most importantly the internet, and a very strong
demand for high-skilled labor in these industries. From 2000 onwards, it seems
as if ICT has �nally been rejuvenating growth: ICT-using industries account for
55% (0.55 percentage points) and, in the last period of study, even for 77% (0.66
percentage points) of aggregate labor productivity growth. This rise in magnitude
can directly be traced back to the ICT-producing industries, despite their small
share in value added (1966: 0.6%, 2007: 4.0%). From 1966 to 1970 these four
industries (two in manufacturing, two in the service sector) contributed less than
half a percentage point to aggregate labor productivity. Between 1970 and 2000
their share in LPG increased moderately from 2.5% to 4%. In the most recent
years of study, ICT-producing industries accounted for 0.06 percentage points of
LPG (or 8%).

These empirical �ndings point towards skill-biased technical change driven
by computerization. However, the positive impact of ICT on aggregate labor
productivity is only detectable in recent years, which reveals the long gestation
period of this GPT as well as the profound adjustment process throughout the
economic system.

Digging Deeper: The Impact of ICT on Sectoral Productivity

To uncover the role of ICT on the meso level, we will in the following examine both
the sources and the evolution of ICT-induced productivity growth by answering
two questions: (1) How large have been innovational complementarities, captured
by the impact of technical change within the ICT sector on labor productivity
growth in all other industries? (2) Which role can be attributed to ICT-related
capital deepening? As Jorgenson et al. (2007) conclude, even though aggregate
data are easier to handle and to present, they do not cover the heterogeneity
between industries. Thus, the full range of data is exploited in showing the
spillover e�ects of the GPT-producing sector for all other industries. For this
analysis, the sectoral weights in the structural decomposition are dropped to show
the impact of ICT for the di�erent industries, regardless of their share in the net
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1966- 1970- 1975- 1980- 1985- 1990- 1995 2000- 2005-
1970 1975 1980 1985 1990 1995 2000 2005 2007

LPG 4.01 3.32 2.32 2.71 3.01 2.35 0.86 1.02 0.85
(annual average)

Factors

Technical change 0.45 0.11 (0.47) 0.06 0.21 (0.29) (0.40) (1.06) (1.63)
Labor input 0.58 2.07 (0.92) (0.25) 0.65 0.44 (1.86) 0.08 (1.64)
�Low-skilled - - 9.38 1.29 1.51 1.45 0.17 0.38 (25.14)
�High-skilled - - (10.31) (1.54) (0.86) (1.01) (2.03) (0.30) 23.50
Substitution 11.51 (11.65) (0.92) 0.03 0.23 0.30 0.48 1.08 1.72
Final demand (8.53) 12.78 4.65 2.87 1.92 1.90 2.64 0.92 2.40
�ICT (0.14) 0.02 0.07 0.16 0.22 0.13 0.39 0.09 0.19
�Non-ICT (8.40) 12.76 4.58 2.71 1.70 1.77 2.25 0.83 2.21
Industries

ICT-producing 0.04 0.11 0.08 0.09 0.08 0.11 0.03 0.05 0.06
ICT-using 1.07 1.22 0.55 0.76 0.83 0.68 0.13 0.55 0.66
Non-ICT 2.89 1.99 1.70 1.88 2.10 1.59 0.67 0.40 0.13

Table 3.1: Growth in aggregate labor productivity in Denmark and corresponding growth
factors. All �gures are average annual percentages. The industry classi�cation is de�ned in
appendix 3.B. ICT includes mfr. of ICT equipment and computer and related activities. Source:
Own calculations
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Figure 3.3: Sectoral contribution to annual labor productivity growth (LPG=1) in �ve-year
interval from 1975 and 2005. Source: Own calculations

product.14 In order to gain further insights into the relation between di�usion
and productivity, the level of sectoral deployment of ICT will be shown as well.
This di�usion path is calculated on the basis of an intersectoral transactions
matrix covering both intermediate and capital demand produced domestically
and abroad (see chapter 4). Industries are subsequently ranked (in descending
order) according to the intensity of ICT in the respective production processes.

14Mathematically, this means that the numéraire is represented by a vector with all coe�cients
being equal to one.
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Since the analysis involves a time span of 42 years and 53 di�erent industries,
and the full range of data across industries is to be examined, the results are
visualized graphically. Moreover, as the e�ects within the source sector are usually
the strongest, the respective ICT industry is removed from the graphs. Hence,
just the intersectoral � and not the intrasectoral � contributions are pictured.
The usage of ICT in each sector is represented by the color of the surface: The
higher the share of ICT in production, the warmer the color. Industries that are
displayed in red shades thus experience the highest ICT intensity.

Figure 3.4 shows the contribution of technical change within the ICT industries
to sectoral labor productivity growth from 1966 onwards. An important criterion
for identifying a GPT is its scope of improvement. In this context, we use technical
change in the ICT-producing sector as measured from an input-output perspec-
tive as an indicator for advances in the technology itself. Figure 3.4 reveals that
the positive e�ect of technical change in the ICT sector is highest in those sectors
that adopted ICT at an early stage and use it most intensively relative to other
industries. Thus, ICT had its strongest impact on labor productivity growth in
the following manufacturing industries: mfr. of food, chemicals, as well as elec-
tronic, optical and medical instruments. The construction sector, other retail sale
(covering electronic commerce) and air transport were also signi�cantly a�ected.
A particularly high impact can also be observed on post and telecommunica-
tions, auxiliary activities to �nancial intermediation (such as the administration
of �nancial markets), and on sewage and waste disposal. For the time path,
innovational complementarities manifest in labor productivity growth only from
the 1990s onwards; the only exceptions are the electronic and optical/medical-
equipment industries and �nancial intermediation, where the impact of ICT was
visible throughout the period under study. Interestingly, advances in ICT initially
led to a decrease in LPG in the manufacturing of machinery and other equipment.

Furthermore, the analysis of capital deepening regarding ICT shows impor-
tant technical complementarities between the GPT-producing industries and the
user sectors. In this regard, �gure 3.5 exhibits a slightly di�erent impact pat-
tern of ICT: Capital deepening unfolds its (comparatively large) e�ects on labor
productivity growth in two waves: The �rst wave started in the 1980s and trig-
gered a modest rise in LPG in all industries, and a more pronounced one in the
manufacturing and processing of basic metals, the electronic industry and the
banking sector. The second wave started out at the beginning of the 1990s and
had a more signi�cant impact on the economy: The increasing demand for ICT
capital raised labor productivity growth, particularly in retail sale (owing to the
internet), R&D, consulting activities and public administration and membership
organizations (which rely on association management software). In the case of
post and telecommunications, investments in ICT already started in the mid-
1980s, which caused labor productivity to drop signi�cantly; this indicates the
high adjustment costs involved in the early adoption of a GPT. The e�ects of
ICT-capital deepening got visible in ICT-using as well as Non-ICT sectors: The
textile and paper industries, for example, bene�t from capital deepening in the
industries upstream (see �gure 3.5).
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Figure 3.4: The contribution of technical change in the ICT sector to sectoral labor produc-
tivity growth.
Mfr.: Manufacturing of; FOOD: Food, beverages and tobacco; CHEMICALS: Chemicals and man-made
�bres, etc., MACH: Machinery and equipment n.e.c.; ELEC/OPT: Electronic, optical and medical equip-
ment; CON: Construction; OTH RETAIL: Other retail sale, repair work; AIR TRANS: Air Transport;
POST: Post and telecommunications; FIM: Activities auxiliary to �nancial intermediation, REAL: Real
estate activities; PUB: Public administration; HEALTH: Health care; SEW, DISP: Sewage and refuse
disp. and similar activities

The intersectoral analysis of the role that ICT plays in changes to labor pro-
ductivity also reveals industry clusters: Strongest impacts occur in high-tech man-
ufacturing industries, such as the chemical industry or mfr. of electrical, medical
and optical instruments as well as neighboring service sectors, e.g. �nancial inter-
mediation and post and telecommunications. This supports the hypothesis that
new technologies are �rst applied in similar industries (as re�ected by akin meth-
ods of production), before they spread over more divergent sectors (Antonelli,
2003).

Di�usion of ICT and Skill-Induced Wage Dispersion

The emergence of a GPT can cause transitional wage inequalities if the new
technology requires a higher level of skills for its e�cient deployment. In fact,
the analysis of the Danish labor market15 reveals that ICT-producing and ICT-

15In this context, we revert to labor market data on the educational attainment of the
workforce by industry from 1993 until 2006. Source: Statistics Denmark, available at
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Figure 3.5: The contribution of ICT-capital deepening to sectoral labor productivity growth.
Mfr.: Manufacturing of; TEXTILES: Textiles, wearing apparel, leather; PAPER: Paper produc-
tion, printing and publishing; BMET: Other non-metallic mineral products; BMET: Basic metals;
ELEC/OPT: Electrical, optical and medical equipment; CON: Construction; WHO: Wholesale and
commisson trade, exc. of m. vehicles; RETAIL: (Other) retail sale, repair work; POST&TELE: Post
and telecommunications; FIM: Financial intermediation; INS: Insurance and pension funding; R&D: Re-
search and development; CONS: Consultancy etc.; PUB: Public administration; SOC: Social institutions;
MEMB: Activities of membership organizations n.e.c.

using industries reported the strongest growth throughout the economy in the
employment of persons with tertiary education. In 2001, immediately after the
dot.com-crash, the number of workers dropped in all these industries irrespective
of their skill level, but began growing again afterwards with regard to highly
skilled labor, though at a slower pace than before 2000. In contrast, the number
of low-skilled workers almost continuously decreased in ICT-producing and ICT-
using industries; this trend was particularly observable in the telecommunication
sector throughout the whole period under study, and within business activities
and the ICT manufacturing sector since 2000.

Given the strong skill bias of ICT, one would indeed expect wages between
lower-skilled and higher-skilled workers to spread at some extent. This wage
dispersion, however, needs to be analyzed against the fact that Denmark disposes
in general of a low wage gap.16

http://www.statbank.dk/HFU2.
16According to OECD (2013), the wage premium in 2005 amounted to 28% between high-

skilled workers and medium-quali�ed workers (in comparison, the OECD average was 57%); and

http://www.statbank.dk/HFU2
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For the following analysis, data on labor compensation from the EU KLEMS
database are used to calculate the ratio between the respective wage share and
the share in total working hours, in order to obtain the compensation level of the
respective skills compared to the industry average.

As �gure 3.6 reveals, between 1980 and 1990 the GINI coe�cient as a measure
of wage dispersion between lower-skilled and higher-skilled labor rose by two per-
centage points (or 16%) in the ICT-producing industries. After 1990, the GINI
index shows a downward trend until 1997. This decrease was owed to a reduction
in both enterprises and employees in the ICT-manufacturing sector. After 1997,
the GINI coe�cient increased again, driven by a signi�cant growth in enterprises
entering the ICT service industry (25% between 2000 and 2007, with the number
of employees rising by 33%).17 In the ICT-using sectors, the GINI evolves along
a stable path between 1980 and the mid-1990s. Since 1997, wage dispersion again
shows an upward trend, partially re�ecting the increasing signi�cance of business
sectors in the economy. The hype of computerization created a bottleneck in the
supply of quali�ed labor. Danish �rms in fact saw the lack of e-skills, especially
in-house, as a main obstacle for adopting the new technology (Statistics Denmark,
2006). Not surprisingly, wage dispersion in Non-ICT industries declined almost
continuously over the whole period under study.

Figure 3.7 links the evolution of wages of low and high skilled labor to the dif-
fusion of ICT. A technical coe�cient above 0.0118 for ICT manufacturing products
and ICT services indicates that the respective sector has adopted this technol-
ogy. The resulting di�usion path is plotted in �gure 3.7, where the left ordinate
presents the share of sectors that already use ICT, and the right ordinate gives
the GINI coe�cient as an indicator for the dispersion of wages of low and high-
skilled labor. Since the ICT manufacturing sector (ICM) and computer-related
service sector (ICS) follow a di�erent time path, they are plotted separately. Con-
trasting the di�usion of ICT with the evolution of wage di�erentials, one can see
that the wage dispersion peaked when the rate of adoption of ICT was about
to take o� in the mid-1990s. Furthermore, wage di�erentials between low and
high-skilled labor have also increased signi�cantly after 2000; this being a time
when the di�usion process had already slowed down and ICT has begun to unfold
its impact on labor productivity growth. This trend might be also associated
with demographic changes in the labor market, re�ecting the increasing partici-
pation of elder persons in the workforce, or indicates a new wave of skill-biased
technological change.

18% between middle- and low-skilled labor (OECD, 2014, 142), with the OECD average being
22%.

17Data source for the number of enterprises by economic activity: SDBS Structural Busi-
ness Statistics (ISIC Rev.3), available at OECD Stat: http://stats.oecd.org/Index.aspx?

DataSetCode$=$ANBERD_REV# (see table A.1 in the annex).
18These calculations are based on the compound direct requirements matrix which includes

intermediate products, imports and capital �ows (see chapter 4).

http://stats.oecd.org/Index.aspx?DataSetCode$=$ANBERD_REV#
http://stats.oecd.org/Index.aspx?DataSetCode$=$ANBERD_REV#
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Figure 3.6: Dispersion of wages of low and high-skilled labor between 1980 and 2005

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

D
iff

us
io

n

time

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0.1

0.12

0.14

G
in

i

Diffusion ICS
Diffusion ICM
GINI

Figure 3.7: The di�usion of ICT manufacturing products (ICM) and ICT service products
(ICS) across sectors (left ordinate) and the GINI for low and high-skilled labor (right ordinate)



50 CHAPTER 3. ON THE ECONOMIC PURPOSE OF GPTS

3.5 Conclusion

The economic dynamics triggered by the arrival of a general purpose technology
has been examined on both a theoretical and empirical level. This paper has
presented an evolutionary multisectoral model which allows the analysis of general
purpose technologies a�ecting the share of innovative �rms in each application
sector. An extension of this model can be found in Rainer and Strohmaier (2014),
which deals with the potential slump in productivity growth after the arrival of
the innovation, its retarded di�usion process, as well with as skill-induced wage
dispersion, all characteristics that have been associated with GPTs (see chapter
6).

The model has subsequently been applied to the Danish economy to inves-
tigate the change in labor productivity and its sources, taking into account the
vertical integration of sectors. Within this framework, the three major features of
GPTs could be traced empirically, by breaking the analysis down to the intersec-
toral level: First, the scope for improvements in the technology was captured by
technical change in the ICT sector. Showing the impact of the latter on sectoral
labor productivity growth uncovered innovational complementarities, the second
characteristic of GPTs. Last, the pervasiveness of ICT got particularly evident
in the e�ects of capital deepening which have spread over the whole production
system.

Limitations of the structural decomposition analysis include the choice of a
�xed commodity basket for measuring the amount of labor embodied. Thus,
results vary with the numeraire. However, it was shown that the use of the
net product of 2000, which is also the base year for the price de�ators, leads to
a remarkably similar evolution of labor productivity, compared to conventional
measures of LPG. Furthermore, while an SDA requires prices to be constant in
order to re�ect real changes, this also entails a substitution bias as preferences and
prices change over time. This is particularly the case of ICT, which experienced
falling prices throughout its lifetime. A possible solution would be to apply the
analysis on input-output data at chained prices, which however would impose
further requirements on the SDA. Last, but not least, our broad de�nition of ICT
does still not cover all products related to this technology, as sectoral data was
only available at the two-digit level. Nevertheless, the results show the rising
impact of ICT and support theories on skill-induced technological change.

At the aggregate level, we have seen a falling trend of labor productivity par-
ticularly over the last decades. Regarding the impact on overall growth within
the whole period, the ICT-producing and ICT-using industries show an increasing
contribution. However, it took two decades for ICT to become a major source
of productivity growth, which indicates the long time span necessary for a GPT
to reach maturity and for the economic system to adapt to the new technology.
Apparently, these adjustment processes also a�ected the labor market, as transi-
tional wage dispersion in the ICT-producing and ICT-using industries could be
observed during the rise of the IT era.

The intersectoral analysis demonstrates that the new information and commu-
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nication technologies have also impacted those industries which do not produce
at high ICT intensity. The empirical �ndings show that ICT played a crucial role
for the Danish production system, particularly in the most recent years under
study. By 2007, ICT pervaded virtually all sectors in the economy. Does this fact
allow for the conclusion that ICT has already entered a phase of retention? Not
quite. Given the position of Denmark as an innovation leader, one could observe
that ICT acted as a lever of domestic innovation activities. This can be seen
in its unfolding impact on the chemical industry and the machinery sector (that
both subsume the bulk of biotechnology of which Denmark is a world leader). An
analysis on a more disaggregated sector level may therefore give further insights
into the signi�cance of ICT for innovation and entrepreneurship in Denmark.

Our framework starts from a �rm level, and investigates structural adjustment
processes on the meso level that eventually cumulate into e�ects at the macro level.
In our opinion, the sector level is an important object of study, particularly for the
subject of technological change, as it represents the interface between the locus
where innovation takes place and the locus where its scope eventually becomes
evident. One of the primary features of our intersectoral approach is the fact that
it allows for tracing both the source and direction of structural change and its
impact on productivity growth. We therefore believe that an in-depth study of the
vertical integration of industries also provides an important tool for innovation
policy design.





Appendix

3.A Structural Decomposition Analysis

Given (3.11), the relative change in the maximum wage rate can be decomposed
into four partial factors: (1) technical change (as indicated by a change in the
direct input matrix A, ∆S ≡ St − St−1), (2) change ∆l ≡ lt − lt−1 of total
employment, (3) substitution e�ect (indicated by a change in AT , ∆H ≡ Ht −
Ht−1) and (4) change ∆y ≡ yt − yt−1 of �nal demand. The result of each
decomposition is an N -dimensional vector that shows the contribution of the
respective determinant to sectoral labor productivity growth:

SSt−1 ≡ −dT
[
∆S l̂t−1 [diag (Ht−1 yt−1)]

−1] wt e (3.12a)

llt−1 ≡ −dT
[
St ∆̂l [diag (Ht−1 yt−1)]

−1] wt e (3.12b)

LLt−1 ≡ dT
[
St l̂t x̂−1t [diag (∆H yt−1)] x̂−1t−1

]
wt e (3.12c)

Y Yt−1 ≡ dT
[
St l̂t x̂−1t [diag (Ht ∆y)]x̂−1t−1

]
wte (3.12d)

Depending on data availability, labor input is further decomposed into low-skilled
(l1) and higher-skilled (l2) labor (hours per unit of output).

ll1t−1 ≡ −dT
[
St ∆̂l1 [diag (Ht−1 yt−1)]

−1] wt e (3.13a)

ll2t−1 ≡ −dT
[
St ∆̂l2 [diag (Ht−1 yt−1)]

−1] wt e (3.13b)

Equations (3.13a�3.13b) replace (3.12c) for the time span of 1980 to 2005. Fur-
thermore, �nal demand is decomposed into ICT-related and Non-ICT invest-
ments:

Y Y ICT
t−1 ≡ dT

[
St l̂t x̂−1t [diag (Ht ∆yICT )]x̂−1t−1

]
wte (3.14a)

Y Y NonICT
t−1 ≡ dT

[
St l̂t x̂−1t [diag (Ht ∆yNon−ICT )]x̂−1t−1

]
wte (3.14b)

Equations (3.14a) and (3.14b) sum up to (3.12d).
Equations (3.12a�3.12d) reveal an obvious index problem that a�ects precision

and interpretation of the outcome whenever the number of partial factors exceeds
two. So far all variables are weighted by t − 1 values. However, in the case of
four determinants we have 4! possible decompositions for each factor, resulting
from the permutation of the variables with respect to time. Dietzenbacher and
Los (1998) showed that the polar decomposition gets remarkably close to the
average of all possible decompositions; thus it su�ces to calculate the second
polar decomposition, by starting with the values in period t instead of period
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t− 1 and taking the average of the two:

SSt ≡ −dT
[
∆S l̂t [diag(Htyt)]

−1] wt e (3.15a)

llt ≡ −dT
[
St−1 ∆̂l [diag (Ht yt)]

−1] wt e (3.15b)

LLt ≡ dT
[
St−1 l̂t−1 x̂−1t−1 [diag (∆H yt)

]
x̂−1t ] wt e (3.15c)

Y Yt ≡ dT
[
St−1 l̂t−1 x̂−1t−1[diag (Ht−1 ∆y)

]
x̂−1t ] wt e (3.15d)

Hence, the initial decomposition of the labor productivity growth indicator19 reads
as follows:

glt =
1

2
dT
[
{(LLt−1 + LLt}+ {Y Yt−1 + Y Yt}+

{SSt−1 + SSt}+ {llt−1 + llt}
]
wt e

(3.16)

Intra- and Intersectoral Linkages

In order to show the impact of ICT on productivity changes across industries, the
direct input matrices A and AT are decomposed into their submatrices. Following
Miller and Blair (2009, 603-605), changes in S and H are related to changes in
the underlying direct input matrices:

Proposition 1. Changes ∆A of the input matrix A translate into changes ∆H
of the Leontief inverse and changes ∆S of the Sra�a inverse matrix according to

∆S = St−1 ∆A St and (3.17a)

∆H = Ht−1 ∆ATHt. (3.17b)

Proof. (3.17b) is the transpose of (3.17a). Thus one only has to show that

(I−At)−1 − (I−At−1)−1 = (I−At−1)−1(At −At−1)(I−At)−1.

But this can be shown to be true by post-multiplication with (I − At) and pre-
multiplication with (I−At−1).

Analyzing the impact of a speci�c sector on all other sectors requires a closer
look at the economic structure. To assess how sectors are linked together, the
direct input matrix A is split up in such a way that each row composes an own
submatrix. By doing so, the isolated e�ect of one sector on the production tech-
nique can be traced back. Decomposing A into individual sectors means to create

19For equations (3.12c) and (3.12d) as well as for (3.15c) and (3.15d), note that x̂−1
t−1∆x̂x̂−1

t =
x̂−1
t ∆x̂x̂−1

t−1 = −∆(x̂−1) ≡ x̂−1
t−1 − x̂−1

t .
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submatrices such that ∆A =
∑N

i=1 ∆A(i) with

∆A(i) ≡


0 . . . 0 . . . 0
...

...
...

∆ai1 . . . ∆aij . . . ∆ain
...

...
...

0 . . . 0 . . . 0

 .

By recalling Proposition 1 and introducing ∆A(i) into equations (3.12a) and
(3.15a), the e�ect of changes in the production process of a speci�c sector due to,
for instance, technical change on labor productivity growth in all other sectors
can be analyzed:

SSt ≡ −dT
[
St ∆A St−1 l̂t diag(Htyt)

−1
]
wt e

Applying the same procedure to equations (3.12c) and (3.15c) allows tracking the
e�ect of changes in demand for a speci�c factor, i.e. the e�ect of substituting one
input for another:

LLt = dT
[
St−1 l̂t−1 x̂−1t−1 [diag (Ht ∆AT Ht−1 yt)] x̂−1t

]
wt e

Finally, the role of �xed capital provided by the ICT sector is scrutinized. It
is obvious that a big part of the output of the ICT industry represents assets that
remain longer than a year in the production process. These assets are therefore
not captured within the direct input matrix, but are recorded in the investment
demand of an input-output table, so that for a comprehensive analysis changes
in ICT capital have to be taken into account. For doing so, we incorporate
investment �ows into the previous analysis by disentangling the �nal demand
vector y into di�erent categories; furthermore, the column of investment demand
is replaced by the respective investment matrix Yinv, which shows (similar to
the industrial transaction matrix) the intra- and intersectoral deliveries of capital
assets:

Y Yt−1 = dT [St l̂t x̂−1t [diag (Ht ∆(Yinve + yrest))] x̂−1t−1] wte

3.B Industry Classi�cation

Table 3.B.1: Aggregation of Danish industries. The numbers in the second column indicate
the assignment of the respective sector to NACE Rev. 1.1, the third column to ICT-producing,
ICT-using and Non-ICT industries.

Industry NACE ICT classi�cation

1 Agriculture 01 Non-ICT
2 Horticulture, orchards etc. 01 Non-ICT
3 Agricultural services; landscape gardeners etc. 01 Non-ICT
Continued on next page
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Table 3.B.1 � continued from previous page

Industry NACE ICT classi�cation
4 Forestry 02 Non-ICT
5 Fishing 05 Non-ICT
6 Extr. of crude petroleum, natural gas etc. 11 Non-ICT
7 Extr. of gravel, clay, stone and salt etc. 14 Non-ICT
8 Mfr. of food, beverages and tobacco 15 Non-ICT
9 Mfr. of textiles, wearing apparel, leather 17-19 Non-ICT
10 Mfr. of wood and wood products 20 Non-ICT
11 Mfr. of paper prod.; printing and publish. 21,22 Non-ICT
12 Mfr. of re�ned petroleum products etc. 23 Non-ICT
13 Mfr. of chemicals and man-made �bres etc. 24 Non-ICT
14 Mfr. of rubber and plastic products 25 Non-ICT
15 Mfr. of other non-metallic mineral products 26 Non-ICT
16 Mfr. of basic metals and fabricated metal products 27,28 Non-ICT
17 Mfr. of machinery and equipment n.e.c. 29 ICT-using
18 Mfr. of ICT equipment 30,32 ICT
19 Mfr. of electrical, optical and medical equipment 31,33 ICT-using
20 Mfr. of transport equipment 34,35 ICT-using
21 Mfr. of furniture; manufacturing n.e.c. 36,37 Non-ICT
22 Electricity supply 40.1 Non-ICT
23 Gas and water supply 40.2,40.3 Non-ICT
24 Construction 45 Non-ICT
25 Sale and repair of motor vehicles etc. 50 ICT-using
26 Ws. and commis. trade, exc. of m. vehicles 51 ICT-using
27 Retail trade of food etc. 52.2 ICT-using
28 Department stores 52.2 ICT-using
29 Re. sale of phar. goods, cosmetic art. etc. 52.3 ICT-using
30 Re. sale of clothing, footwear etc. 52.41 ICT-using
31 Other retail sale, repair work 52.44 ICT-using
32 Hotels and restaurants 55 Non-ICT
33 Land transport; transport via pipelines 60 Non-ICT
34 Water transport 61 Non-ICT
35 Air transport 62 Non-ICT
36 Support. trans. activities; travel agencies 63 Non-ICT
37 Post and telecommunications 64 ICT-using
38 Financial intermediation 65 ICT-using
39 Insurance and pension funding 66 ICT-using
40 Activities auxiliary to �nan. intermediat. 67 ICT-using
41 Real estate activities 70 ICT-using
42 Renting of machinery and equipment etc. 71 ICT-using
43 Computer and related activities 72 ICT
44 Research and development 73 ICT-using
45 Consultancy etc. and cleaning activities 74 ICT-using
46 Public administration etc. 75 Non-ICT
47 Education 80 Non-ICT
48 Health care services 85 Non-ICT
49 Social institutions 85 Non-ICT
50 Sewage and refuse disp. and similar act. 90 Non-ICT
51 Activities of membership organ. n.e.c. 91 ICT-using
52 Recreational, cultural, sporting activities 92 Non-ICT
53 Other service activities 93 ICT-using



Chapter 4

Neither Mushrooms nor Yeast:

Measuring Pervasive

Technological Change

The growth potential of an industry is tied to other sectors upstream (via its demand for

intermediate and capital goods) and downstream (via its supply of products). This is all the more

the case for industries that provide general purpose technologies (GPTs) which spur economic

growth via their pervasive use. The present paper proposes an extended linkages indicator

for uncovering key sectors, that explicitly considers the notion of pervasiveness. The derived

measures allow studying both the robustness of an industry and the density of its trade network.

Given the change in states over time, the trajectories of sectors along these two dimensions can

be analyzed. The framework is subsequently applied to the general purpose technology currently

at work, information and communication technology (ICT). The empirical �ndings show that

if pervasive use is taken into account, the ICT sector has evolved to the core of the economic

system, and that the need of complementary products for the e�cient use of a GPT translates

into multiple, though interrelated, di�usion paths.

Keywords | general purpose technologies, input-output, linkages, di�usion, ICT

4.1 Introduction

Measuring economic connectedness and its implications for policy design has been
a long and extensive debate in the input-output literature. A �erce controversy
took place between Hirschman (1958) and Nurkse (1953) as to whether resources
should be spread throughout all industries equally or used to promote only the
most promising in terms of growth. Nurkse argued in favor of balanced growth,
while Hirschman advocated the unbalanced growth perspective. From his point of
view, industries do not expand at the same rate, since they are at di�erent stages
of development. A strategy that supports the sector with the highest growth
potential and the most intense linkages to others would therefore be preferable.
Four decades later, in his presidential address to the American Economic Associ-
ation, Harberger (1998) paraphrased the same argument by drawing an analogy
to mushrooms and yeast: yeast-like industries grow at the same rate, whereas the
mushrooms among industries are characterized by a rapid expansion and real cost
reductions for the sectors linked to them.
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In terms of methodology, Rasmussen (1956) was the �rst to propose the idea
of forward and backward linkages for measuring the potential of an industry.
Hirschman (1958) used this concept for identifying key sectors in an economy,
postulating that particular industries with above-average linkages actually drive
economic development and structural change. He therefore promoted the linkage
concept as an important tool for policy design, especially for developing countries,
since the impulse given to key sectors is eventually channeled through the whole
economy. This impulse can be set either by industries with relatively strong back-
ward linkages, i.e. with a high demand for products upstream, or those sectors
which represent important suppliers of intermediate products downstream (for-
ward linkages). As Lenzen (2003, 2) points out, in the wake of the intersectoral
trading network, �the sectors growing most rapidly are not the key sectors them-
selves, but may be the sectors that are most closely linked to them�. Rasmussen's
and Hirschman's approach caused quite a struggle among scholars in this �eld
(for an overview see Lenzen (2003) and Miller and Blair (2009)). Early alter-
native contributions to linkage analysis were made by Chenery and Watanabe
(1958), Hazari (1970), Yotopoulos and Nugent (1973), and Jones (1976). Later
on, Clements (1990) and Sonis et al. (1995) added new perspectives. Critics to
the signi�cance of linkage analysis as a planning tool led these measures to be
applied in a descriptive manner, rather than as an empirical instrument, which
corresponds to Rasmussen's initial idea.

Most recently, the linkage concept experienced a revival in the studies of R&D
and innovations (see, e.g., Papconstantinou et al. (1998) and Hauknes and Knell
(2009)). In this respect, Verspagen (2004) uses conventional linkage analysis to
investigate the impact of ICT as a basic innovation in the Schumpeterian sense for
the U.S. economy in the postwar period. Structural change is studied on the basis
of input-output data as well as patent data from 1958 until 1998.1 It is shown
that despite strong intrasectoral forward linkages, the ICT sector did not interact
to a great extent with the other sectors in the economy in the beginning of the IT
era. But even in the later decades under study, the impact of ICT as measured by
the traditional linkages method was not quite as strong as expected. Verspagen
thus concludes, in an analogy to Solow's famous statement from 1995, that �we
can see computers everywhere, except in the input-output tables� (p.1120).

Large similarities to linkage analysis can be found in social network literature:
Bothner et al. (2010) derive a model in which members who dispose of diversi�ed
relations to others that have themselves a wide range of linkages occupy a robust

position in the network. This concept makes use of the Her�ndahl-Hirschman
index of concentration and is subsequently applied to di�erent socioeconomic
networks.

The present paper proposes an explicit operationalization of the notion of

1The calculations are based on current prices since according to Verspagen, (a) price decreases
are part of the di�usion process and should be included in the analysis and (b), because of the
fact that constant prices would mean to have a recent base year, where the di�usion rate is the
highest, so that the results of the last (and most important) years would not change. For a
detailed comparison of linkage indicators in current and constant prices see annex B.
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pervasiveness in the context of input-output analysis and in doing so derives an
extended linkage indicator for measuring the impact of radical innovations. We
follow Freeman and Perez (1988) whereby it is rather the di�usion process �
and not (the act or product of) inventing as such � through which a technological
breakthrough unfolds its e�ects on the economic system. In doing so, we revert to
the concept of general purpose technologies (GPTs) which emphasizes the large
�eld of application of a technology and its di�usion process. This paper will
argue that conventional linkage analysis is not concise enough to comprise the
case of general purpose technologies due to their de�ning characteristics which
qualify the sectors producing them as neither mushrooms nor yeast. We therefore
propose an extended linkage indicator that captures the widespread use of inputs
in production as a descriptive tool for studying pervasive technological change.
For the empirical application, Denmark is chosen due to its position as a net
importer of ICT products and the extent of the available data.

Results are subsequently linked to the taxonomy of sectoral patterns of inno-
vations by Castellacci (2008), whereby industries are grouped according to their
technological capabilities and their position in the production chain into four sec-
toral blocks. Each class thus characterizes a speci�c innovation pattern of its
corresponding sectors. The taxonomy represents a generalization of Pavitt's sec-
toral patterns of technical change (Pavitt, 1984), for both, manufacturing and
service sectors, and has been mainly supported by data derived from community
innovation surveys. Testing our di�usion-oriented approach against this taxon-
omy, we can therefore examine to what extent structural dynamics di�er among
industry groups with distinctive innovation pro�les.

The paper proceeds as follows: Section 4.2 gives a brief overview of the tradi-
tional linkage measures in input-output analysis and explains why they fall short
of uncovering pervasive technological change. Referring to social network theory,
the extended linkage indicator will be introduced thereafter. Section 4.3 describes
the data handling, while the empirical �ndings are discussed in section 4.4. Sec-
tion 4.5 gives concluding remarks.

4.2 Methodology

When it comes to pervasive innovations, conventional linkage analysis fails on
two grounds: Firstly, as an empirical tool for policy design, it cannot cope with
the particular expansion path of a GPT-producing industry, characterized by a
retarded takeo� followed by a strong upturn. This means that on the one hand, it
is not able to show the potential of a GPT in its infancy, given its long gestation
period. The application of this policy instrument would thus ultimately lead to
withholding essential investments for the development of the crude technology in
favor of other sectors that are more promising at that time. On the other hand, the
promotion of a GPT-producing industry at a late maturity stage of the technology,
where it is indeed classi�ed as a key sector according to the linkage measure, might
prolong its life cycle beyond its e�cient utilization and hamper the upcoming of
a new general purpose technology. Secondly, even if used only in a descriptive
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manner, linkage analysis does not explicitly account for the pervasive character
of a GPT. The latter critique has been the key motivation for this paper. In the
following section, traditional linkages will be discussed brie�y, before introducing
the notion of pervasiveness. Regarding notation, we draw on Lenzen (2003) in
the following.

Rasmussen proposed the conventional Leontief quantity model to derive mea-
sures of forward and backward linkages:

x = A x + y = (I−A)−1 y = L y (4.1)

where a vector of exogenous �nal demand y is linked to total output of the
economy, x. A denotes the matrix of input or technical coe�cients necessary
to produce one unit of output in the respective sectors, with

A = {aij}n×n =

{
zij
xj

}
Each element lij in L gives the direct and indirect requirements of industry i,
i = 1, . . . , n to produce one unit of output for �nal demand from industry j =
1, . . . , n.

The direct backward linkages of sector j, Ud•j , i.e. its dependence on inputs
provided by sectors upstream, can then be simply calculated by the sum of the
elements in the jth column of the direct input coe�cient matrix:

Ud•j =
∑
i

aij (4.2)

Taking into account the indirect linkages in an economy as well, column sums
of the Leontief matrix were proposed as a total backward linkage measure U t•j :

U t•j =
∑
i

lij (4.3)

In its normalized form, Rasmussen (1956) calls this measure the index of
`power of dispersion':

U
t
•j =

n
∑

i lij∑
ij lij

(4.4)

where n denotes the number of industries in the economy. Thus, the strength of
linkages of the average sector j is normalized to unity, and an industry j with
backward linkages of U

t
•j > 1 has an above-average demand on intermediate

products from other sectors due to a unit increase in �nal demand of sector j.
With regard to forward linkages, the Ghosh model has been widely used as a

starting point. Ghosh (1958) relates primary inputs v with total output through
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the following equation:

x = v +B x = v (I−B)−1 = v G (4.5)

B thereby denotes the matrix of output or allocation coe�cients bij that
measure the input from sector i in sector j as a fraction of the seller's output xi:

B = {bij}n×n =

{
zij
xi

}
G = (I−B)−1 is the Ghosh inverse that measures how much output of in-

dustry j is necessary to utilize a unit of primary input in industry i. Various
authors (see, e.g., Lenzen (2003) and Miller and Blair (2009) for a summary of
this discussion) questioned the feasibility of taking Ghosh coe�cients as quantity
coe�cients, but rather suggested their reinterpretation as a price model (Dietzen-
bacher, 1997; Oosterhaven, 1996). In this sense, �primary input `prices' change
exogenously, are entirely passed on to price-taking purchasers and change only
output `values', while quantities are �xed� (Lenzen, 2003, 5). Therefore, the
Ghosh inverse can only be employed ex post, in a descriptive manner, and not as
a policy instrument.

Analogous to above, direct and total forward linkages based on the Ghosh
model can thus be stated as follows:

V
d
i• =

n
∑

j bij∑
ij bij

(4.6)

V
t
i• =

n
∑

j gij∑
ij gij

(4.7)

The measures proposed in equations (4.4) and (4.7) just consider the strength
of interindustrial (backward and forward) linkages of a speci�c sector, but not its
signi�cance in the economy as such. It might be the case that an industry exhibits
strong ties to others, but a comparatively low level of economic activities. The
size of a sector should thus also be taken into account, either by weighting the
conventional linkage indexes with �nal demand (from the perspective of income
use) or by some sort of output measure (and thus from the income generation
side). The �rst was suggested by Rasmussen and has been widely applied since
then, whereas the latter (as proposed by Rao and Harmston (1979)) faced some
critics (for example, Lenzen (2003) shows that for the case of Australia, forward
measures and output are positively correlated). However, according to Rao and
Harmston (1979), weighting with shares of �nal demand would shift the power
from the production to the consumption side, which is more volatile over time.

For the purpose of this paper, we suggest to use the sector shares in value
added as weights, since we are interested in the impact of a GPT on the pro-
duction system and less so on its e�ects for �nal consumption. Conversely, for
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backward linkages, sector shares in �nal demand will be used. Regressions on
linkage measures show an equal, non-signi�cant (positive) correlation with any of
the proposed weights.

Pervasiveness As this paper argues, the conventional linkage indicators fall
short of measuring pervasive technological change, the more so as the term per-
vasiveness lacks a clear-cut de�nition according to Field (2011, 214):

If pervasiveness simply means that `a lot of technology' is used,
then most of the technologies [subsumed under the notion of GPT]
appear to qualify. But if broad applicability means that the tech-
nology is used across many sectors, the situation becomes murkier.
It's hard to see, for example, how a sailing ship with three masts
measures up, unless we mean simply that vessels using this design
carried many types of raw materials and manufactured goods. If we
adopt such a broad interpretation, however, [. . .], we will quickly get
to a point where it is di�cult to distinguish between single-use and
general-purpose technology, given the nature of input-output matri-
ces. On the other hand, if we adopt the narrower approach, insisting
on direct use of the technology in the sector or industry, the measure of
pervasiveness is to a certain extent hostage to industrial organization,
particularly the degree of vertical integration.

Thus, measuring pervasiveness by the indicators derived in equations (4.4)
and (4.7), which take into account both direct and indirect linkages of an indus-
try, would blur the distinctive characteristics of single-use and general-purpose
technology. The calculation of direct linkages alone, however, would blank out
the production chain, and yet would not give any information on how widely
a product is used across sectors. This is important in so far as a sector that
provides a technology to many other sectors imposes di�erent dynamics on the
system as an industry that only supplies to a few others. A potential explanation
can be found in the theory of social networks. According to Bothner et al. (2010),
pervasive social relations underpin the robustness of the person's status in the
network, whereas higher concentration uncovers the fragility of some members
because their nodes in the network depend on a few others and not on a broad
base; hence, robustness is de�ned as �diversi�cation across the diversi�ed� (Both-
ner et al., 2010, 945). On the methodological level, Bothner et al. therefore apply
the Her�ndahl concentration index to assess the robustness of a node within a
social network.

Picking up this argument, a generality measure based on the Her�ndahl-
Hirschman index as proposed by Trajtenberg et al. (1997) will be in the following
included2 as a measure of dispersion in the derived indexes.3 Similar generality

2Alternatively, Hazari (1970) suggested analyzing row and column variation coe�cients as a
second indicator besides the basic linkage measures.

3It can be easily shown that the Her�ndahl-Hirschman index Hi• is strictly related to the
variation coe�cient cvi. Let hij be the elements of the Her�ndahl matrix H for sectors i, j =
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indicators have been widely applied in the �eld of industrial organization as well
as in the empirical patent literature linked to GPTs (see, for example, Hall and
Trajtenberg (2004) or Nomaler and Verspagen (2008)).

Let h
(u/v)
ij be the elements of the Her�ndahl-Hirschman matrix H(u/v)

for sectors i, j = 1, . . . , n, with

h
(u)
ij =

z2ij

(
∑

i zij)
2

in case of backward linkages (measuring the concentration of demand for inter-
mediate products), and

h
(v)
ij =

z2ij(∑
j zij

)2
in case of forward linkages (thus measuring the concentration of supply of inter-
mediate goods).
The dispersion index ρ ∈ 〈0, 1] is then de�ned as

ρ•j = 1−
∑
i

h
(u)
ij (4.8)

in the case of backward linkages, and

ρi• = 1−
∑
j

h
(v)
ij . (4.9)

1, . . . , n, with

hij =

∑
j x

2
ij(∑

j xij
)2
.

Then the mean of the numerator is x2i = 1/n
∑

j x
2
ij , and the mean xi of elements in row i of

the original matrix X is equal to xi = 1/n
∑

j xij . Hence, Hi• can also be reformulated as

Hi• =
n · x2i

(n · xi)2
=

x2i
n · xi2

.

Using the variance of row xi, σi = x2i − xi
2, Hi• can be also stated as follows:

Hi• =
x2i

n · xi2
=
x2i − xi

2 + xi
2

n · xi2
=
σi + xi

2

n · xi2
=

1

n

(
σi

xi2
+ 1

)
=

1

n

(
cv2i + 1

)
.
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for forward linkages. The higher the value of ρ, the more diversi�ed are the
relations of the respective sector to all other industries, i.e. the more robust is its
position in the economic network.4

The conventional total linkage indicator derived in equations (4.4) and (4.7)
is pre-multiplied by this generality index, weighting the total linkages to the pro-
ducer network by the strength of direct relations (as expressed in the direct re-
quirements matrix Z).

Hence, the index of supply ψSi and use pervasiveness ψUj for sectors i, j =
1, . . . , n can be formulated as follows:

ψSi = n

(
ρi•∑
i ρi•

·
∑

j gij∑
ij gij

· vi∑
j vj

) 1
3

(4.10)

ψUj = n

(
ρ•j∑
j ρ•j

·
∑

i lij∑
ij lij

· yj∑
i yi

) 1
3

(4.11)

These linkage measures thus consist of three subindices: the distribution of the
direct sales and purchases of one sector to/from other industries, which indicates
the degree of pervasive supply/demand; the conventional total (forward/backward
linkage) measure for the identi�cation of key sectors; and the normalized sectoral
GDP/�nal demand which accounts for the scale of economic activity. In contrast
to most other weighted linkages in input-output economics, the weights are outside
the sum (and not attached to the coe�cients), in order to assess the impact of
each factor on its own.5 The multiplicative relation prevents any factor from
fully compensating the other, as may be the case if the partial indexes are just
added up. Moreover, the normalization procedure allows the usual interpretation:
ψSi/Ui > 1 indicates a pervasive key sector while industries with ψSi/Ui < 1 may
qualify for a key sector in one aspect, but not with regard to all.

4.3 Data

Denmark as a Case Study

Denmark is chosen due to its position as a net importer of ICT products and the
extent of the available data. Most of the empirical studies on GPTs (such as Hall
and Trajtenberg (2004) or Moser and Nicholas (2004)) focus on the U.S., whose
ICT sector exhibits strong export activities. Since we are primarily interested in
the e�ects of ICT as an `enabling' technology, Denmark as a global leader in other
technologies �ts the purpose of our analysis better. Regarding the latter, Statistics

4Note that ρ equals zero if a speci�c sector is tied to only one other sector. Thus, industries
of this kind are excluded from the analysis. This is not a severe drawback, as, on the one hand,
pervasiveness by de�nition requires a broad range of linkages, and, on the other hand, none of
the direct requirement matrices under use have captured this case.

5For another example of linkages with weights outside the sum see Rao and Harmston (1979).
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Schematic presentation of an input-output table (industry by industry)

Denmark also provides very good data that includes annual input-output tables
(industry by industry) at constant prices of the year 2000 and covering domestic
and import inter-industry �ows (assuming for each product the same market
shares as domestic supply); as well as capital �ow tables spanning from 1993 to
2007 (see Strohmaier and Rainer (2013) and chapter 3 for a detailed description
of the data handling).6 For the missing years (1966�1992), we extrapolated the
investment tables by calculating an average capital coe�cient matrix that was
subsequently multiplied with the gross �xed-capital consumption vector in the
�nal demand. In order to smooth irregular investment activities, di�erent time
spans (over 3, 5, and 10 years) were used to derive a mean coe�cient matrix.
Finally, a sensitivity analysis showed that the results (i.e. the ranking of the
industries) are robust against the di�erent extrapolations.

Organization of Input-Output Data

In order to make a comprehensive investigation of the ICT sector, it is necessary
to cover all channels through which ICT-related products could enter the produc-
tion system (presented by the transaction matrix) and we therefore incorporate
imports as well as capital �ows. The �rst makes sense, as the purpose of this
chapter is not to uncover key sectors that strengthen domestic economic activity,
but to show the relevance of this technology for production; the latter is essential,
as most products of ICT, such as computers and o�ce machinery, are of �xed
capital type and are thus not included in the intermediate demand. Regarding
the calculation of the direct Leontief and Ghosh requirement matrix, we therefore
follow Lenzen (2001) and Verspagen (2004) by partially closing the input-output

6All �ows are expressed in basic prices, apart from imports that are valued in C.I.F and
contain custom duties, in order to re�ect the price level at which the respective commodity
competes with the domestic product.
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system:

A∗ = AD +KD +AM +KM (4.12)

with all �ows referring to domestic output x, so that for any intersectoral �ow
of transactions T = {tij}n×n, the direct input matrix A is calculated as7

A•U = T x̂−1 (4.13)

for backward linkages, and

A•S = x̂−1 T (4.14)

in the case of forward linkages.
AD and AM denote the domestic and imported intermediate demand. KD

is the domestic capital �ow matrix, KM is the matrix of capital �ows produced
by foreign industries.8 In order to keep row sums equal to column sums, imports
and investments were deducted from exports and gross �xed capital formation,
respectively, while row-wise, value added was adjusted by capital �ows. Thus,
Verspagen (2004) indicates, these coe�cients cannot be interpreted as technical
coe�cients any longer, since investments represent future consumption of �xed
capital rather than current one.

In the context of this paper, we resort to a generic de�nition of ICT products
and do not restrict it to a speci�c technology (which distinguishes our analy-
sis from Bresnahan and Trajtenberg (1995) who dealt with semiconductors, and
Lipsey et al. (2005) who discussed the computer and internet separately). How-
ever, most of the other empirical studies take a broad view on ICT. The clas-
si�cation of the ICT-producing sector based on ISIC Revision 3.1 thus contains
the manufacturing sectors: (30) o�ce machinery and computers, (32) radio and
communications equipment etc.; as well as the service sectors: (72) computer ac-
tivities, and software consultancy and supply. Since input-output data were just
available on a two-digit level, we had to narrow down the ICT sector to its core
industries, excluding four-digit industries that also produce ICT products.9 Also,
in contrast to Verspagen (2004), ICT-related services will be analyzed separately
from other business services.

7A hat on a vector denotes the diagonal matrix built from this vector.
8Note that the capital �ow matrix only comprises the deliveries of �ve sectors ((1) buildings

other than residential, (2) machinery, (3) transport, (4) software, and (5) construction), exclud-
ing residential buildings, net aquisition of valuables and original works, all of which have been
added to �nal consumption.

9Apart from the industries stated above, the OECD de�nition of the ICT sector contains
the following industries: (3130) mfr. of insulated wire and cable; (3312) mfr. of instruments
and appliances for measuring, checking, testing, navigating and other purposes, exc. industrial
process control equipment; (3313) mfr. of industrial control equipment; (5151) wholesale of
computers, computer peripheral equipment and software; (5152) wholesale of electronic and
telecommunications parts and equipment; (6420) telecommunications; (7123) renting of o�ce
machinery and equipment (including computers).
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4.4 Results and Discussion

Whilst the analysis was also undertaken over 130 sectors, the results shown here
are based on calculations at a more aggregate level of 53 sectors and 32 sectors
for the sake of better representation. The usual critical remarks on biasing results
by aggregation apply here as well. Based on the indicators derived in equations
(4.10) and (4.11), we will �rst discuss the extent of pervasiveness of the Danish
industries from 1966 until 2007. Afterwards we will present the case of general
purpose technologies, using the example of the new information and communica-
tion technology.

Our empirical �ndings will be compared to Castellacci's sectoral patterns of
innovations, in order to examine if innovative sectors also exhibit a speci�c dif-
fusion pattern of their products. Castellacci (2008) distinguishes four classes of
sectors, each of which have two subcategories and characterize a distinct innova-
tion pro�le. The taxonomy can be found in table 4.A.1. Referring to the notion of
technological paradigms (Freeman and Louca, 2001), advanced knowledge provid-
ing sectors (such as machinery and equipment, and IT and knowledge-intensive
business services), science-based manufacturing industries (e.g. ICT manufac-
turing, chemicals) and network infrastructure services (telecommunications and
�nancial services) can be closely linked to the current general purpose technology,
ICT.

In contrast, scale-intensive manufacturing sectors (such as rubber, plastic
products and motor vehicles), supplier-dominated industries (mainly producing
personal goods and services) and physical infrastructure services (i.e. wholesale
and transport) are associated with the Fordist paradigm that characterized pro-
duction in the post-war period.

Pervasive Key Sectors

Table 4.1 lists those industries that recorded above-average linkages throughout
the period between 1966 and 2000. The detailed industry ranking is presented
in table 4.A.1 in the appendix. Regarding downstream pervasiveness, the tradi-
tional sectors of manufacturing have played a key role in the four decades under
study. Not surprisingly, construction also quali�es as an important supplier in-
dustry. Concerning the service sector, those industries that show the strongest
ties to others downstream are mainly assigned to infrastructure and distributive
services, and include, e.g., public administration, wholesale and transport as well
as real estate. On the other hand, the food and textile manufacturing industries
have continuously been important with respect to pervasiveness in the utilization
of intermediate inputs (upstream). According to Castellacci's taxonomy, the tech-
nological trajectories of these sectors can be categorized as supplier-dominated;
i.e. the bulk of technical progress in the sectors has been created by the industries
upstream. To the extent that intersectoral linkages also represent the exchange of
technological information embodied in products, our empirical �ndings underpin
this taxonomy. Furthermore, education, health and social work have shown sig-
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ni�cant linkages upstream. Table 4.1 also depicts real estate activities and public
administration as key sectors both in terms of use and supply pervasiveness.

Supply Pervasiveness Use Pervasiveness

ISIC Activity ISIC Activity

21 Mfr. of paper prod.; printing 15-16 Mfr. of food, beverages and
and publish. tobacco

27 Mfr. and processing of basic 17-19 Mfr. of textiles, wearing apparel
metals and leather

29 Mfr. of machinery and equip- 60 Land transport
ment n.e.c.

45 Construction 70 Real estate activities
51 Wholesale 75 Public administration & defense
70 Real estate activities 80 Education
74 Other business activities 85.1 Health care
75 Public administration & defense 85.3 Social work activities

Table 4.1: Pervasive key sectors in Denmark between 1966 and 2000

Figure 4.1 plots the ranking positions (in ascending order) of the 53 industries
with regard to these two indicators for 2007. As one can see, the indices are
positively correlated due to the sectoral weights that were chosen. However, there
are a few outliers: The food and textile industries show signi�cant linkages to
their supplier industries, while they rank low in downstream pervasiveness. The
opposite case holds for construction and other business activities.
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Figure 4.1: Downstream versus upstream pervasiveness according to the industry ranking (in
ascending order). The industry classi�cation is listed in table 4.A.1.
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Turning to sectoral dynamics, �gures 4.2 and 4.3 show the change in rank-
ing positions between 1966 and 2007. Each industry is thereby de�ned by its
Her�ndahl generality index and the total (forward/backward) linkages, which to-
gether constitute the angle, as well as its ranking position, which translates into
the radius of the polar plot. For organizational purposes, the industries were
aggregated to 32 industries. The core of the polar grid contains the ten most
important sectors according to our indicator. The further an industry moves to
the periphery, the lower it ranks. The origin represents the average degree of
pervasiveness and intersectoral impact in terms of linkages. Thus, the upper right
area contains those sectors that are connected directly and indirectly to a broad
range of sectors. The lower right area is characterized by high diversi�cation, but
low impact. The further one moves clockwise, the less pervasive the industries
become. The upper left area comprises those industries that have a high total
impact upstream (downstream), but concentrate their demand (supply) only over
a few other sectors.

Fig. 4.2 shows that most of the key industries in terms of downstream perva-
siveness � located in the core � relate to supporting infrastucture services, in par-
ticular transport (TRANS), wholesale trade (WHO), �nancial services (FIN/RE),
and most recently, post and telecommunications (POST). Out of the ten most
important industries, machinery and equipment (MACH), post and telecommu-
nications (POST) and other business activities (OBA) provide their products to
a broad range of sectors. The latter two are closely linked to the ICT-producing
sector and re�ect the ongoing outsourcing processes of business services from
manufacturing �rms. In contrast, personal consumer goods and services such as
those provided by the food and textile industry (FO/TEXT), or sale and repair
of motor vehicles (S/R VEH) can be found in the left half of the �gure.

With regard to upstream pervasiveness, �gure 4.3 shows a less balanced distri-
bution of the industries along the polar grid. More speci�cally, the bulk of sectors
with a diversi�ed demand for intermediate products have a low impact upstream
(and are therefore located in the bottom right area of the plot). The only indus-
tries in the core that are both pervasive and characterized by strong total linkages
upstream are those that provide science-based manufacturing goods, i.e. the ICT
sector as well as machinery and equipment (MACH).

Dynamics Furthermore, the polar representation allows studying the dynamics
in the industry networks. For doing so, we split the period of 42 years into 10-
year intervals, and calculate the Euclidean distance between the position of each
industry at time t and t+10. Adding up these distances is used as a proxy of how
dynamic the respective sector has been over the whole period under study. Table
4.2 reports the ten most dynamic sectors in terms of supply and use pervasiveness.
Regarding supply pervasiveness, half of the industries represent advanced knowl-
edge providers (ICS, R&D, OBA) or science-based manufacturing sectors (ICS,
CHEM), while only two sectors (VEH, HOT) can be linked to consumer-oriented
industries. The remaining sectors are not classi�ed under Castellacci's taxonomy.
The petroleum (PET) and chemical (CHEM) industry have become more con-
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Figure 4.2: Comparison of the industry structure according to supply pervasiveness
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Figure 4.3: Comparison of the industry structure according to use pervasiveness

centrated in terms of supply between 1966 and 2007, while R&D also shows a lot
of dynamics by densifying its trade network to the industries downstream (see
�gure 4.4). This is not re�ected in its ranking position though, as the sector's
share in total value added is relatively low. Turning to use pervasiveness, the in-
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dustries linked to the ICT-producing sector, i.e. ICT manufacturing and services
(ICM, ICS), machinery and equipment (MACH), electrical apparatus & medical
and optical instruments (INST) as well as post and telecommunications (POST)
exhibit the strongest dynamics. Interestingly, all of them are strongly associated
with the IT paradigm and have diversi�ed their demand upstream. This is espe-
cially the case for ICT services and medical and optical products which moved
from far left to the right half of the plot (see �gure 4.3). The �ndings underscore
the `restlessness' of these sectors due to the emergence of ICT, and the profound
changes in intersectoral linkages up and down the production chain.

Rank Code Supply (downstream) Code Use (upstream)
1 OMFR Other manufacturing POST Post and telecommunications
2 PET Extr. of petroleum etc. INST Mfr. of electrical,

& optical equipment
3 ICM ICT manufacturing ICS ICT services
4 VEH Mfr. of mothor vehicles CON Construction
5 CHEM Mfr. of chemicals etc. RE/MAS Renting of machinery

and equipment
6 R&D Research & development ICM ICT manufacturing
7 RE/MAS Renting of machinery HEALTH Health activities

and equipment
8 ICS ICT services MIN Mining and quarrying
9 HOT Hotels and restaurants TRANS Transport services
10 OBA Other business activities FO/TEXT Food and textile industry

Table 4.2: Ranking of industry dynamics according to supply and use pervasiveness
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The Case of ICT

Table 4.3 lists the change in ranking positions over time (based on a 53-sector
classi�cation) for the ICT core sectors as well as for those industries closely related
to them. As can be seen, all sectors have gained in both downstream and upstream
pervasiveness, but to a di�erent extent: In terms of downstream pervasiveness,
the ICT manufacturing and ICT service industries show the biggest improvements
(by 28 and 40 positions, respectively). Considering upstream pervasiveness, the
ICT manufacturing sector as well as post and telecommunications climbed up
signi�cantly in the ranking (by 39 and 26 positions, respectively).

1966 1980 1990 2000 2005
Code ISIC Activity down up down up down up down up down up
ICT 30,32 Mfr. of ICT 47 46 41 38 35 26 22 13 19 7

INST 31,33 Mfr. of electrical
and optical equipment 15 36 16 26 16 21 13 10 11 12

POST 64 Post and/
telecommunications 24 45 17 45 13 39 9 25 8 19

RE/ 71 Renting of machinery
MAS and equipment etc. 53 50 52 50 53 46 38 48 34 47
ICS 72 Computer and

related activities 49 53 39 53 31 49 15 34 9 31

Table 4.3: Ranking of the ICT-producing sector and related industries. The numbers in the
second column indicate the assignment of the respective sector to the ISIC Rev. 3.1 two-digit
classi�cation, columns 4-13 show the ranking of each industry according to its pervasiveness
downstream (down) and upstream (up).

Figure 4.5 depicts the trajectories of downstream pervasiveness for current
general purpose technologies, ICT and electricity. The polar plot shows that
these industries indeed provide their products to a wide range of sectors, since
they are located in the right half of the �gure. However, di�erent dynamics are
at work: Whereas the electricity sector exhibits a very low degree of dynamics
(the scatter is very dense), the ICT industries have clearly been moving to the
core. Furthermore, in the ICT manufacturing industry in particular, one can see
that the trade network of this sector was rather concentrated in the �rst decade,
thus it did not qualify as a GPT right from the beginning. Only after it had
become more widespread, as re�ected by a movement of ICT manufacturing to
the right along the horizontal axis in �gure 4.5, it started approaching the core
in the mid-1980s.

By means of the extended linkage indicators, it is possible to identify the key
sectors in the economy, and the structural dynamics (in terms of both industry
rankings and distances between annual positions) over time. However, these tools
do not allow for analyzing the evolution of intersectoral linkages, and thus trac-
ing the di�usion path of a technology supplied by a speci�c industry. A GPT
is characterized by its pervasive employment in the production process of other
industries. In order to see this, one would need to keep the information on the
disaggregated level and to examine the change in the respective input coe�cients.
The compound transactions matrix, which includes not only domestic and im-
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Figure 4.5: Change in ranking over time for ICT manufacturing and service sector, as well as
for electricity

ported �ows of intermediate products, but also of �xed capital, is used in the
following to derive the di�usion pattern of ICT. Furthermore, we will distinguish
between ICT manufacturing and ICT service sectors, due to the rapid growth
and the increasing signi�cance of the latter. An input share above 0.01 for ICT
manufacturing and service products was arbitrarily chosen as an indicator that
the respective sector has adopted this technology in its production.

Figure 4.6 translates the deployment pattern of ICT into the cumulative share
of adopters, as a measure of extensive use of this technology. ICT manufacturing
products have been steadily employed in over 10 per cent of the sectors since the
1960s, but experienced a takeo� in the mid-1980s with the emergence of the new
information and communication technology.10 Another leap is observable before
the dot.com crash in 2000.11 For ICT-related services, particularly software, the
di�usion rate accelerates between 1970 and 1985 and then again between 1992 and
2000. Fitting the scatter plot, the di�usion path approaches the typical sigmoid
curve for both ICT industries.12 It is interesting to note that the best curve �t for
ICT services is achieved by splitting the whole period in two subintervals. This

10Note that data are based on constant prices of the year 2000, thus �gures for the early
period under analysis contain an upward bias in the use of ICT due to the signi�cant price
deterioration this technology saw prior to the reference year.

11The relatively low adoption rate for ICT manufacturing products of about 60 per cent in
2007 can be explained by our narrow de�nition which excludes important industries such as the
semiconductor industry and the measuring/control equipment industry.

12The norm of the residuals is equal to 0.013 and 0.026 for ICT services and 0.067 for ICT
manufacturing. The latter value can be mostly explained by the outlier in 2000 that re�ects
unusually high investments in ICT manufactured capital in that year.
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Figure 4.6: Di�usion path of ICT

reveals the signi�cance of complementary products for the di�usion of a general
purpose technology. Firms operating in a GPT-producing industry face a high
level of uncertainty for their R&D expenditures. Investing in the development
of a new technology only pays o� if other companies also start developing com-
plementary components and a broad range of sectors is willing to adopt the new
technology. This ultimately causes a retarded takeo� of the industry depending
on the intrasectoral rate of innovation and the intersectoral adoption rate. Figure
4.6 shows that the di�usion of ICT-manufacturing in the beginning of the 1980s
was indeed boosted by developments in the ICT service industry. The accelerated
adoption process for manufacturing products in turn sped up the di�usion of ICT
services after 1992. This supports the argument that the pervasive use of a gen-
eral purpose technology requires a facilitating environment that allows di�erent
sectors to switch to the new technology.

Figure 4.7 depicts the intensity of use of ICT manufacturing products and
ICT services in the Danish economy from 1966 until 2007. The contour plot
shows that ICT goods and ICT services initially spread over the neighboring
industries, such as mfr. of machinery and equipment n.e.c. (MAS), mfr. of other
electrical, medical and optical equipment (INST), as well as real estate activities
(RES) and renting of machinery and equipment (incl. o�ce computers) n.e.c.
(RE/MAS). In the mid 1970s, post and telecommunications (POST) and the
�nancial markets (FIM) started to utilize ICT. Almost a decade later, one can
see the beginning of online sale (ORE) and online auctioning (CONS), and the
entry of ICT in research & development (RD). Afterwards, the technology spread
over most sectors in manufacturing and services, with the primary industries as
the last sectors to adopt it.
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4.5 Conclusion

This paper has attempted to show that when it comes to general purpose tech-
nologies, the conventional tools for identifying key sectors in the economy are not
su�cient, as they do not embrace the speci�c characteristics of pervasive techno-
logical change. We argue, in line with social network theory, that a diversi�ed
producer (user) network across industries re�ects the robustness of a speci�c in-
dustry in the economic system. The ability to reduce costs in its application
sectors may be the most important feature of an innovation; and then it would
make a di�erence whether the technological breakthrough is of single or general
purpose. The latter leads ad hoc to e�ciency gains in a broad range of sectors
that progressively channel through to the other industries tied to them. In this
aspect, general purpose technologies form a robust base in the economy. The
traditional indicator is therefore extended by a dispersion index, in order to ex-
plicitly capture the direct linkages of one sector to the other. However, if the size
of economic activity is not su�ciently large, a pervasive sector has no impact on
the production system and thus should not qualify as a GPT. Hence, the pro-
posed index also features a proxy for the economic performance. By means of
this indicator, it is also possible to trace industrial dynamics over time.

The application of these measures for Denmark uncovers that ICT is indeed a
general purpose technology at work, and thus complements con�icting �ndings for
the U.S. economy which are based on conventional linkage analysis (see Verspagen
(2004)). The results show that ICT manufacturing and service industries have
been continuously evolving towards the core of the economic system. The analysis
also reveals that the distinction between ICT manufacturing and services is im-
portant, as they show a di�erent, though clearly interrelated, di�usion path. Our
�gures certainly underestimate the impact of ICT, because our de�nition does
not comprise all ICT-producing sectors. This is because data is only available on
two-digit level, which does not allow to di�erentiate between subindustries, for
example, in the electric machinery and apparatus industry. We could therefore
only capture those industries that entirely produce ICT goods or services. In this
context, a classi�cation according to ISIC Rev. 4.1 would have been preferable,
since this industry aggregation discloses ICT activities more concisely.

The present analysis has also been related to sectoral patterns of technical
change. The taxonomy proposed by Castellacci (2008) was used to examine how
far sectors with similar innovation pro�les also exhibit a coherent utilization and
di�usion pattern of their products. En gros, our empirical �ndings support the
classi�cation, since all sectors related to the Fordist paradigm (supplier-dominated
goods and services, physical infrastructure services, and scale-intensive manufac-
turing) have moved towards the periphery of the economic network and got more
concentrated in their supply (see �gure 4.B.1 in the appendix). On the other hand,
the industry groups associated with ICT (advanced knowledge providers, science-
based mass production goods and network infrastructure services) are located in
the right half of the plot and show a high degree of pervasiveness.

In this regard, our di�usion-oriented approach is able to detect shifts in tech-
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nological regimes by their impact on the intersectoral network. Together with
innovation indicators at the �rm level, it can help to identify the locus and range
of radical technical change and the maturity stage of the related technology. Our
analysis also highlights the distinct notion of a technological paradigm and a
general purpose technology: While ICT indeed represents a GPT, the Fordist
paradigm of production does not meet the criterion of pervasiveness during the
period under study.

Furthermore, the paper at hand stresses the close link between vertical integra-
tion and the di�usion of a new technology. As we have demonstrated empirically,
the functional classi�cation of sectors found in most of the endogenous growth
literature, and speci�cally in the theory of GPTs, which di�erentiates between
an R&D sector, an intermediate good as well as consumer good sector, is not
able to span the great variety not only in innovation activity, but also in the de-
gree of economic integration among sectors. Our study thus also underscores the
necessity of multisectoral approaches in growth literature that take into account
the circular �ow of production and the cross-dependencies between heterogeneous
industries.





Appendix

4.A Industry Ranking

Table 4.A.1: Ranking of Danish industries. The second and third column indicate the assign-
ment of the respective sector to the ISIC Revision 3.1 two-digit classi�cation, the fourth column
refers to the taxonomy by Castellacci (2008), columns 5-11 contain the ranking of each industry
according to its pervasiveness downstream (down) and upstream (up) in ascending order.

1966 1980 1990 2000
Code ISIC TAX Activity down up down up down up down up

AGR 1 Agriculture 40 20 44 19 41 17 33 29
HORT 1 Horticulture, orchards etc. 50 26 48 34 47 36 49 37
AGS 1 Agricultural services 36 51 40 51 40 51 43 52
FOR 2 Forestry 44 43 45 46 49 48 51 49
FISH 5 Fishing 45 28 49 37 51 35 52 47
PET 11 Extr. of crude petroleum, natural gas etc. 28 44 35 44 20 47 18 35
GCS 14 Extr. of gravel, clay, stone and salt etc. 34 48 38 48 43 52 48 53

FOOD 15-16 PGS1 Mfr. of food, beverages and tobacco 14 1 14 1 15 1 19 1
TEX 17-19 PGS1 Mfr. of textiles, wearing apparel, leather 31 8 34 12 38 10 39 12

WOOD 20 PGS1 Mfr. of wood and wood products 25 41 30 40 36 40 32 40
PAP 21-22 PGS1 Mfr. of paper prod.; printing and publish. 8 25 8 28 9 25 11 24
PET 23 Mfr. of re�ned petroleum products etc. 42 3 52 3 52 30 53 44

CHEM 24 MPG1 Mfr. of chemicals and man-made �bres etc. 23 21 18 11 14 9 16 7
PLAST 25 MPG2 Mfr. of rubber and plastic products 32 40 21 32 18 28 20 26
NMET 26 MPG2 Mfr. of other non-metallic mineral products 22 31 25 30 37 43 35 41
BMET 27,28 MPG2 Mfr. and processing of basic metals 7 27 6 20 7 22 5 21
MAS 29 AKP2 Mfr. of machinery and equipment n.e.c. 6 15 3 10 5 8 6 8
ICT 30,32 MPG1 Mfr. of ICT 47 46 41 38 35 26 22 13

INST 31,33
MPG1 Mfr. of electrical machinery and apparatus &

15 36 16 26 16 21 13 10
AKP2 Medical, precision and optical instruments

TRAN 34,35 SIS2 Mfr. of transport equipment 11 19 15 18 24 11 31 14
FURN 36,37 PGS1 Mfr. of furniture; manufacturing n.e.c. 21 18 23 14 27 13 27 15
ELC 40 Electricity 39 34 31 27 28 45 30 45
GWS 40,41 Gas and water supply 30 22 32 24 25 33 26 27
CON 45 Construction 1 30 1 23 4 34 4 36
REP 50 PGS2 Sale and repair of motor vehicles etc. 10 13 10 13 19 16 25 20
WHO 51 SIS2 Ws. and commis. trade, exc. of m. vehicles 3 4 5 4 3 3 2 3
RET 52 PGS2 Retail trade of food etc. 26 11 29 17 32 20 40 22
DEP 52 PGS2 Department stores 41 39 42 42 42 42 46 39

RE/PH 52 PGS2 Re. sale of phar. goods, cosmetic art. etc. 51 49 50 49 50 50 50 50
RE/CF 52 PGS2 Re. sale of clothing, footwear etc. 48 38 47 41 46 41 47 42
ORE 52 PGS2 Other retail sale, repair work 17 12 22 22 30 24 28 23
HOT 55 PGS2 Hotels and restaurants 18 10 20 16 21 14 24 17

LTRAN 60 SIS2 Land transport; transport via pipelines 4 16 9 9 10 12 10 18
WTRAN 61 SIS2 Water transport 52 17 52 15 48 15 34 11
ATRAN 62 SIS2 Air transport 38 32 28 29 34 31 42 28
OTRAN 63 SIS2 Support. trans. activities; travel agencies 29 24 24 25 22 23 21 32
POST 64 SIS1/2 Post and telecommunications 24 45 17 45 13 39 9 25
FIM 65 SIS1 Financial intermediation 13 29 12 31 8 18 8 16
INS 66 SIS1 Insurance and pension funding 33 33 36 39 33 32 36 31
AUX 67 SIS1 Activities auxiliary to �nan. intermediat. 43 52 46 52 44 53 44 51
RES 70 Real estate activities 2 6 2 5 1 4 3 6

RE/MAS 71 Renting of machinery and equipment etc. 53 50 52 50 53 46 38 48
ICS 72 AKP1 Computer and related activities 49 53 39 53 31 49 15 34
RD 73 AKP1 Research and development 46 42 43 43 45 44 45 46

CONS 74 Consultancy etc. and cleaning activities 5 37 4 36 2 27 1 30
PUB 75 Public administration etc. 9 2 7 2 6 2 7 2
EDU 80 Education 12 5 11 6 11 5 12 5

HEALTH 85 Health activities 20 7 19 7 17 7 17 9
SW 85 Social work 19 9 13 8 12 6 14 4

DISP 90 Sewage and refuse disp. and similar act. 35 47 33 47 29 37 37 38
MEMB 91 Activities of membership organ. n.e.c. 37 35 26 33 26 29 29 33
CULT 92 Recreational, cultural, sporting activities 27 23 27 21 23 19 23 19

OSERV 93-99 Other service activities 16 14 37 35 39 38 41 43

Abbr.: AKP: advanced knowledge providers ((1) knowledge-intensive business services, (2) specialized suppliers
manufacturing); MPG: mass production goods ((1) science-based manufacturing, (2) scale-intensive manufacturing);
SIS: supporting infrastructure services ((1) network infrastructure, (2) physical infrastructure); PGS: personal goods
and services ((1) supplier-dominated goods, (2) supplier-dominated services).
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4.B Results for Castellacci's Taxonomy of Sectoral

Patterns of Innovations
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Figure 4.B.1: Dynamics in the industry structure according to Castellacci's taxonomy of sec-
toral patterns of innovations (Castellacci, 2008). AKP: advanced knowledge providers; MPG:
mass production goods; SIS: supporting infrastructure services; PGS: personal goods and ser-
vices



Chapter 5

The Evolution of Economic

Structure under Pervasive

Technological Change: A Social

Network Approach

A breakthrough in a general purpose technology (GPT) distinguishes from other types of in-

novations in both its signi�cance in the economic system and by its di�usion process over the

industrial network. In order to trace GPTs at the sectoral level, we propose a novel method for

analyzing structural change, based on a dynamic social network approach, and in doing so derive

a technical tree that represents the economic structure under the notion of pervasiveness. We

apply this framework to the GPT currently at work, information and communication technolo-

gies (ICT), showing the evolution of ICT-producing sectors and their impact on the economic

structure in Denmark between 1967 and 2009. Our �ndings reveal that the proposed framework

is able to detect general purpose technologies by the locus of their production, and that ICT

services, but not the ICT manufacturing sector, have become one of the core industries of the

Danish economy.

Keywords | general purpose technologies, social network theory, input-output,

evolutionary economics, organizational structure

5.1 Introduction

The economic system is an indeterminate, heterogeneous, irreversible system
which is in constant disequilibrium and contains evolutionary characteristics
(Janssen, 1998). This holds a fortiori true when a new general purpose tech-
nology (GPT) enters the system, which a�ects all sectors due to its variety in use
and fosters innovative activities in the whole economy as an essential part of the
adaption process.

In the mid-1990s pervasive technologies became a widely-debated issue in eco-
nomics, not least because of the emergence of the new ICT whose impact became
very evident in daily life and was yet not visible in the productivity accounts.
Dynamic theories were evolving around the notion of GPTs which was introduced
into the economic literature by Bresnahan and Trajtenberg (1995), emphasizing
the impact of major technological change on the economic structure and on long-
term economic growth. The general content of this discussion was nevertheless not
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new, but can be linked to other concepts explaining long waves in economic his-
tory, most prominently to the pioneering work of Schumpeter (1997). Since then,
a variety of theories have been centered around drastic technological change (see,
for example, the theory of technoeconomic paradigms (Dosi, 1982; Perez, 1983),
the notion of macroinventions (Mokyr, 1990), or enabling technologies (Lipsey and
Bekar, 1995), spreading the seeds of evolutionary economics. Acknowledging the
similarities on the content level, Verspagen (2004) calls the literature on GPTs the
American counterpart of Schumpeterian economics.1 Nevertheless, the concept of
general purpose technologies is by no means a re-inventing of the wheel (or squar-
ing the circle by embedding it into a dynamic equilibrium model), but has its own
right to exist; not least because of its emphasis on the generality of purpose of a
technological breakthrough, i.e. its inherent potential to be used throughout the
economic system. All other characteristics assigned to a GPT can subsequently
be derived from the notion of pervasiveness: (1) the novelty in design that ensures
the technology to be demanded in all other sectors, but simultaneously prevents
it from being employed upon arrival; (2) the speci�c life cycle of the technology
in which its impact on the system unfolds itself only at a later stage, after the
di�usion process has faded out; (3) the coordination problems on the mesoeco-
nomic level among the GPT-producing industry and its application sectors which
� due to the pervasiveness of the technology � translates into cumulative e�ects
on the macroeconomic level. When it comes to detecting these changes in the eco-
nomic structure, indicators based on direct and indirect inter-industrial linkages
as reported in input-output tables have become a popular tool for identifying key
sectors (see, e.g., Rasmussen (1956), Hirschman (1958), Jones (1976), Sonis et al.
(1995), Lenzen (2003)). An impulse given to any of those industries would not
only a�ect sectors directly tied to them, but would eventually channel through
the whole intersectoral network.

However, these conventional tools do not su�ciently explain general purpose
technologies, as they do not consider the speci�cs of this type of technological
change.

The methodology proposed henceforth will evolve around the notion of perva-
siveness as the crucial feature that distinguishes a GPT from other radical inno-
vations and interpretes it in the light of a general theory of economic evolution.
Despite composing the heart of the theory of GPTs, the term lacks a clear-cut def-
inition. According to Field (2011), whichever way you look at it in input-output
tables � either considering only direct linkages of the GPT-producing sector to
other industries or also taking into account the multiplier e�ects � is unsatisfac-
tory; the former would underrate the impact of a general purpose technology,
the latter would subsume basically each kind of technology under the notion of a
GPT.

An explanation of why `general purpose' is a signi�cant criterion of a tech-
nology is o�ered by the theory of social networks. Analogously to Bothner et al.
(2010), we argue that an industry occupies a rather robust position in the eco-

1See Lipsey et al. (2005) for an excellent review of GPT theories and related concepts.
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nomic system the more diversi�ed the network is which it belongs to, as the impact
of an innovation is crucially dependent on the range of sectors adopting it and
their ties to other industries. To the extent that robustness means �diversi�cation
across the diversi�ed� (Bothner et al., 2010, 945), GPT-producing sectors form
the robust base in the economy.

In support of our hypothesis, we apply the concept of organizational structure
in the analysis of the inter-industrial network, in order to derive a tree data
structure, called technical tree, and explore the dynamics of the evolving technical
tree over time. With regard to GPTs, we hypothesize twofold: (i) Upon arrival of
a new GPT, the GPT-producing industry is located somewhere at the bottom of
the technical tree; (ii) over time, advances in the GPT lead to new opportunities
in application, so that the GPT-producing industry evolves close to the core of the
community and disposes of an increasing number of descendants. The framework
is subsequently applied to the Danish economy over a time span of 43 years.
Annual input-output tables and investment matrices together with data on the
capital consumption of 130 industries from 1967 to 2009 describe the structure of
inter-industry relationships.

The paper proceeds as follows: Section 5.2 introduces the method, section 5.3
describes the data handling, while the empirical �ndings are discussed in section
5.4. Section 5.5 gives concluding remarks and proposes some direction for future
research.

5.2 Methodology

A major technological breakthrough leads to the (trans)formation of (new) indus-
tries producing it, but unfolds its impact on the whole economic system primarily
via the di�usion process. The latter requires intersectoral coordination whose suc-
cess/failure determines the life time of the technology and of the sector producing
it, as well as the evolution of the economic system on the whole.

Unlike most of the other work in the �eld of general purpose technologies,
our analysis does not focus on the technology as such, but on the industry that
provides the technology to other sectors for its potential application. We therefore
follow Dopfer and Potts (2008) by putting emphasis on the meso unit as the
�analytical nexus of economic evolution of structural change� (59).

The proposed framework draws on two distinctive approaches in the �eld of
social network theory (namely on Bothner et al. (2010) and Qiu and Lin (2011))
and contains three steps: (1) A modi�ed centrality measure ranks the industries
according to their importance, i.e. the degree of robustness in the network. (2)
A random walk on the graph transforms the inter-industrial network into a tree
data structure. (3) A tree learning algorithm allows for deriving the evolving
community tree. In the following, each step will be explained separately.

Industry Ranking according to Robustness

Bothner et al. (2010) argue that higher concentration in social networks uncov-
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ers the fragility of some members, because their nodes in the network depend
on a few others and not on a broad base. Hence, pervasive social relations un-
derpin the robustness of a member's status in the network, and therefore need
to be taken into account. On the methodological level, the authors combine the
Hirschman-Her�ndahl concentration index with Bonacich's recursive method for
measuring centrality in networks (Bonacich, 1987). As is also shown, this concept
can be applied to industries as well, where the relational matrix represents the
interconnectedness of sectors up and down the production process. In the context
of this paper, we will use the indicator for measuring only the linkages of a sec-
tor downstream, i.e. its importance as supplier to other sectors. The relational
matrix based on transaction �ows between industries thus transforms into:

H = {hij}n×n

hij =

{
zij∑n−1
j zij

}2

with elements hii being zero (i.e. intrasectoral linkages are not taken into account).
zij are the deliveries of industry i to all other industries j = 1, . . . , n, hence hij
are the squared sectoral shares of industry i's output.

Hi• ranges between 0 and 1. The lower its value, the wider is the range
of other industries a sector is connected with. The dispersion coe�cients hij
are subsequently introduced into Bonacich's recursive equation to account for
coupling (Bonacich, 1987, 1173), in order to derive a measure of fragility:

fi(α, β) =
∑
j

(α+ βfj)hij (5.1)

or in matrix notation, given that β is less in value than the reciprocal of the
largest eigenvalue λ associated with the dispersion matrix2:

f(α, β) = α (I− βH)−1H e (5.2)

with e being a column vector whose n entries equal one and α denoting a
scaling parameter. β represents the degree to which a member's status depends
on the status of those to which she is linked to. If β is zero, the fragility measure

2 If β < λ−1, equation (5.1), in matrix notation, becomes

f(α, β) = α

∞∑
k=0

βkHk+1e = α
(
H + βH2 + β2H3 + . . .

)
e,

which in the limit corresponds to equation (5.2).
∑inf

k=1 β
k−1Hk =

∑∞
k=0 β

kHk+1 is the total
number of ties attached to a node in the network.
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reduces to the Her�ndahl index, and thus only accounts the strength and range
of direct linkages to other sectors. The higher in magnitude, the more the status
of the alters is considered, and fi(α, β) becomes a function of direct and indirect
linkages in the network.

With regard to inter-industrial relations, H as de�ned above only considers
the distribution of a sector's sales to the rest of the industries, and not to �nal
demand, and neither the size of economic activity. However, it is important to
take the latter into account, because the mere fact that one industry's supply to
the economic network is rather diversi�ed does not qualify it for a key sector. In
order to incorporate the scale of economic activity, the fragility index of sector i
is weighted by its logarithmic share in total output

∑
j xj :

χi = ln

[
xi∑
j xj

]
(−1)

Note that all shares are below 1, thus χi turns negative by taking the log.
Multiplying the logarithmic shares by (−1) results in assigning higher values
to smaller shares. This is essential, since equation (5.2) represents the level of
fragility of an industry, and a small contribution to the annual output relative to
other industries should even amplify the comparative weakness. Thus, equation
(5.2) is extended to

f∗(α, β) = α diag(χ) (I− βH)−1H e (5.3)

diag(χ) denotes a diagonal matrix whose elements represent the individual weights
of the industries regarding the annual output.

Since robustness is de�ned as the complement to fragility, we derive the fol-
lowing equation for ranking industries according to their robustness:

r(α, β) = e− f∗(α, β) (5.4)

The last term on the right hand side represents the vector of weighted fragility
scores f∗. The shifting parameter α is used to normalize f∗ such that the sum
of the squared lengths of the individual fragility indices equals the size of the
network (see Bonacich (1987, 1173) and Bothner et al. (2010, 952)). A fragility
index of 1 thus means that the respective industry has an average degree of
fragility, irrespective of the number of members in the network. Using the unit
vector e as the minuend, a robustness score of ri > 0 indicates that industry i has
a robust position in the network, while ri < 0 reveals the respective industry to be
rather fragile.3 β allows determining the extent of vertical integration one wishes
to analyze. Analogous to Bonacich (1987), β re�ects a radius within which the

3As the industries are subsequently ranked according to their robustness score, the minu-
end can be chosen arbitrarily, because the ordinal structure does not change with the shifting
parameter.
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robustness of a node can be measured, gradually shifting from the local structure
(β = 0 and the direct network) to the global structure (0 < β < λ−1, which
considers direct and indirect linkages via coupling). The robustness score r will
be in the following used to derive the technical tree.

Deriving the Technical Tree

The seminal paper of Bresnahan and Trajtenberg (1995) shows that in a decen-
tralized economy, the generality of purposes together with increasing returns to
scale in the GPT producing sector generates coordination problems among up-
and downstream sectors. As a conclusion, not only the inner organization of the
inventing industries must be examined more closely, but also sectoral interrela-
tions have to be investigated more carefully, since �the locus of technical change�
matters (Bresnahan and Trajtenberg, 1995, 85). Even though the theoretical
framework is completely di�erent, Dopfer and Potts (2008, 50) argue in a simi-
lar way regarding the meso level, as it is primarily the carrier population � not
the single carrier of a technical rule � that evolves. Questions of the industrial
organization on the micro level thereby �nd their analogue in the problem of co-
ordination on the macro level: While the �rst is triggered by inventive activities
of microeconomic agents, the latter occurs in consequence of a meso change. Ap-
plying a model of organizational structure on the meso level may therefore give
fruitful insights into changes on the macro level.

However, so far our tool is one-dimensional, as it only gives the position of each
industry in a ranking, but does not reveal inter-industrial connections; we want
to show the latter while preserving the original ranking. This inevitably leads to
a tree structure where the most robust industries are located close to the root
of the tree (see �gure 5.1).4 In order to transform the sectoral network into this
kind of data structure, inter-industrial relations are reinterpreted as a weighted
and directed graph, where each node represents an industry which shares an edge
with another node in the network if there are transaction �ows between the two
respective industries. The magnitude of the transaction �ows gives the weight of
the edge, the destination of the �ows its direction (for a detailed analysis of the
network topology of input-output tables, see McNerney et al. (2013)). Performing
a t-step random walk on this graph would then provide a measure of the volume of
paths between two nodes (Szummer and Jaakkola, 2002); the higher the number,
the stronger the relation between the two members. The outcome is covered by
a transition probability matrix where each entry is the sum of all paths of length
t between the respective pair of nodes.

In their analysis of the organizational structure of networks, Qiu and Lin
(2011) use a forward random walk on an undirected graph to derive a community
tree. We follow a slightly di�erent approach, as the graph underlying the economic

4The idea of representing the economic structure as a tree was actually inspired by Bresnahan
and Trajtenberg (1995, 102) who discuss coordination problems between up- and downstream
production stages as moving down the `technological tree'.
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structure is directed. For this sake, we revert to �nite Markov processes,5 which
share the same mathematical framework with random walks on directed graphs
(albeit the �rst was developed in probability theory, the latter in network theory).
Markov processes can also be used to re�ect non-stochastic relations: Kemeny and
Snell (1976) showed that the Leontief input-output model can be interpreted as
an absorbing Markov chain (AMC). In an AMC each state (as the equivalent to a
node in graph theory) can reach an absorbing state that, once entered, cannot be
left anymore. In the scope of an input-output model, �nal consumption represents
the absorbing state of the system, as goods that end up here will not enter the
production system anymore.6

In the following, the technical coe�cients aij of the n production processes will
thus be used to derive the one-step transition probability matrix Q for transient
states:

Q = {qij}n×n where qij = aij =
zij
xj

(5.5)

In input-output terms, aij denotes the quantity of good i on average necessary
to produce one unit of good j. Treating the technical process as a Markov process,
qij gives the probability that a process starting in state i ends in state j after
one step.7 Since any �nite regular Markov process will eventually end up in an
absorbing state, each qnij approaches zero as n tends to in�nity. Therefore, the
so-called fundamental matrix N of an AMC can be calculated as the in�nite sum
of the n-step transition probability matrix for transient states (see Kemeny and
Snell (1976, 46)):

N = (I−Q)−1 = I +Q+Q2 + . . . =

∞∑
n=0

Qn (5.6)

Readers familiar with input-output analysis will immediately notice the equiv-
alence to the Leontief inverse (I−A)−1, which gives the direct and indirect inputs
required for producing one unit of �nal demand yi, i = 1, ..., n:

x = (I−A)−1 y (5.7)

5A Markov process is a random process in which the probability distribution for the future
prediction depends only on the most recent state, not on any other states in the past.

6A similar approach has recently been developed by Duchin and Levine (2010) who combined
an input-output model with an AMC for uncovering resource-speci�c networks in the �eld of
ecological economics. Our study di�ers in so far as we incorporate capital consumption �ows
in the inter-industrial transactions matrix, which are subsequently deducted from �nal demand.
In this regard, the consumption vector comes closer to the notion of an absorbing state as if
investments, which also belong to �nal demand, are fully taken into account.

7Absorbing Markov chains are of particular interest for studying the behavior of transient
states. The ergodic set of an AMC does not change during n steps, since the probability of
staying in an absorbing state is by de�nition 1.
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In terms of Markov processes, entries in N denote the mean number of times
a speci�c process is in various transient states before reaching its absorbing state.
On the basis of this matrix, we derive an algorithm which estimates for each
industry its most likely parent:

Deriving the technical tree (TT ):

TT = 0k×1 1. Build a technical tree (TT ) with all k industries attached to

the root node denoted by 0.

for i, j = 1 : k

if i == j

nij = 0; 2. Remove intrasectoral linkages from the fundamental

end matrix N .

end

for j = 1 : k

ixj ← sort N•j 3. Sort supplying industries in descending order of N•j ,

where ixij denotes the industry assigned to ranking

position i among the set of suppliers for industry j.

for l = 1 : γ 4. De�ne the range γ ∈ [1, k − 1] of industries in which the

algorithm is looking for a parent node for industry j.

if r(ixlj) > r(j) 5. If the robustness score of industry j is smaller

than the robustness score of its l-th most important

TTj = ixlj ; supplier industry, this industry represents the parent

end node of sector j.

if TTj > 0 break 6. As soon as a parent node is found among the γ top

end supplying industries, break loop #4 and start the search

end for the parent node of industry j + 1.

end

The algorithm searches for each sector j the γ most important supplier in-
dustries (in descending order), and picks the �rst sector that ranks higher in
robustness as parent of the industry under analysis. Note that the robustness
score determines the construction of the tree; thus if the ranking position of a
potential parent candidate is lower, then the corresponding industry by de�nition
cannot act as the immediate `leader'. In case that none of the γ most important
supplier industries ranks higher than sector j, the parent node of j is the root of
the tree. The resulting technical tree is derived as a column vector TT , where
element TTi denotes the parent of industry i, i = 1, ..., n (see �gure 5.1 for a
graphical representation). Industries that are directly connected to the root node
represent core industries (C) i�. they span a community, i.e. act as a parent (P)
of other industries. If not, this indicates that the robustness score does wrong
in assigning them a high rank. This paradox happens whenever the industry to
be investigated predominantly produces �nal consumption goods. Since the re-
lational matrix used to derive the robustness index only takes into account the
production network, an industry's contribution to �nal demand is ignored in the
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calculation. The algorithm improves the existing approach by �ltering out those
`false' core industries as leaves (denoted as L in �gure 5.1), i.e. nodes without
descendants.

 

R 

C C 

L 

P 

D 

Community 1 

Community 2 

Figure 5.1: Schematic presentation of a technical tree (R denotes the root node, C a core
node, P a parent node, L a leaf)

The core industries generate the basic grid over which the economic network is
spanned. The tree data structure allows di�erentiating between these key indus-
tries at the root of the technical tree and other sectors that act as parent industries
further down the tree. This distinction is important in so far as changes in the
set of core industries trigger o� processes of deep coordination on the macro level
(Dopfer and Potts, 2008) and thus reveal radical structural change.

Three things need to be pointed out: First, the dependencies in the tree data
structure are still not unidirectional, running from the root to the leaves; although
a community depends on its parent industry, each member in the community
strengthens in turn the position of its parent node, since the tree is based on
the robustness score, which makes parent and child node mutually dependent.
Second, parameter γ re�ects the strength of the hierarchical structure; the lower
γ, the �atter the hierarchy, as it becomes more likely for an industry not to �nd
a parent and remain at the root. On the other hand, if γ equals the size of the
network, the whole economic system is entirely spanned up by the top-ranked
industry. Third, N represents the technical coe�cients denoting the share of each
good directly and indirectly used for the production of sectoral output. This is a
better indicator for inter-industrial relations than the absolute value of the direct
transactions. In the following, the derived technical tree will serve as a reference
tree in the process of building the evolutionary technical tree.
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Deriving the Evolving Technical Tree

The previous algorithm allows us to build a static tree, representing the economic
structure at one point in time. If one is interested in the evolution of economic
structure over a speci�c time span, the framework presented so far can be applied
for a static comparative analysis by investigating for each period the corresponding
technical tree. Each tree then describes the macro trajectory at a speci�c point
in time. However, if the network size varies over time, or if the data underlying
the analysis are rather volatile, a method which ensures a smoother path of the
macro trajectory would be preferable.

The �rst argument is of less importance, since for now we deal with a
�xed number of industries over time, given by the sector classi�cation of the
input-output tables. Yet the second argument is to be considered because
the transactions that spin the edges of the interindustrial network may vary
considerably from one period to the next. This volatility would lead to a
technical tree that is rather unstable over time, as industries jump from
one year to the next onto very di�erent positions in the tree. For this rea-
son, we implement a tree learning algorithm that constructs node by node
hypothetical trees based on a weighted average ranking of two consecutive
years. At each step of the construction process, each of these subtrees is
being compared to the static technical trees of the previous and current year,
respectively. The candidate that is most similar to the existing static trees
(as measured by a tree edit distance function) is passed on to the next stage,
where a new node is attached to the existing graph. In this manner, the tree
evolves until all sectors have been considered. The algorithm was developed by
Qiu and Lin (2011) who used it in the context of a varying network size over time:

Deriving the evolving technical tree (ET ):

In case of a varying network size (#1�#3):

SET = St−1 ∪ St 1. Collect those industries that belong to the

economic network at time t− 1 and t.

for i ∈ SET : 2. Calculate the robustness score r of the industries in ET as a

r(i) = (1− α)rt−1(i) + αrt(i) weighted average score (α = [0, 1])

end

SET = {i ∈ SET | r(i) > ε} 3. Only consider those industries whose robustness

score exceeds a speci�c threshold parameter ε.

ET = {0} 4. Build a technical tree which only consists of a root node.

5. Create a collection of candidate evolving trees EC by putting industry i ∈ SET

in descending order of r under each industry in the evolving tree ET .

dn = 2
√
D(ECn, TTt−1)2 +D(ECn, TTt)2, 6. Calculate the distance errors between the

candidate evolving tree ECn and the previous TTt−1 and current technical tree

TTt, by use of the tree edit distance algorithm D().

ECk ← arg minECn
(d) 7. Choose the candidate with the minimum value in d.
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if d(ECk) > d(ET ) 8. The selected tree constitutes the evolving tree for the next

ET ← ECk iteration, where the next industry will be attached as a leaf.

end

The tree edit distance D(T1, T2) computes the minimum costs of converting
tree T1 into T2, by deleting, inserting and relabeling nodes. As it is used only as
a technical tool to add more �exibility to the model, we abstain from presenting
the algorithm here and refer the interested reader to Bille (2005) for a survey
on the general tree edit distance problem, and to Zhang and Shasha (1989) for
a rigorous discussion of the Zhang-Shasha algorithm on ordered trees which was
used in the scope of this analysis.

5.3 Data

Denmark as a Case Study

The empirical analysis will focus on the evolution of the new information and
communication technology in Denmark, as the current GPT at work. Several
remarks should be pointed out:

(1) Denmark has been chosen due to its position as a net importer of ICT
products. This allows us to trace the e�ects of ICT on the system of production
without considering its impact on economic development via export activities.

(2) In national accounts, sectors are classi�ed by the output they produce.
Concerning the de�nition of the ICT sector, we adopt a rather broad view, in-
cluding not only the manufacturing industry, but also services related to ICT. The
following industrial and service classes comprise the notion of ICT in the scope
of the present analysis: manufacture of computers and communication equipment
etc.; manufacture of wires and cables; telecommunications; information technol-
ogy service activities; information service activities. While this list certainly cov-
ers the major part of ICT producing industries, it is not exhaustive: The wholesale
sector of ICT products, for example, was not included in our study, because, on
the one hand, the data were only available at a fairly aggregate industry level that
did not allow distinguishing di�erent industries in the wholesale sector; and on
the other hand, this sector needs to be treated carefully in input-output analysis,
as the data depict the accumulated trade margins on all inputs of one sector.
Wholesale therefore does not represent a producing (and consuming) industry,
but a sector where commodities are passed through to end up in the production
process of other industries (Miller and Blair, 2009). Therefore, the wholesale
sector will be excluded from the analysis.8

(3) Since the paper aims at studying the impact of a general purpose technol-
ogy over the whole meso trajectory, a comprehensive investigation requires data
of inter-industry relations at a fairly detailed level and over a reasonably long

8The same case applies to the transportation sector, which re�ects the transportation margins
on factors of production, but to a lesser extent, since the data for this industry also record real
transport services for intermediate consumption.
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time span. In this regard, Statistics Denmark also provides a very good data base
that entails annual input-output tables (grouping of 127 industries in NACE 2.1.
sector classi�cation) for the period between 1966 and 2009, depicting domestic
and import �ows in basic current prices and prices of the previous year, as well as
investment tables spanning from 1993 to 20079 and capital consumption data10

over the whole time span.
(4) The incorporation of capital �ows is essential in the analysis of techno-

logical change. In the case of ICT, most products, such as computers and o�ce
machinery, are of �xed capital type and are thus not included in the intermediate
demand presented within an input-output table. In order to estimate intersectoral
capital �ows, we revert to investment tables which show the transactions from
supplying sectors of �xed capital to all other industries. Since we only wanted
to consider activities of reinvestment, data were smoothed across time, so that
single investment peaks were eliminated. The tables were used then to derive for
every industry annual coe�cients which give the share of each sector in the capital
formation (per �xed-capital category) of the respective industry. However, these
coe�cients cannot be interpreted as technical coe�cients any longer (Verspagen,
2004), because investments represent future consumption of �xed capital rather
than current one. Therefore the coe�cient matrix was subsequently multiplied by
capital consumption,11, assuming the same time structure for capital consumption
as of capital formation.12

(5) A time series analysis requires the unit of measurement � in our case the
relative prices of the commodity produced in each industry � to be kept constant
over time. Price relativities, however, do change and re�ect the economic sit-
uation less and less, the further away the period under study is from the base
year, i.e. the year whose prices indexes are derived from. This holds inevitably
true for computers, for which relative prices have fallen considerably since the
1970s. In order to reduce this so-called substitution bias, national statistics of-
�ces have progressively started to use chained indexes in the de�ation process.
Deriving a chained index over a time series simply means to constantly change
the base period; i.e. for each period, data are valued in current prices and prices
of the previous year, which allows calculating an annual �xed weighted (usually
Laspeyres or Paasche) index. Subsequently, one year is arbitrarily chosen as a
reference period, and all other years are linked to that period by chaining (i.e.
multiplying) the respective indices for consecutive years together (see Eurostat

9For the missing years (1966�1992 and 2007�2009), we extrapolated the investment tables
by calculating an average capital coe�cient matrix.

10Capital formation and consumption data comprise the following �xed-capital items: (1)
buildings, (2) machinery and equipment, (3) transport, (4) structures, and (5) �xed capital
n.e.c. (software, livestock, mineral exploration, and original works).

11Consumption of �xed capital are based on estimates of gross capital stock from Statistics
Denmark. The data is reported in the 127-sector classi�cation for each category of �xed capital
and for the whole time span under study. The methodology for deriving these estimates can be
found in Jensen (1997).

12This assumption can be easily modi�ed by including time lags between capital formation
and actual consumption.
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(2001) for a detailed explanation of the methodology). Since our study is about
the evolution of ICT between 1967 and 2009, we constructed a set of constant
price data for all transaction �ows (domestic and imported intermediate demand
and capital formation, as well as �nal consumption, output, and value added), by
calculating the Laspeyres volume index between consecutive years for each period
under investigation (43 years in total). The year 2005 was chosen as a reference
period, because data on capital consumption had been compiled by Statistics
Denmark in chained prices of that year. Subsequently, each time series of indices
was separately re-referenced to 2005 (=100), and then weighted again with the
volumes of 2005. The drawback of chained prices is the loss of additivity; this
is especially the case for input-output tables which are balanced by de�nition.
Thus, intermediate consumption and value added do not sum up to total output
anymore in years other than 2005. To overcome this issue, we follow Yamakawa
and Peters (2011) by using the sum of chained transactions as the new output.

Organization of Input-Output Data

In order to make a comprehensive investigation of the ICT sector, it is necessary to
cover all channels through which ICT-related products could enter the production
system and we therefore incorporate imports consumed domestically (MD) as well
as domestic and imported capital �ows (ZK):

Z = ZD +MD + ZDK + ZMK (5.8)

This transaction matrix Z will be used to derive the relational matrix, H,
for calculating the robustness score of each industry, as well as the transition
probability matrix, Q, and the fundamental matrix of the AMC, N .

The analysis was conducted on the level of 127, 66 and 36 sectors (correspond-
ing to the standard national industry grouping). Unlike other social networks
with individual entities, the treatment of industries as nodes leads ipso facto to
di�erent results depending on the level of aggregation (McNerney et al., 2013).
We chose to present the results of a system composed of 69 sectors, mainly for
two reasons: The more detailed (127-sector) classi�cation may have a bigger bias
due to the fact that the investment �ows are recorded based on an outdated sec-
tor classi�cation; whilst on the 66-sector level almost every industry in the new
grouping corresponds to one sector in the old grouping, an analysis on the most
detailed aggregation level would imply the need to break down the individual
industries even further.On the other hand, grouping the 127 industries into 36
sectors leads to large innersectoral transaction �ows, re�ecting the high aggrega-
tion level. Since the �ows within a sector are not considered, a lot of information
would get lost by analyzing an economic network of this size.
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5.4 Results and Discussion

In the following, our framework is applied to the Danish economy on an annual
basis from 1967 until 2009.13 Special emphasis will be thereby put on the ICT
sector as the supplying meso unit of this technology. During the phase of adoption
of ICT, the meso unit spans a growing population of industries; they in turn act as
the backbone of their parent industry, empowering the latter to evolve to the core
of a whole community. Since these `descendants' represent meso units themselves,
a community represents a cluster where members coevolve. The investigation of
the meso unit over time gives the meso trajectory, the evolution of the community
structure the core trajectory.

Studying the Meso Trajectory: The Case of ICT

Studying input-output tables over more than four decades according to a constant
industry classi�cation means that the node in the network remains the same, even
though the industry assigned to it may have undergone huge organizational and
technological changes. The ICT sector, for example, represents the same network
member throughout the period under study, even though the industries composing
this sector in 1967 have little � if anything � in common with the ICT producers
of today. Thus, in the scope of input-output data, a new GPT does not form a
new or further sector, but trans-forms an existing sector. Figure 5.1 shows how
the population of each ICT-producing sector has been evolving since the 1960s.
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Figure 5.1: Share of sectors with above-average demand on ICT per ICT-producing sector

13Regarding the programming tasks, MatLab was used as the main software for preparing
and processing data, while the tree learning algorithm was run in Java. And �nally, the network
graphs were drawn with Cytoscape, an open-source program for network visualization.
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The share of application sectors only contains those industries that employ
ICT rather extensively (as measured by an above-average demand for the respec-
tive ICT commodity in the production process).14 Back then, the ICT manu-
facturing sector, which produced traditional o�ce equipment, as well as telecom-
munication services already formed an integral part of the economic system by
being utilized in 20 and 10 percent of all sectors, respectively. While these shares
did not change much between 1967 and 1980, the di�usion rate of IT services
was growing rapidly from the 1970s onwards, when highly innovative companies
such as Microsoft and Apple were founded, and the �rst microcomputers went
to the market. By mid-1980s the IT service sector already exceeded the other
two ICT industries and has become the most important IT sector in Denmark
since then. Between 1990 and 1995, all ICT activities showed an equally sig-
ni�cant upward trend in their adoption rate, re�ecting the big advances in this
GPT. After the IT bubble burst in 2000, the IT manufacturing sector has shown
a slight decrease, partially due to outsourcing of domestic IT activities; this has
mostly a�ected ICT manufacturing, as the lower level of skills demanded by this
sector (compared to IT related services) facilitated the o�shoring of production;
whereas the telecommunication sector reveals increasing shares after 2005. This
sector has also become the most rapidly growing IT industry in terms of export
shares of IT products, R&D investments and sectoral turnover. After 2000, the
IT consultancy sector showed a relatively stable population of more than 70% of
all sectors.15

Applying our network approach with parameter values β = 1, γ = 6, table 5.1
shows the rank, parent node and number of descendants for each ICT industry
between 1969 and 2009.16

Figures 5.2 and 5.3 present the key �gures graphically. The x- and y-axes
denote the parent, i.e. the industry that the respective IT sector depends on
upstream, as well as the number of children, i.e. the most depending industries
downstream in the production process. The color of the circles indicates the
ranking position with regard to the robustness score, while the radius re�ects
the size of the subtree. The development over time (depicted on the z-axis)
thus shows when and to what extent ICT started to unfold their impact on the
economic system, and which sector enabled this change.

Fig. 5.2 reveals that telecommunications was one of the most robust industries
between 1967 and 1971 (as re�ected by a rank between 1 and 3), entailing a highly
diversi�ed purchaser network. However, this sector was not able to span a com-

14Strohmaier (2013) entails a more detailed discussion of the di�usion path of the ICT sec-
tor, di�erentiating between intensive and extensive utilization; the �rst refers to the degree of
utilization in each application sector, the latter to the adoption rate across sectors.

15Note that not all IT related activities could be taken into account due to the industry
classi�cation; this especially explains the low level of adoption of ICT manufacturing products,
as important subindustries such as manufacture of instruments for measuring and navigation
and manufacture of optical instruments could not be taken into account.

16In order to allow comparing the results with our �ndings in chapter 4, we present the baseline
approach without executing the third algorithm. Since we use capital consumption �ows and
smoothed investments, data volatility is low, so that results do not change signi�cantly.
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1969 1974 1979 1984 1989 1994 1999 2004 2009
ICT manufacturing

Rank 54 53 50 38 30 25 16 19 26
parent node 15 15 15 16 19 19 19 19 19
no. descendants 0 0 0 0 0 0 0 0 0
Telecommunication

Rank 6 7 7 8 10 9 10 7 4
parent node 0 30 30 30 30 30 39 39 39
no. descendants 0 0 0 0 0 1 0 5 5
IT services

Rank 28 20 11 9 11 7 3 2 3
parent node 46 45 46 46 46 46 0 0 46
no. descendants 0 0 0 1 0 1 4 12 12

Table 5.1: Evolution of the ICT sector 1969�2009. Rank denotes the ranking position of the
respective industry, numbers in parent node refer to the sector ID (see table 5.A.1).

−5

0

5

−5

0

5

1967

1977

1987

1997

2007

2017

 

 

tim
e

no. of descendants
12

11

10

 9

 8

 7

 6

 5

 4

 3

 2

 1

ROOT

LTRANS

ICS

Figure 5.2: Evolution of telecommunications

munity downstream, which means that it did not belong to the 6 most important
suppliers for any sector in the economy. At that time, telecommunication services
were also oriented towards �nal consumption, and to a lesser extent towards inter-
mediate demand. From the early 1970s until 1990, the telecommunications sector
was rooted in land transport, indicating that many of the services provided in this
period were related to postal activities.17 By 1987, the telecommunications sector
also became an important supplier for the producer network, especially for postal

17In fact, the old classi�cation based on Nace Rev. 1.1 grouped post and telecommunications
together, which shows the similarity in the services provided at that time. Both activities
were subsumed under transportation. With the rise of the internet and mobile phones, NACE
Rev. 2.1 gave credit to the new wireless telecommunication services and assigned them to the
information and communication sector.
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activities and business services. From 1997 onwards, when the era of the inter-
net and mobile communication began, telecommunications became part of the IT
service cluster. With the change in the community, the scope of telecommunica-
tions as a supplier of intermediate products has been growing, spanning postal
activities, employment activities, the private R&D sector and market research.
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Figure 5.3: Evolution of IT services

In comparison to �gure 5.2, one can see at �rst glance from �gure 5.3 that
IT services have undergone a more radical change, both in terms of their ranking
position and their ability to span depending industries. Interestingly, IT services
originated in the public administration sector, which supports the notion of an
entrepreneurial state (Mazzucato, 2013) that takes the risk of allocating subsidies
to a new technology which has the potential to become groundbreaking in the
future, but bears a high level of uncertainty in the presence. In the early 1970s,
the IT service sector made large investments in buildings, which made real estate
the parent industry during that time. After 1977, the IT service sector joined the
business services cluster and promoted the growth of this community. Eventually,
in 1997, IT services became a core industry, re�ecting its dominant role in the
economic system. Its development since then will be discussed below, together
with the other core industries in the Danish economy.

A quite di�erent picture can be drawn from the ICT manufacturing sector. Its
ranking position was almost continuously improving between 1967 and 1999 (from
position 54 to 26), but it never became a parent, and much less a core industry.
This may be connected to the fact that not all industries which manufacture
ICT products could be taken into account due to the high level of aggregation
in the industry classi�cation, but also re�ects the relative rise of IT services; if a
company outsources activities such as software programming and data processing,
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the need for computer hardware inhouse decreases, which ceteris paribus leads to
declining demand of ICT capital on the sectoral level.

Evolution of the Community Structure: The Core Trajectory

For ease of reading, the network graphs in a time interval of 14 years between
1967 and 2009 are presented in the appendix of this paper. Detailed data of the
evolving tree for every 20 years are shown in table 5.A.1.

Figure 5.A.1 in the appendix presents the Danish economy in 1967 as a tech-
nical tree. The nodes directly attached to the root node display those industries
that have no parent industry as immediate leader. However, not all of them are
able to generate a community. As already mentioned, whenever an industry is
ranked high according to the robustness criterion, but has nevertheless low sig-
ni�cance as a supplier of immediate products to other sectors, it represents a leaf
of the technical tree. This is the case, for example, of the sector `accommodation
and food service activities' (HOT), which is hanging on the root and yet does
not have any industries depending on it downstream. The opposite is true for
the construction sector (CON): by spawning virtually the whole economic sys-
tem in 1967, it represents a core in the economic structure. The present section
is devoted to the systematic analysis of these core industries and their related
communities.

All in all, the set of core industries has been rather stable over time: From the
network of 67 sectors, the algorithm picks 19 industries located at the root of the
tree in at least one period of time in the course of 43 years. Out of these sectors,
10 di�erent industries turn out to be cores in at least one industry network; the
remaining sectors always act as leaves of the tree. On average, 6 sectors open up
the economic system in a speci�c point of time. Regarding the sector assignment,
two belong to manufacturing, �ve to the broad class of service sectors as well as
construction and transportation sector.

Taking the economic network from 1967 as a starting point, �gure 5.4 de-
picts the root path of the di�erent industries that so far have acted as cores in
a �ve-year interval until 2009. The y-axis displays the parent industries, while
each line denotes the path of the respective core industry. Thus, whenever a
respective sector represents its own parent industry, it serves as a core. Those
sectors that have persistently been attached to the root (e.g. public administra-
tion) are omitted. The diagram entails two typical candidates for a GPT: ICT
services (38, 39) and electricity (24). The latter has occupied a constant position
in the technical tree, except for 2002. Telecommunications (38) and IT services
(39), on the other hand, have largely been part of di�erent communities (land
transport and business services). In 1997, IT services became a core industry
spanning their own cluster of industries, to which the telecommunications sector
has belonged to since then. Business services (46) represent the most �uctuating
core industry, while construction (27) and manufacturing of machinery (19) show
inverted development, where one acts as parent industry of the other depending
on the period under study. So whenever there is a persistent switch in these core



5.4. Results and Discussion 99

industries at the root of the tree, this signi�es radical technical change on the
macro level. In the case of Denmark, we could detect this kind of change in the
beginning of the 1980s with regard to the construction sector which was replaced
by the machinery sector, and about the same time with regard to the business
sector. 10 years later, the IT core subsumed the business service sector as well as
the transportation sector.
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Figure 5.4: Path of core industries. The labels denote the following industries: (19) mfr. of
machinery and equipment; (22) mfr. of furniture and other mfr; (24) electricity, gas and steam;
(30) land transport; (35) accommodation and food services; (38) telecommunication services;
(39) IT services; (57) public administration

In the following, we adapt some properties of dynamic social networks from
Qiu and Lin (2011) to our purpose: (1) a community or cluster (ci) within a
technical tree is de�ned by its core industry (i.e. a speci�c meso unit) and the
set of industries attached to it. (2) Core trajectory (tc): While a meso trajectory
depicts the origination and di�usion of a single meso unit, the core trajectory
tracks the evolution of a whole industry cluster. The longest life line (max),
i.e. the interval in which an industry continuously spanned a community, is an
indicator of the persistence of the core over time. (3) Promoters (P ): industries
that are stable or recurrent members (no less than �ve times) in a community
lifetime; they detect the community pattern. Additionally, we introduce (4) the
range of a core trajectory (Rc), which counts the di�erent industries that have
entered and exited the community within the period under study; dividing this
metric by the number of promoters (Np) serves as a measure of 'restlessness'
or volatility within the cluster. And �nally, (5) stability (φ), measured as the
weighted ratio between the number of promoters and the average community size
(Nc), indicates the level of institutionalization of the cluster.

Applying these metrics, all core industries (in ascending rank order) are listed
in table 5.2 which summarizes the development of the communities they generate.

The two top ranked sectors, public administration and accommodation and
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ID Core Activity RK tc(max) tmax
p promoters Np Rp Nc σc φ

57 Public 1 23 (9) 2 � 0 4 1.5 � �
administration

35 Accommodation, 2 12 (11) 11 39,46,55,29,45,48, 8 36 11.4 0.3 0.6
food service 56,47

46 Business 3 9 (4) 8 39,55,47,48,50,29, 15 32 13.2 0.9 1.0
services 45,52,56,34,42,38,

41,51,65
30 Land transport 4 28 (23) 15 38, 65, 59, 54 4 49 7.4 0.5 0.3
24 Electricity, 5 27 (19) 26 53 1 7 1.4 0.8 0.5

gas and steam
55 Other business serv. 7 5 (3) 2 � � 20 14.0 � 0.0
39 IT and 11 9 (8) 9 34,38,41,46,47,53, 19 25 17.6 1.0 1.1

information 56,37,42,50,51,40,
services 52,58,43,48,55,64,

65
19 Manufacture 19 20 (17) 20 1,3,4,5,6,7, 35 53 39.9 1.0 0.9

of machinery 10,11,12,13,14,15,
16,17,18,20,21,23,
25,27,28,31,49,61,
62,63,32,44,60,8,
9,33,66,54,36

27 Construction 20 21 (21) 21 2,25,37,41,44,49, 25 58 38.2 1.0 0.7
51,60,61,62,63,3,
7,15,16,17,19,20,
21,23,58,43,1,5,12

22 Other mfr. 24 5 (3) 5 64 1 1 1.0 0.2 0.2

Table 5.2: Core structure of the Danish economy 1967�2009.
The following abbreviations are used: RK (rank); tc (length of the core trajectory), max (longest
life line); tmax

p (maximum period of a promoter industry in the community c); Np (no. of di�erent
promoters); Rc (range of distinct industries in c); Nc (average size of community); σc (weight:
tmax
p /tc); φ (stability)

food services, appear in every year between 1968 and 2009. Within these 42 years,
they represent a core industry 23 and 12 times, respectively. Whereas public
administration does not show any community pattern (as none of the depending
industries appear more than two times in the community), the cluster generated
by the accommodation and food service sector is entirely service-related (the
sector IDs are given in table 5.A.1 of the appendix). The community itself is
rather volatile, as only 8 out of 36 industries that have entered the community
remain in there for more than �ve periods (while the maximum length of time of a
member in the community is 11). As the average cluster consists of 11 industries,
this results in a low stability index (φ) for the food and accommodation sector.

Next in the ranking is the business service sector which shows a far shorter
history as a core of the economic network; it appeared in only nine years, and four
years in successive periods. Its promoters, 15 in total, all belong to the service
sector. About every second industry that has ever entered the community has
stayed for longer than �ve years. This, together with the average community size
of 14, gives the second highest stability score. The only transportation sector
represented in the core is land transport; it is located at the root of the tree in 28
periods (23 years successively). Four industries have promoted the cluster. The
sector shows the highest spectrum of di�erent industries relative to its community
size, thus the community itself is less persistent over time. Finally, the electricity
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sector, occupying the �fth rank, has one of the longest trajectories (27 times, but
only 19 years in a row). As a general purpose technology, electricity was expected
to span a large community; this is not at all the case, since it hardly ever belongs
to the set of industries that provide one of the most important inputs to one
sector. This might be due to technical change which has decreased the energy
intensity in production processes. Given the high range of di�erent industries
relative to the low community size, the electricity cluster is rather unstable.

The three sectors with the lowest rank of all core industries are essentially
those that span up the bulk of the industry network. As already mentioned, IT
services have only recently entered the core of the economic system. More than
75% of industries entering this cluster have lasted for more than �ve years. Like
business services, the number of recurrent sectors is even higher than the average
community size of 18 industries, which makes this cluster the most stable one
in the economy. The community not only comprises the bulk of �nancial and
business sectors, but also telecommunications and the R&D sector.

Manufacturing of machinery shows similar characteristics, even though it re-
veals a way longer trajectory. Whereas the core service industries also generate
a service-oriented community, members of the machinery network are predomi-
nantly other manufacturing sectors, as well as agriculture and mining. The ma-
chinery sector essentially replaced construction which has continuously acted as
a core for 21 years. Almost every second industry in the community became a
persistent member, as is evident by a high stability measure.

For the sake of completeness, table 5.2 also lists other business services and
mfr. of furniture and other manufacturing as core industries; nevertheless they will
not be discussed in detail, as they have a shorter trajectory and no commmunity
pattern.

5.5 Conclusion

This paper has proposed a framework that uncovers changes in the economic
structure under pervasive technological change. Given that one can determine
the locus of production in the economy, it is possible to track a general purpose
technology provided by a speci�c sector through space and time, by studying
transaction �ows between members in a dynamic industry network.

The starting point was the idea to derive an industry ranking based on indus-
trial relations without losing the intersectoral information. The methodological
approach was driven by recombining knowledge from di�erent �elds of research.
On the one hand, the analysis of organizational structure in social groups is to
some extent similar to the problem of how sectors coordinate on the meso level.
On the other hand, it is also important to assess the role of an industry by the
position it occupies in the network. Since pervasiveness is an essential feature
of a general purpose technology, we drew on a social network approach which
measures an industry by its degree of robustness. The outcome was a hierarchical
structure (or technical tree), in which sectors are still mutually dependent on each
other.
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It is important to note that both approaches complement each other; applying
the notion of robustness on industries without considering the size of economic
activity nor the ability to generate communities would lead to biased results, as
for example is shown in the case of the accommodation sector. By deriving the
technical tree, those consumer-oriented industries are detected as leaves. On the
other hand, traditional tools for studying key sectors based on input-output tables
fail to detect pervasive technologies, which led to the motivation of the paper at
hand.

The application of the proposed network approach to the Danish economy
is able to detect the current GPTs on the meso level. Moreover, it con�rms
the hypotheses suggested at the beginning in the case of the ICT service sector,
but not for ICT manufacturing; the latter has indeed become more robust, but
never made it to the core or created a subnetwork. In contrast, both ICT service
industries have approached the root of the technical tree over time, but while IT
services already act as a core industry, telecommunications does not span their
own cluster, as they show a strong dependency on products from the IT service
sector. However, within the IT community, telecommunications disposes of a
growing number of adjacent industries downstream, which not only strengthens
its own position in the network, but also the one of its parent industry. Moreover,
these results match other �gures on ICT usage which show Denmark as a highly
advanced information society.

Regarding the community structure, the technical tree gives a simple repre-
sentation of an otherwise complex network of transaction �ows. Considering the
evolution of the core industries and their related industries, the analysis demon-
strated that the machinery sector replaced construction at the root, while IT
services prevailed over business services. Telecommunications, on the other hand,
became detached from the transportation sector only at a stage where ICT had
already spread over the production system. Thus, our analysis of the core allows
one to draw conclusions on the ongoing structural change in the economy.

Furthermore, the analytical investigation of core industries arrives at similar
�ndings as the historical study by Lipsey et al. (2005). The authors list six tech-
nology classes that have generated GPTs: (1) materials, (2) power, (3) information
and communication technologies, (4) tools, (5) transportation, (6) organization.
All of the sectors that we identi�ed as cores can indeed be broadly associated with
these areas, which underpins the suitability of the robustness �lter for detecting
major technological change.

This framework has been �tted within an evolutionary theory of economic
change which puts the meso unit at center stage (see Dopfer and Potts (2008)).
It would be worthwhile exploring the full range of empirical applicability of the
concepts proposed, such as the scale and velocity of the core trajectory, as well
as the coevolution of cores, outlining a potential direction of future research.

For the approach to give reliable results, all channels by which a commodity
can enter the production system, such as imports and capital �ows, need to be
taken into account. The assessment of the ICT intensity across sectors based
solely on the intermediate matrix would lead to a strong underestimation of the
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true impact of ICT; to put simple, a USB drive would be counted whereas a laptop
would not. Thus, whenever it is about technological change analyzed within an
input-output framework, the incorporation of capital �ows seems to be essential.

Furthermore, the focus in this study lies on the pervasive character of a GPT
and not on its potential to trigger phases of strong innovative activity. However,
it would be easy to extend the framework to further factors of production, such
as investments in R&D or the employment of heterogeneous labor, by letting the
algorithm search for the most innovative industries among the supplier network
(see annex C). This would give further insights into Denmark's top position among
innovation leaders in Europe, also with regard to ICT, as the last decade was
marked by a highly proactive IT policy to foster the domestic ICT sector.





Appendix

5.A Tree Dynamics

Table 5.A.1: Evolution of the technical tree. The �rst column gives the sector ID, the second
and third column indicate the economic activity and corresponding abbreviation, respectively,
the columns 4-12 record the ranking of each industry according to the robustness score in
descending order (pos), the parent industry (par), as well as the number of descendants (desc).
The value 0 in `par' denotes the root node, parameter α in the tree learning algorithm was set
to 0.5.

1969 1989 2009
ID Activity Label pos par desc pos par desc pos par desc

pos par desc pos par desc pos par desc
1 Agriculture and horticulture AGR 63 5 0 65 5 0 65 5 0
2 Forestry FOR 56 27 0 60 27 0 63 19 0
3 Fishing FISH 65 19 0 66 10 0 66 19 0
4 Mining and quarrying MIN 62 10 0 62 27 1 60 27 0
5 Manufacture of food, tobacco MFOOD 52 30 0 50 19 2 55 19 1
6 Textiles and leather products MTEXT 10 27 2 27 27 0 14 19 0
7 Manufacture of wood etc. MWOOD 55 27 0 54 16 0 61 16 0
8 Manufacture of paper etc. MPAP 24 6 1 35 27 2 41 19 1
9 Printing etc. MPRINT 48 8 0 41 8 0 49 8 1
10 Oil re�nery etc. OIL 34 30 4 56 27 1 40 27 2
11 Manufacture of chemicals MCHEM 36 30 2 39 19 0 27 19 1
12 Pharmaceuticals MPHARM 64 11 0 52 11 0 53 11 0
13 Manufacture of rubber etc. MRUB 14 27 0 21 19 1 22 19 0
14 Manuf.of glass, concrete etc. MGLASS 61 10 0 64 4 0 64 19 0
15 Manufacture of basic metals MBMET 39 19 6 43 19 0 48 16 0
16 Manufact. of fabricated metal MFMET 38 19 0 32 19 1 34 19 2
17 Manufacture of ICT ICT 54 15 0 30 19 0 26 19 0
18 Electronic/electrical equipment MELTR 35 19 0 24 19 0 25 19 0
19 Manufacture of machinery MMACH 29 13 2 17 0 11 12 0 23
20 Manuf. of motor vehicles etc. MVEH 40 15 0 48 15 0 44 19 0
21 Mf. of ships, transport equip. MTRAN 50 15 0 51 15 1 59 19 0
22 Manuf.of furniture, other manuf MOTH 41 15 0 5 0 0 10 0 1
23 Repair, inst. of machinery etc. RMACH 53 15 0 53 15 0 54 19 0
24 Electricity, gas and steam ELC 4 0 1 6 0 2 9 0 0
25 Water collect. puri�cation etc. WAT 27 27 0 38 27 0 46 27 0
26 Sewerage,waste collection etc. WASTE 9 27 0 14 46 0 17 19 0
27 Construction CON 7 0 26 18 19 22 30 19 6
28 Sale, repair of motor vehicles SRVEH 32 19 0 37 13 0 32 19 0
29 Retail sale RET 23 45 0 36 45 0 24 45 0
30 Land transport, pipelines LTRANS 11 27 7 4 0 4 13 19 0
31 Water transport WTRANS 47 10 0 57 10 0 39 19 0
32 Air transport ATRANS 37 10 0 49 33 0 52 19 0
33 Support activities for transp. STRANS 43 30 0 33 30 1 35 19 0
34 Postal and courier activities POST 3 0 0 8 46 0 11 38 0
35 Accommodation, food service HOT 2 0 0 2 0 1 6 0 0
36 Publishing activities PUBL 17 30 1 34 30 0 42 39 0
37 Radio, TV, movie, video, sound RADIO 30 27 0 25 39 0 37 39 0
38 Telecommunications TELE 6 0 0 10 30 0 4 39 5
39 IT and information services ICS 28 46 0 11 46 0 3 46 12
40 Financial service activities FIS 26 45 0 28 27 0 23 39 2
41 Insurance and pension funding INS 60 27 0 23 27 0 21 39 0
42 Other �nancial activities OFIS 45 45 0 61 46 0 58 39 0
43 Buying, selling of real estate REAL 59 27 0 63 27 0 56 39 0
44 Renting of resident. buildings RENTRB 22 27 0 29 27 0 19 19 0
45 Owner-occupied dwellings OWNB 13 27 6 19 27 2 16 19 2
46 Legal, account., cons.activit. BUS 5 57 0 3 0 6 2 0 1
47 Architecture and engineering ARCH 57 45 0 58 46 0 47 39 0
48 Research and developm.(market) RD 66 45 0 47 45 0 57 38 0
49 Research and dev. (non-market) RD (nm) 42 27 0 46 27 0 50 45 0
50 Advertising, market research ADV 25 36 0 16 46 0 20 38 0
51 Oth.techn.serv., veterinary act OTSERV 58 27 0 55 27 0 33 38 0
52 Rental and leasing activities RLACT 33 27 0 42 46 0 18 19 0
53 Employment activities EMPL 18 24 0 13 24 0 28 38 0
54 Travel agent activities TRAV 15 30 0 15 0 0 29 19 0
55 Cleaning, other business serv. OBUS 16 27 0 9 46 0 5 38 0
56 Rescue service ect. (market) RESC 51 21 0 59 39 0 62 39 0
57 Public administration etc. PUB 1 0 2 1 0 1 1 0 0
58 Adult-, other education(market) OEDU 21 27 0 31 27 0 15 39 0
59 Education (non-market) EDU 19 30 0 22 27 0 36 39 0
60 Human health activities HEALTH 31 27 0 40 27 0 31 27 0
61 Residential care RCARE 44 27 0 44 27 0 38 27 0

Continued on next page



Table 5.A.1 � continued from previous page

1969 1989 2009
ID Activity Label pos par sub pos par sub pos par sub

62 Arts, entertainm., other culture CULT 46 27 0 45 27 0 51 27 0
63 Sports, amusement, recration RECR 20 27 0 26 27 0 45 27 0
64 Activities of membership org. MEMB 12 27 0 7 46 0 8 39 0
65 Repair of personal goods RPERS 8 0 0 12 0 0 7 39 0
66 Other personal services OPSERV 49 11 0 20 27 0 43 19 0
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Chapter 6

Modeling the Di�usion of

General Purpose Technologies in

an Evolutionary Multi-Sector

Framework

General Purpose Technologies (GPTs) are characterized by their pervasive use in the economy.

The introduction of a new GPT (product innovation), as well as increasing productivity within a

GPT sector (as a consequence of process innovations) a�ect the economy in several ways. First,

a new GPT o�ers the opportunity to produce goods by means of cheaper processes; secondly,

technical change within the GPT sector induces productivity gains in related sectors. Also

social consequences such as changing wage share, technical unemployment and transitional wage

inequality can be observed. Finally, the emergence of a GPT often coincides with output decline,

preceding economic growth. This paper introduces a multi-sector di�usion model to study these

e�ects by combining classical economics and replicator dynamics. Empirical evidence is given

by the ICT sector in Denmark and its impact on the economic structure from 1966 to 2007.

Keywords | general purpose technologies, classical economics, replicator dynamics,

technical change

6.1 Introduction

General Purpose Technologies (GPTs) are basic innovations that change the pro-
duction structure of the economy via their pervasive use. The steam engine and
electricity as well as the information and communication technology (ICT) in the
past decades are examples of GPTs. Their emergence (as product innovations)
paved the way for process innovations and hence for productivity gains. Intersec-
toral spillover e�ects by the introduction of a new GPT and by technical change
within a GPT-producing sector implied aggregate economic as well as distribu-
tive (and hence social) consequences: A downturn of aggregate output, transitory
wage inequality, technical unemployment and changing skills are examples of ef-
fects associated with the emergence of a new GPT.

This chapter is co-authored by A. Rainer and was published in Empirica (2014) 41:425-444.
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Several formal economic models were set up to facilitate the understanding
of economic and social consequences of a new GPT and of technical change in
the GPT sector (Aghion and Howitt, 1998a; Carlaw and Lipsey, 2006; Helpman
and Trajtenberg, 1998a,b; Petsas, 2003). These models are based on assumptions
concerning the individual behavior of economic agents, including the rational ex-
pectations hypothesis and endogenously modeled technical change due to R&D
activities. So far, the link between technological change (i.e. product innovations)
and technical change (process innovations) has been dealt with insu�ciently in
this literature; the paper therefore presents a complementary approach based on
a classical multi-sector framework which is merged with the formalism of repli-
cator dynamics, in order to model the dynamics of technical change by means of
di�usion of innovations.

The �rst � static � part of the model is based on the approach of Sra�a (1960),
in the notation of Kurz and Salvadori (1995). The dynamic part, represented by
replicator dynamics, is an o�shoot of evolutionary game theory as introduced by
Weibull (1997) and utilized by evolutionary economics in the tradition of Nelson
and Winter (1982). The following features are incorporated: (1) Di�erent sectors
of the economy are related to each other by some unit production input-output
matrix. Technical change in one sector can therefore induce productivity changes
as well as technical change in other sectors. Product innovations are implemented
by increasing the dimension of the technology matrix of the model. (2) Di�erent
skill levels with di�ering remuneration are factored in to model wage inequality.
Productivity gains lead to a rising wage rate, and also the investigation of the
development of the wage share is conducted to enable discussions concerning
distributional issues. (3) The di�erent technologies within each sector are of
Leontief type, assuming instantaneous constant returns to scale. (4) A population
view of the economy is introduced. Each sector comprises a population of �rms
which host the respective processes. A population is therefore de�ned by the
sector respectively by the homogeneous good produced in this sector:

The obvious candidate for the status of an evolutionary population is
an ensemble of business units that di�er individually in terms of their
behavioral traits, technology, organization, strategic purpose, but are
members of an evolutionary population by virtue of being subjected
to common, market selective processes operating on that population.
(Metcalfe, 2008, 31)

If more than one process exist, this population is divided into several species,
each one characterized by the technical coe�cients of the speci�c process at-
tributed to it. Depending on its pro�tability for given prices and wage rate,
processes exhibit di�erent growth potentials. The resulting growth patterns of
technologies imply changes of the cost structure, which in turn lead to altering
prices and wages. These again in�uence the extra pro�ts generated by some
technology, hence a�ecting the growth potential of some species.

Concerning the empirical analysis that accompanies this model, the focus lies
on the meso unit and the changes it triggers o� for the economic system, �as it
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is the population, not the carrier, that evolves� (Dopfer and Potts, 2008, 50).
The dynamics of the model are placed in juxtaposition to the development of the
ICT sector in Denmark and its in�uence on related sectors. Spanning the period
from 1966 to 2007, the analysis covers the time before and after the emergence of
important innovations in the �eld of information and communication technology,
such as microcomputers in the 70ies or the Internet in the late 90ies of the last
century. The new ICT indeed features the characteristics commonly attributed
to GPTs (see, e.g., Jovanovic and Rousseau (2005a)): (1) It has a�ected virtually
all sectors of the economy, (2) persistent improvements in the technology have led
to economy-wide productivity gains, and (3) it has spurred inventive activities,
especially in the development of complementary goods that ensure its widespread
use. Other key technologies � such as electricity or the steam engine � share the
same characteristics, but to a di�erent extent: In comparison to the preceding
GPT, electricity,2 the information technology has been di�using at a much slower
pace and triggered a stronger productivity slowdown upon its arrival (Jovanovic
and Rousseau, 2005a). Like ICT, electricity also had deep impacts on the labor
market: Not only were workers replaced by the new technology, electricity also
lowered the basic skill level required for formerly skilled jobs (Lipsey et al., 2005).
Thus, whereas electricity led to a falling demand for human capital, ICT caused
the opposite due to the high knowledge level required for its utilization. Yet it
was the former technology that enabled the development of the latter.

Denmark is chosen due to its position as a net importer of ICT products and
due to the extent of the available data. The �rst is important in so far as this
allows to analyze the e�ects of ICT predominantly on the production side without
needing to consider its impact on economic development via export activities. As
regards the latter, Statistics Denmark provides a comprehensive database that
entails annual input-output tables in constant prices and employment data from
1966 to 2007, as well as capital �ow tables spanning from 1993 to 2007 (see
Strohmaier and Rainer (2013), for a detailed description of the data handling).
The following industrial and service classes comprise the notion of ICT: (1) mfr. of
o�ce machinery and computers, (2) mfr. of radio and communications equipment
etc., (3) computer activities, software consultancy and supply.3 To study the
distributive consequences of a GPT on an empirical level, labor input data from
Denmark provided by the EU KLEMS database (Edition 2008) is used. This
dataset comprises the shares in total hours worked together with the shares in
total labor compensation for three di�erent quali�cation levels, covering a time
span of 26 years (1980�2005).

This paper proceeds as follows: In section 6.2 the multisectoral model of
economic di�usion is introduced. The spread of GPTs as some product innovation

2The era of electricity was triggered by the invention of the dynamo in 1867 and spanned from
the end of the twentieth century until 1930. This time was characterized by big transformations
in the economic system, as new products and industries arose and the industry organization
changed from small-scale production to assembly lines.

3Telecommunications could not be included, because the classi�cation scheme does not list
it as a separate activity.
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and the subsequent in�uence of process innovations within the GPT sector are
studied in section 6.3. A demonstration of wage inequality, changing wage share
and output downturn is included. In addition to the model, empirical evidence is
provided for the case of the ICT sector in Denmark from 1966 to 2007. Finally,
section 6.4 concludes.

6.2 Multi-Sector Di�usion Model

A static multi-sector model is described in subsection 6.2. It is augmented by
dynamic elements in subsection 6.2, to simulate the transition path in the presence
of diverse processes per sector.

Mutual Dependence of Sectors

Let N be the number of di�erent sectors in a closed economy. Within each sector
m, an amount xm of a homogeneous good is produced. This commodity can
either be used as input factor of production or for �nal consumption ym. anm ≥ 0
denotes the quantity of goodm, which is on average necessary to produce one unit
of good n. Let gn = ẋn/xn denote the growth rate of sector n. Final consumption
yn as the net residual of gross production is then given by

yn = xn −
N∑
m=1

anmxm −
N∑
m=1

gmanmxm (6.1)

The second term in (6.1) is the amount of good n used for productive purposes,
whereas the third term is the correcting factor due to sectoral growth. De�ning
the N ×N matrix A by the technical coe�cients anm, the N equations stated in
(6.1) are given in matrix notation by

yT = xT [I− (I + ĝ)A] (6.2)

I is the identity matrix, y,x and g are the column vectors of �nal demand, of
gross output and of the sectoral growth rates, respectively.4 Equation (6.2) is
the market clearing condition, which is assumed to hold (changing inventories are
neglected).

Let lnk denote the quantity of skill k necessary to produce one unit of good n.
The N ×K matrix L of labor input coe�cients lnk together with A characterizes
the presently used technology. Skill k is remunerated by some wage rate wk, which
are the coe�cients of vector w of wage rates. Relative wage premia wk/wj are
taken to be exogenously given and constant over time for all k and j. Hence, it
is possible to introduce some vector u characterizing relative wages by w = wu,
de�ning the wage rate w.

4Superscript T denotes transposition and a hat on a vector means the diagonal matrix built
from this vector.
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Figure 6.1: Wage-pro�t curve for Denmark from 1966 to 2006

Labor is ex post remunerated by the prevailing wage rate. Let r denote the
normal rate of pro�t which prevails in case of free competition, then average unit
production costs cn of good n are given by

cn = (1 + r)pTan + wuT ln (6.3)

with an and ln denoting the n-th row of A and L, respectively. Prices pn are taken
to equal average unit production costs, hence (6.3) implies the price equation

(1 + r)Ap + wLu = p (6.4)

with price vector p. Prices are normalized with respect to some commodity bundle
d (the numéraire) by dTp = 1. Then from (6.4) the wage rate w can be derived
to

w =
1

dT [I− (1 + r)A]−1 Lu
(6.5)

The evolution of this w−r relationship provides information about the kind of
technical change that takes place. The intersections with the axes determine the
maximum wage rate (for r = 0), and the maximum rate of pro�t (for w = 0), re-
spectively. Pure capital-saving technical change corresponds to an anti-clockwise
rotation around its intersection with the y-axis. Pure labor-saving technical
change leads to a clockwise rotation of the w−r curve around its intersection with
the abscissa, where the rate of pro�t is plotted. Neutral technical change induces
a parallel shift of the w − r curve outwards, indicating an increase both in labor
productivity and in the output-capital ratio. Figure 6.1 shows the development
of the wage-pro�t curve for Denmark from 1966 to 2006. Until 1986 the curve
rotates clockwise around a more or less stable rate of gross pro�t5 in the range of

5Most studies that deal with w−r curves refer to the pro�t rate net of depreciation; however,
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0.92. Since the aggregate gross pro�t rate in Denmark has been far lower over this
time span � at around 10.5%6 � one can conclude that in the 20 years between
1966 and 1986 technological change was labor saving. For 1996 the w − r rela-
tionship shows unambiguous technical change, because both intersection points
moved outwards. Since then, the maximum rate of pro�t has continuously been
decreasing and the curves of 1996 and 2006 intersect at a rate of pro�t equal to
0.36. Nonetheless, since the actual gross pro�t rate in Denmark was about 10% on
average, technical change turns out to be indeed labor-saving and capital-using.

Modeling Technological Di�usion

The technical coe�cients, collected in A and L, are de�ned as average inputs
necessary for unit production. This average either is determined by one single
process, or it is the result of a collection of di�erent processes which are operated
in this sector. Let the population of sector n be divided into In di�erent species,
the latter being characterized by some speci�c process in which produces good n.
ainn and linn are the respective vectors of circulating capital and of labor, used by
process in in sector n to produce one unit of output. If a fraction qinn of good n
is produced by process in, then

an =

In∑
i=1

qinn ainn , ln =

In∑
i=1

qinn linn

are the rows of A and L, respectively.
From equation (6.4) it then follows that prices are determined by average

costs, since process in in sector n occasions unit costs

cinn = (1 + r)pTainn + wuT linn

The rate of extra pro�t ρinn of the respective process is then implicitly given by

(1 + r + ρinn )pTainn + wuT linn = pn

A positive rate of extra pro�t of some process has di�erent e�ects on producers:
(1) Firms get encouraged to invest into growth, (2) new �rms get convinced to
enter the sector and to use this special process, or (3) �rms within the sector
change their mode of production and switch to the cheaper process. A negative
rate of extra pro�t (losses) has the reverse e�ects: They make �rms leave either
the sector or this speci�c mode of production (by switching to another, more
pro�table process), or a �rm has to shrink if it further on uses the unpro�table
process. Positive extra pro�ts can be earned by �rms utilizing an innovation,
a new, cheaper method of production. This approach thus shows parallels to

Vaona (2011) showed for Denmark that net and gross pro�t rate are highly correlated, i.e.
accounting for the depreciation of capital does not change the overall trend of the pro�t rate.

6Following Vaona (2011), the computation of the aggregate gross pro�t rate was calculated as
the relation between annual gross operating surplus (less mixed income) and real capital stock.
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Schumpeterian entrepreneurial pro�t. The entrepreneur can reap extra pro�ts
by introducing some innovation, which o�ers the possibility to produce at lower
costs (Schumpeter, 1934, 130). Subsequent competition and adaption of prices
and wages lead to a decline of these pro�ts, which �nally vanish (Schumpeter,
1934, 131-132). The system is then in a new equilibrium position, where the
incumbent method of production is replaced by the innovation, hence resembling
the Schumpeterian notion of creative destruction (Schumpeter, 1954, ch. VII)
A reconstruction of this pattern is shown in section 6.3, especially in context of
�gure 6.1.

By abstracting from the single �rm, which only hosts some process, a species

is de�ned by some technology as part of the population, the latter being de�ned
by the respective sector. Each species is characterized by its input coe�cients,
leading to some reproductive �tness. Fitness in this context is a synonym for
growth: "By absolute �tness is meant the expansion or contraction over some
given time interval of the capacity output of a particular business unit" (Metcalfe,
2008, 30). It is in�uenced by three treats: (1) by rate of extra pro�t ρinn , which are
idiosyncratic for the process; (2) by the overall growth rate g of the economy due
to savings; and (3) by the sectoral growth rate ∆n, which corrects sectoral output
according to changes in e�ective demand due to varying demand for production
and �nal consumption. The growth rate of output xinn produced by means of
process in in sector n is then given by

ginn = ẋinn /x
in
n = ρinn + ∆n + g

As a consequence of xn =
∑In

in=1 q
in
n x

in
n , this expression leads to the sectoral

growth rate

gn = (ρn + ∆n + g) (6.6)

with average growth ρn =
∑In

in=1 q
in
n ρ

in
n of sector n By di�erentiation of qinn =

xinn /xn, the dynamics of the system in the presence of technical change is described
by the replicator dynamics

q̇inn = qinn
(
ρinn − ρn

)
(6.7)

Di�erent rates of extra pro�t of di�erent processes producing the same homo-
geneous good consequently imply changing market shares. The dynamics of qinn
depends on the rate of extra pro�t and therefore on the price structure (p, w) and
on the technical coe�cients ainn and linn . Equation (6.7) hence describes a di�usion
process, if within one sector several processes with di�erent rates of extra pro�t
are in use. Introducing new innovative (cheaper) processes consequently sets o� a
di�usion process of this innovation, gradually superseding the incumbent process.
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6.3 Di�usion of GPTs

In this section, the di�usion of the in�uence of GPTs is analyzed by means of
the just introduced multi-sector di�usion model. In subsection 6.3, a new GPT
is introduced as a second sector in a former single-sector economy, making the
emergence of one or more new processes in the �rst sector possible. Then, in
subsection 6.3, technical change in the GPT sector is allowed for, and possible
consequences on the �rst sector are investigated.

Introducing a New GPT

A new GPT is invented and introduced into the economic system at time t = 0.
For t < 0 the economy is described by one sector, which reproduces itself with the
net output used up for �nal consumption. The production process is characterized
by the technical coe�cients a111 and l

1
11. Gross production x1 of this sector equals

total production x11 of this process. For t ≥ 0, a second sector exists, producing
a GPT, such that the old technology in sector 1 is now characterized by a1

1 =
(a111, 0)T and l11 = (l111, 0)T .

GPT as product innovation In the following, a new GPT will be introduced
as a product innovation; in the context of ICT as the latest GPT, one might think
in this regard of the development of products such as mainframe and microcom-
puters that replaced the former o�ce machinery, or the Internet that opened up
a new platform for communicating and trading goods and services. The GPT is
produced by means of capital input from sector 1. The process utilized in sec-
tor 2 is characterized by technical coe�cients a1

2 = (a121, 0)T and l11 = (0, l122)
T .

Hence the GPT is produced by high-skilled labor with wage premium u > 1. For
d = (1, 0)T , taking the good of sector 1 as numéraire, price p of the GPT is given
by

p = (1 + r)a121 + wl122u (6.8)

According to equation (6.3) the price of a GPT equals its production costs,
i.e. the costs of commodity inputs (including interest, as they need to be available
at the beginning of the production year) and the expenses for high-skilled labor.
An introduction of the GPT sector with the produced good not being used for
�nal consumption (y2 = 0) only pays if similarly in sector 1 a second process
is introduced, using the GPT as factor of production. If the GPT enters as
circulating capital, the innovative process can be characterized by the technical
coe�cients a2

1 = (a211, a
2
12)

T and l11 = (0, l212)
T . Let q1 > 0 denote the share of the

new process in sector 1. From goods market clearing (6.2), which now reads

(y1, 0)T = (x1, x
2
1q1a

2
12)

T [I− (I + ĝ)A] , (6.9)

the growth rate g2 of the GPT sector is given by 1+g2 = q1(t)(1+g1)a12/a21. From
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Figure 6.1: Negative growth and output slump

the �rst equation in (6.9), total output x1 of the consumption sector exhibits a
growth rate g1 = ρ1+r according to (6.6) with g = r. ∆1 = 0 holds because forced
savings are assumed (y1 equals net output) and no substitution of consumption
exists due to y2 = 0.

Di�usion of the GPT The dynamics of the system is driven by the rate of
extra pro�t ρi1 of the two processes i = 1, 2 in sector 1, implicitly given by

(1 + r + ρ11) a
1
11 + wl111 = 1

(1 + r + ρ21)(a
2
11 + a212p) + wl212u = 1

(6.10)

From (6.8), p can be replaced in (6.10) as well as in the now prevailing price
equation (1 + r)[(1 − q1)a111 + q1(a

2
11 + a212p)] + w[(1 − q1)l111 + q1l

2
12u] = 1 This

problem is formally equivalent to a one-sector economy employing two processes:
The �rst one is the same as above, characterized by technical coe�cients ã1 =
a111 and l̃11 = (l111, 0)T ; the second one is a combination of the GPT sector and
the formerly de�ned second process, characterized by the technical coe�cients

ã2 = a211 + (1 + r)a212a
1
21 and l̃2 =

(
0, (1 + r)a212l

1
22 + l212

)T
. In general, each

two-sector economy with one innovative sector formally can be reduced to a one-
sector di�usion problem, which is analytically solvable. This solution as well as
further discussions of formal properties of the model are derived in Rainer (2013).
Subsequent simulations are based on numerical solutions of the general replicator
equation (6.7), adapted to the given numbers.
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Figure 6.2: Growth of real output per man-hour

Output slump The development of total output is depicted in �gure 6.1 for
the technical coe�cients (a111, l

1
11) = (0.3, 0.3), (a211, a

2
12, l

2
12) = (0.4, 0.1, 0.2) and

(a121, l
1
22) = (0.1, 0.1). Since the average rate of extra pro�t is negative as a result

of the capital using characteristic of the technical change, real GDP exhibits a
recessive tendency throughout the di�usion process. Only in the long run the
economic growth pattern given by g = r = 0.01 is restored. The reason for the
output slump after introduction of some GPT is the following: By the market
clearing condition (6.2), the growth component ρ1 + ∆1 of the sectoral growth
rate g1 = ρ1 + ∆1 + r is obtained by savings of workers. Since ∆1 = 0, ρ1 < 0
implies forced savings. Consumers therefore accept lower �nal consumption due
to changing circumstances. This downturn cannot be compensated by the rising
output of the innovative process and therefore leads to a regression of available
goods for �nal consumption.

From an empirical perspective, looking at the output development over time,
Jovanovic and Rousseau (2005b) showed that the emergence of the new infor-
mation technology in 1971 was not able to reverse the decline of output growth
in the U.S. that had been persisting since the 1960s. In their study, the arrival
of IT was dated to 1971, because in this year Intel's 4004 processor came out
and revolutionized the market for personal computers (PCs). We undertook a
similar analysis for the Danish economy. The date of introduction was also �xed
to 1971, as, on the one hand, PCs are the most important ICT product among
all import goods; on the other hand, ICT equipment reached 1% of total capi-
tal stock7 of the median sector in this year. Figure 6.2 presents the time series
of real output per man-hour8 in Denmark between 1966 and 2007. The solid
line shows the long-term trend as obtained by the Hodrick-Prescott (HP) �lter.

7The corresponding data was retrieved from the EU Klems database.
8Real output represents deliveries of �nal goods and services per sector to domestic house-

holds, investment, government and nonpro�t institutions, as well as net exports to other coun-
tries, in constant prices of the year 2000. The total sum equals the gross domestic product.
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Figure 6.3: The di�usion of ICT products across sectors (intensive use)

While output growth shows a falling tendency throughout the whole period un-
der study, �gure 6.2 suggests that the emergence of ICT in 1971 did certainly not
mitigate the slump. Di�erentiating between ICT goods and services, the decline
in growth rates after 1985 coincides with the second wave of ICT services that
started o� after ICT-manufacturing products had pervaded the gros of industries
(see Strohmaier (2013)).

Wage inequality Di�erent skills which are di�erently remunerated imply wage
inequality within the class of laborers. For two di�erent skills, as assumed in this
example, wage inequality can be estimated by the GINI index:9

GINI = qh(1− qh)
u− 1

1 + (u− 1)qh
(6.11)

The share qh of high skill labor is remunerated by some wage premium u > 1
relative to low skill labor. It is given by

qh =
x21l

2
12 + x12l

1
22

x11l
1
11 + x21l

2
12 + x12l

1
22

=

[
1 +

1− q1
q1

l111
l212 + a212l

1
22

]−1
(6.12)

The last term in equation (6.12) accrues from x2 = x21q1a
2
12 and by acknowledging

xi1 = qi1x1 for i = 1, 2. In this case, the GINI index is independent of sectoral
growth patterns, since growth of the GPT sector is coupled to the demand from
sector 1.

The di�usion process described by (6.7) and the resulting transitional wage
inequality calculated by (6.11) can also be analyzed empirically. The compound
direct requirements matrix, which includes not only domestic and imported �ows
of intermediate products, but also of capital, is used in the following to derive the
di�usion pattern of ICT.10 Figure 6.3 depicts the di�usion of ICT throughout the

9The derivation of the GINI index for the case of K skills is conducted in Rainer (2013).
10Including investment �ows is especially important in the case of ICT, as most of these

products are of �xed-capital type.
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Figure 6.4: The di�usion of ICT products across sectors (left ordinate) and the GINI coe�cient
for low and high-skilled labor in ICT-using industries (right ordinate)

Danish economy from 1966 until 2007 (the industry classi�cation is listed in the
appendix). An input coe�cient above 0.01 indicates that the corresponding sector
has adopted ICT. The darker the color, the more intensive is the employment of
ICT in the respective industry. The contour plot shows that ICT goods (ICM)
and ICT services (ICS) initially spread over the neighboring industries, such as
mfr. of machinery and equipment n.e.c. (MAS), mfr. of other electrical, medical
and optical equipment (INSTR), as well as real estate activities (REST) and
renting of machinery and equipment (incl. o�ce computers) n.e.c. (RENT).
In the mid-70s post and telecommunications (POST) and the �nancial markets
(FIM) started to utilize ICT. Almost a decade later, one can see the beginning
of online sale (OTH RET) and online auctioning (CONS), and the entry of ICT
in research & development (RD). Afterwards, the technology spreads over most
sectors in manufacturing and services, with the primary industries as the last
sector to adopt it.

Furthermore, �gure 6.4 links the di�usion of ICT to the dynamics of the
wage rate11 of low- and high-skilled labor in Denmark. The left ordinate presents
the share of industries already using ICT, and the right ordinate gives the GINI
coe�cient as a measure of the dispersion of wages of low and high-skilled labor12

in the ICT-using industries. Figure 6.4 shows that the di�usion path approaches
the typical sigmoid curve with the adoption rate increasing around 1985 and again

11In order to take into account self-employed persons, wages and salaries per industry were
re-estimated by assuming that self-employed and employees have the same wage rate.

12For the purpose of this paper, only between low-skilled and higher (i.e. middle and long
cycle education)-skilled workers was discriminated. For Denmark, low-skilled labor refers to
basic schooling, whereas middle and high-skilled labor comprises short, middle and long cycle
higher education as well as vocational education and training (for further details on the labor
accounts see the EU KLEMS manual, pp. 24�31).
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Figure 6.5: The di�usion of an innovative process and the resulting wage inequality

after 1995. After the dot.com-crash in 2000, the speed of di�usion slowed down
signi�cantly. Since not all industries that produce ICT goods and services could
be taken into account (e.g. telecommunication services), the level of adoption is
still below 100 per cent at the end of the period under study, even though the
di�usion process has already reached its fade-out phase. Hence by that time, the
vast majority of the Danish enterprises had implemented ICT for supporting their
business processes, especially for �nance and sales management, production and
logistics, and human resource management (Statistics Denmark, 2006, 30).

With regard to the development of wage di�erentials, the GINI of ICT-using
sectors is measured on the right-hand axis of �gure 6.4. While the dispersion
of wages and salaries in Non-ICT industries was constantly decreasing between
1966 and 2003, ICT-using industries exhibit a di�erent pattern: The GINI as an
indicator of wage dispersion peaked for the �rst time when the rate of adoption
of ICT was about to take o� in the early 1990s. At that time, the demand for
quali�ed IT people was simply not possible to meet. This lack of e-skills, especially
from incumbent employees, has been one of the major barriers to ICT adoption
experienced by Danish enterprises (Statistics Denmark, 2006, 57). After 1990,
the GINI was decreasing, since the labor market could adapt to the new order of
skills that were required for e�cient ICT usage: In the year 2000, 69,300 persons
(about 2.4 per cent of the labor force) had an ICT-related education. Until 2004,
this number was rising by 21 per cent to 83,500. From these persons, 83 per cent
were employed; this rate is signi�cantly higher than the average employment rate
of 76.2 per cent in that year. The upward trend of the GINI since the beginning of
this century can be attributed to the rapidly growing importance of ICT services
which has been accompanied by a rising demand for persons with high ICT skills.

These empirically found di�usion patterns can be reconstructed by the model,
as can be seen in �gure 6.5 which, on the basis of (6.7), reveals a similar behavior
of the share q1 of the innovative process as suggested by �gure 6.4. What gets
apparent is the slow start of the di�usion of the innovative process due to the
growth process based on the replicator dynamics, which is followed by a takeo�

at t ≈ 25. The respective course of the GINI index, also depicted in �gure 6.5 for
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Figure 6.6: Changing wage rates and wage share

u = 1.1, can be explained as follows: At the beginning of the di�usion process,
almost all workers perform low-skilled labor with wage rate w, whereas near the
end of the process almost all workers are highly skilled with wage rate wu > w.
Therefore the GINI index approaches zero at the beginning and towards the end
of the process, whereas there is transitional wage inequality in between when high
and low-skilled labor is concurrently employed.

Wage share Another measure touching on inequality and distribution is the
wage share ω = W/(W + P ) comprising total wages

W = wxTLu = xT [I− (1 + r)A] p

and total pro�ts P = rxTAp. The changing wage share in the present example
is depicted in �gure 6.6. It is decreasing as a consequence of the capital using
and labor saving nature of the technical change. An increasing wage rate is a
general property of this model, indicating the tendency of the system towards
higher labor productivity (Rainer, 2013). This, as a result of rising labor produc-
tivity, including the decline of the wage share, indicates technical unemployment
or increasing leisure time.

Consequences of Technical Change in the GPT Sector

The model economy of the preceding subsection can be extended to the case of two
di�erent processes, which enter the �rst sector as a consequence of the occurrence
of the new GPT in sector 2. Process 3 is characterized by the input coe�cients
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(a311, a
3
12) = (0.405, 0.085) and therefore uses less of the GPT as input (labor

input is the same for processes 2 and 3 to keep matters simple). As depicted in
�gure 6.7 for t < 70, the incumbent process gets superseded and an advantage for
the third process against the second process prevails. Without further incidents,
for t > 70 the market share of process 3 would increase and �nally take over the
market due to its cost advantage compared to process 2. This scenario occasionally
changes if technical change in the GPT sector reduces its unit costs, possibly (not
necessarily) leading to a switch of pro�tability in sector 1 as indicated in �gure
6.7 for t > 70: In sector 1 only the new processes 2 and 3 are depicted, and the
new process in sector 2 is characterized by pure labor-saving technical change
with l222 = 0.05.

Additionally, increasing labor productivity is indicated by a rising wage rate.
This is a general property of the model: Whenever at least one commodity directly
or indirectly enters the numéraire basket d, the wage rate increases in the course
of the di�usion process; it actually never decreases.13

This is all the more the case for a GPT sector, since a general purpose tech-
nology is inter alia characterized by its scope of improvement during its lifetime.
After its arrival, the crude technology may take decades to mature and show
its full potential. The relation between technical change in a GPT-producing
sector and rising labor productivity in the application sectors is empirically stud-
ied by means of a structural decomposition analysis (SDA). Labor productivity
growth is thereby measured as the relative change in the maximum wage rate as
de�ned in (6.5). The SDA resembles growth accounting because the change in
one macroeconomic variable � labor productivity growth� is broken down into
its underlying sources (one of which is technical change). Subsequently, a cross-
sectional analysis is applied and results are �ltered for the ICT sector.14 We thus

13A formal proof of this statement can be found in Rainer (2013).
14A detailed description of the SDA and further results can be found in Strohmaier and Rainer
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trace the development in aggregate labor productivity back to its driving sectors
on the mesoeconomic level and show which role technical change15 within the ICT
producing sector played in this development. The �ndings are shown in �gure 6.8.

Technical change in the ICT-producing sector as measured from an input-
output perspective is a improvable indicator for advances in the technology it-
self; especially since it does not consider capital goods, which embody the bulk
of technological change in ICT. Nevertheless, input-output data are capable of
tracking process changes on a mesoeconomic level. To underpin this analysis, the
gray shades of the surface represent the degree of (local) innovation activity as
given by the share of ICT patents in total patent applications.16 The number of
patents alone as a measure of technological change may be not satisfying either,
�rst because the volume of patents just re�ects the level of inventive activity, but
does not say anything about how many of these inventions could be successfully
introduced to the marketplace. Second, there have been important policy and
institutional changes in the last decades that boosted incentives for �ling patents.
Nevertheless, a study by Kortum and Lerner (1998) shows that the increase in
patent applications across the globe could be indeed attributed to technological
change.

Turning back to �gure 6.8, technical change in the ICT-producing industries
manifests itself in labor productivity growth not earlier than from the mid-1990s
onwards. Dating the arrival of this GPT at the beginning of the 70s, it thus took
more than two decades for ICT to become a major source of productivity growth.
Breaking down its e�ects on the sectoral level, ICT had its strongest impact on
labor productivity growth in the following manufacturing industries: machinery
and equipment, electrical, optical and medical instruments and transport equip-
ment. It also signi�cantly a�ected the construction sector. As regards the service
sector, a high impact on post and telecommunications, real estate activities, other
business activities, research & development and public administration can be ob-
served.

With regard to inventive activities, �gure 6.8 shows that the 1990s were not
only characterized by productivity gains due to improvements in ICT, but also by
a surge in ICT patents; however, most of the important innovations, which aim
at facilitating its widespread use, were already developed between 1975 and 1990,
outside of Denmark. For example, the �rst microcomputers � commonly known
as personal computers � were developed in 1975 by the Massachusetts Institute
of Technology. In the same year Bill Gates and Paul Allen founded Microsoft.
The market of PCs rose quickly when Apple introduced its �rst microcomputer in

(2013).
15By technical change, we refer to the change in the production process of the respective

industry, as opposed to technological change embodied in a new product. With regard to
ICT, technological change means the emergence of this new GPT and the consequences for
the economic system via its di�usion. Technical change refers to the changes in the input
composition of the ICT sector over time, which in turn a�ect all other industries tied to the
ICT sector upstream (due to the change in demand for intermediate products) and downstream
(due to the change in the supply of ICT products).

16...�led by Danish applicants under PCT between 1977 and 2007. Data source: OECD.Stat.
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Figure 6.8: The contribution of technical change in the ICT sector to sectoral labor produc-
tivity growth
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1977 and even more, when IBM did so in 1981, equipped with DOS, the operat-
ing system by Microsoft. These developments in personal computers have been of
particular importance for Denmark, since computers have been the most impor-
tant import good for the economy when it comes to ICT products. The second
half of the 80s was characterized by the emergence of the Internet that went viral
from the 1990s onwards; In 1984, the domain name system was created, making
the use of Internet way more customer-friendly. In 1987 followed the adaption of
the TCP/IP standard protocol which gave a big boost to the number of users. All
those innovations can be seen as an important step towards the era of e-commerce
which started in 1995, when Amazon and Ebay went online. It is interesting to
note that the local innovation activity17 was highest between 1998 and 2003, at
a late stage of the di�usion process. This indicates the long time span necessary
for a GPT to reach maturity and for the economic system to adapt to the new
technology, something which is resembled by the model results.

6.4 Conclusion

As concerns the theoretical part, the starting point for simulating di�usion pat-
terns of GPTs is a multi-sector model. Its dynamics is based on di�erentiated
growth due to diverse pro�tability of production processes. The following stylized

17as given by the number of patents from Danish enterprises.
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facts are reconstructed: (1) The emergence of a new GPT sector (by a product
innovation) and technical change in a GPT sector (by process innovations) induce
changing productivity in related sectors. This includes negative output growth
after the emergence of a new GPT, if technical change is capital-intensive. (2) By
assuming a higher skill level necessary for processes which are related to the GPT
sector, transitional wage inequality is demonstrated. (3) The S-shaped di�usion
pattern, which prevails for successful innovations, is endogenized and feedback
e�ects between output growth and prices (respectively wages) are considered.

Furthermore, the theoretical analysis was tested against empirical evidence
from data of the ICT sector in Denmark from 1966 to 2007. The main purpose
of the empirical part was to show that ICT was not only a sectoral revolution;
it transformed processes throughout the whole economy. Since it took several
decades for this technology to pervade the production system, its impact could
only be observed recently. As regards the consequences of ICT for the labor
market, the di�usion of this technology can be associated with transitional wage
dispersion in the ICT-producing as well as ICT-using industries.

The analysis of the role of ICT for labor productivity change in the rest of
the economy also reveals industry clusters: The ICT sector had its strongest
impact on technology-intensive manufacturing industries, such as machinery and
equipment or transport equipment as well as on neighboring service sectors such as
post and telecommunications, real estate and other business activities. Likewise,
the di�usion and intensity of utilization of ICT (depicted in �gure 6.3) supports
the hypothesis by Antonelli (2003) that a new technology di�uses at a higher
rate, the more similar are the factor endowments between the place of origination
and the place of adoption: This is the case, for example, of telecommunications,
which represents a similar industry to the ICT services covered in our analysis (in
fact, the new Danish industry classi�cation from 2007 groups these two industries
together). Thus our results cautiously suggest that the composition of factors
determines the speed and order of adoption, and eventually the composition of
the economic system as a whole. However, a profound statement would require
further examination which is beyond the scope of this paper.

In general, �ndings promote the importance of the meso level as a unit of
analysis, both from a theoretical and empirical perspective, as has been used,
for example, by Dopfer and Potts (2008) and Saviotti and Pyka (2008); since
it is the coordination among industries that determines the success or failure of
a new technology regarding its impact on the economic system. A meaningful
study of this sectoral interplay demands the di�erentiation of sectors according to
their activities respective production processes. Such an analysis also represents
a key tool for the design of e�ective policies fostering economic development via
technological change.
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6.A Industry Classi�cation

Table 6.A.1: Aggregation of Danish industries. The numbers in the third column indicate the
assignment of the respective sector to the Danish 130-industry classi�cation, the third column
to ICT-producing, ICT-using and Non-ICT industries.

Code Abbr. Industry Aggr. ICT class

1 AGR Agriculture 1 Non-ICT
2 HORT Horticulture, orchards etc. 2 Non-ICT
3 AGS Agricultural services; landscape gardeners etc. 3 Non-ICT
4 FOR Forestry 4 Non-ICT
5 FISH Fishing 5 Non-ICT
6 MPET Extr. of crude petroleum, natural gas etc. 6 Non-ICT
7 GCS Extr. of gravel, clay, stone and salt etc. 7 Non-ICT
8 FOOD Mfr. of food, beverages and tobacco 8-18 Non-ICT
9 TEXT Mfr. of textiles, wearing apparel, leather 19-21 Non-ICT
10 WOOD Mfr. of wood and wood products 22 Non-ICT
11 PAP Mfr. of paper prod.; printing and publish. 23-26 Non-ICT
12 PET Mfr. of re�ned petroleum products etc. 27 Non-ICT
13 CHEM Mfr. of chemicals and man-made �bres etc. 28-35 Non-ICT
14 PLAST Mfr. of rubber and plastic products 36-38 Non-ICT
15 NMET Mfr. of other non-metallic mineral products 39-41 Non-ICT
16 BMET Mfr. and processing of basic metals 42-47 Non-ICT
17 MAS Mfr. of machinery and equipment n.e.c. 48-52 ICT-using
18 ICM Mfr. of ICT equipment 53,55 ICT
19 INSTR Mfr. of electrical, optical and medical instruments 54,56 ICT-using
20 TRAN Mfr. of transport equipment 57-59 ICT-using
21 FURN Mfr. of furniture; manufacturing n.e.c. 60-62 Non-ICT
22 ELC Electricity supply 63 Non-ICT
23 GWS Gas and water supply 64-66 Non-ICT
24 CON Construction 67-70 Non-ICT
25 REP Sale and repair of motor vehicles etc. 71-73 ICT-using
26 WHO Ws. and commis. trade, exc. of m. vehicles 74 ICT-using
27 RET Retail trade of food etc. 75 ICT-using
28 DEP Department stores 76 ICT-using
29 PHARM Re. sale of phar. goods, cosmetic art. etc. 77 ICT-using
30 SALE Re. sale of clothing, footwear etc. 78 ICT-using
31 OTH RET Other retail sale, repair work 79 ICT-using
32 HOT Hotels and restaurants 80-81 Non-ICT
33 LTRAN Land transport; transport via pipelines 82-85 Non-ICT
34 WTRAN Water transport 86 Non-ICT
35 ATRAN Air transport 87 Non-ICT
36 OTRAN Support. trans. activities; travel agencies 88-89 Non-ICT
37 POST Post and telecommunications 90 ICT-using
38 FIM Financial intermediation 91-92 ICT-using
39 INS Insurance and pension funding 93-94 ICT-using
40 AUX Activities auxiliary to �nan. intermediat. 95 ICT-using
41 REST Real estate activities 96-98 ICT-using
42 RENT Renting of machinery and equipment etc. 99 ICT-using
43 ICS Computer and related activities 100-101 ICT
44 RD Research and development 102-103 ICT-using
45 OBS Other business activities 104-109 ICT-using
46 PUB Public administration etc. 110-113 Non-ICT
47 EDC Education 114-118 Non-ICT
48 HEALTH Health care services 119-120 Non-ICT

Continued on next page



132 CHAPTER 6. MODELING THE DIFFUSION OF GPTS

Table 6.A.1 � continued from previous page

Code Abbr. Industry Aggr. ICT class
49 INST Social institutions 121-122 Non-ICT
50 DISP Sewage and refuse disp. and similar act. 123-125 Non-ICT
51 MEM Activities of membership organiza. n.e.c. 126 ICT-using
52 CULT Recreational, cultural, sporting activities 127-128 Non-ICT
53 OSERV Other service activities 129-130 ICT-using



Chapter 7

Summary

The present thesis has focused on the pervasive character of general purpose
technologies (GPTs) to fuel the technological `engines of growth'. Since the impact
of an innovation is primarily channeled through the di�usion process, a GPT �
by a�ecting virtually all sectors of an economy � plays a particular role for long-
term economic development. The other characteristics of a GPT, its scope of
improvement and innovational complementarities, may have a similar or even
more disruptive impact on the economy than the di�usion of the technology as
such. But as Field (2011) points out, it is the latter criterion that distinguishes
a GPT from other innovations that may only serve one purpose, but might be
equally consequential.

To understand the full pervasiveness of GPTs, we have taken a multisectoral
approach, in order to examine the technical complementarities between heteroge-
neous industries that produce di�erent commodities by di�erent means and modes
of production.

In chapter 3 we show that an input-output framework is able to capture the
main characteristics of GPTs. Moreover, it allows for investigating sectoral di�er-
ences regarding the impact of a GPT, and thus the locus and direction of technical
change. The underlying structural decomposition analysis represents a novel way
of accounting labor productivity growth.

By operationalizing the term pervasiveness at the meso level, undertaken in
chapter 4, the robustness of sectors as evidenced by diversi�ed linkages to other
industries is proposed as a measure for identifying GPT-producing sectors. The
discussion also highlights the mutual dependence between the GPT-producing
sector and user sectors, stressing the role of technical complementarities up and
down the technology tree.

The latter was the central subject of chapter 5, in which industries have been
represented in a hierarchical order. The `technical tree' shows the core sectors for
economic development and simultaneously presents intersectoral relations. GPT
sectors were identi�ed as the basic grid underlying the economic system. The
method proposed is also an attempt to apply mesoeconomic concepts in evolu-
tionary theory empirically.

Chapter 6 concludes by analyzing the empirical results in an evolutionary
multi-sector model. Firms, not technology, thereby represent the unit upon which
selection occurs, which causes population changes on the sectoral level. The
framework is able to deal with the socio-economic consequences associated with
the emergence of a new GPT, such as the output slump after the arrival of the
technology or skill-induced wage dispersion. It thus extends the current literature
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on GPTs presented in chapter 2 that focus primarily on the role of R&D activities
in growth and di�usion of pervasive innovations.

Based on these �ndings, we believe that national accounts provide a good
source for uncovering both type and origins of major technological change. Our
work thereby complements the empirical literature on GPTs that draws on
patents: On the one hand, input-output tables are highly standardized, whereas
�gures on patents depend on the geographical location and the technology class
in which they were �led, rendering cross-country and cross-sectional analyses dif-
�cult. On the other hand, technological complementarities that are derived from
patents citing other patents as prior knowledge are not able to cover the full
spectrum of spillover e�ects (Bresnahan, 2010); especially those that occur in
the course of utilizing a speci�c technology (for instance, microcomputers) for
developing another (e.g. wind turbines). These complementarities are to a cer-
tain extent captured in intersectoral commodity �ows, assigning the meso unit an
important analytical function for the study of technological change.

Specifying a new technology as a product innovation that triggers process in-
novations is particularly meaningful on the sector level, as industry classi�cations
subsume similar products under one group so that a technology is su�ciently
represented by the economic activities in one sector. This is especially the case
of ICT for which the major industries producing this technology can be identi�ed
on the two-digit level in ISIC Rev. 3.1 (NACE Rev. 1.1); and more so in Rev.
4 (NACE Rev. 2.1), that was explicitly adjusted to better represent the new in-
formation and communication technologies. With regard to other GPTs, such as
nanotechnology or also clean technology, a similar analysis would require a more
disaggregated level of industry groupings.

For the investigation to give meaningful results, the inclusion of �xed capital
in the analysis is essential, as the bulk of technology is embodied in commodities
that endure longer than one production period. While in this regard, investments
in ICT capital were studied as part of �nal demand in chapter 3, they were
included in the intermediate matrix in chapter 4. Thus, the coe�cients do not
only represent current inputs, but also foreshadow future production trends. In
chapter 5, capital consumption �ows were used to estimate the annual deployment
of �xed capital, which might picture best the actual production system. However,
a more sophisticated approach to this problem would be to integrate a stock-�ow
concept into the input-output model by calculating so-called centre coe�cients
that take into account the actual degree of utilization of the di�erent types of �xed
capital during one period of time (see for example Kurz and Salvadori (1995) and
Schefold (1989)).

Regarding the speci�c GPT under study, information and communication
technology, empirical �ndings show that early adopters of the technological break-
through have long-term bene�ts. Thus, experience with the technology matters,
so that the risks involved in being a pioneer eventually pay o�. Results from
chapter 3 pictures the ICT revolution coming in two waves. The �rst started in
the 1980s, induced by the ICT manufacturing sector, the second wave occurred
in the mid-1990s and was triggered by ICT services. Chapter 4 indicates that
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the di�usion path between manufactured ICT and ICT services has been strongly
interrelated, where the takeo� of the latter pushed the adoption rate of the for-
mer. These �ndings suggest a hierarchy of these subtechnologies, which becomes
more evident in the technical tree that captures ICT services � but not the ICT-
manufacturing sector � as a core of the Danish economy. The results di�er though
from the ones obtained in chapter 4 according to which ICT-manufacturing indus-
tries have evolved to occupy a crucial position in the economy. These discrepancies
are partially attributed to the di�erent methodological approach, and partially to
the dataset applied; whereas in chapter 4 investment �ows in constant prices of
the year 2000 were used, the social network approach in chapter 5 was applied to
chained prices and capital consumption data. Given the erosion in prices of ICT
commodities and the volatility of capital formation �ows, we believe the latter
data to be even more informative about the impact of ICT.

The empirical evidence gathered throughout this work shows a somewhat dif-
ferent picture than has been drawn by common GPT models. Presenting GPTs
as a single variable does not do justice to the complexity of radical technolog-
ical change. The present work suggests that the generality of purpose should
rather translate into a large spectrum of purposes serving distinctive economic
processes that di�er from each other by more than a productivity parameter.
Due to the strong focus on innovational spillovers, the di�usion of a GPT was
primarily modeled in the context of social learning. But evidently, technologi-
cal proximity plays a role in the adoption process, since sectors neighboring the
ICT-industry belonged to the �rst users. This distance to the locus of technical
change has not been accounted for in the �rst generation of models. Likewise,
the coevolution of (sub)technologies has found little attention, because industries
in the intermediate sector are not technically related to each other. For instance,
the present endogenous growth models cannot trace the interconnected develop-
ment between manufacturing of ICT and ICT services without assigning each to
a di�erent GPT, which is clearly not the case.

We believe that the role of industries as interface between the micro and
macroeconomic level has so far not been dealt with su�ciently in the literature
on innovation, in particular on GPTs. By moving the analytical core onto the
meso level, the present thesis also �lls a gap between micro-founded concepts
exploring innovation activities at the �rm level and aggregate growth studies
in this �eld. Relating the pervasive character of a technology to the notion of
robust sectors further de�nes the part GPTs play for long-term economic devel-
opment. From this perspective, the �tness of a technological breakthrough is
re�ected by the strength of robustness of those industries producing it in a struc-
turally dynamic environment. Therefore, embedding the concept of GPTs into a
multi-sector evolutionary framework contributes to a better understanding of the
di�usion process of pervasive innovations and the complex relationship between
technological progress and structural change.
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Annex to Chapter 3

A.1 Composition and Fitness of the Numéraire
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Figure A.1.1: Sectoral shares in the selected numéraire

Figure A.1.1 depicts the composition of the numéraire that was chosen for
labor productivity growth accounting, while �gure A.1.2 shows the growth of
labor productivity obtained from the national accounts. More precisely, for each
period we divided GDP at market prices (i.e. gross added value at basic prices +
taxes on products (incl. VAT) - subsidies on products) by total hours worked in
the respective period (depicted along the horizontal axis) against the productivity
measure derived from the Sra�an system. A narrow scatter along the diagonal
line through the origin shows a high correlation of the latter indicator to o�cial
productivity data. The �gure exhibits two outliers � di�ering more than 1.5
percentage points from the other indicator � out of 39 data-points displayed. From
1980 onwards, both productivity indicators largely tend to match, so that the
numéraire chosen leads to reliable results at an aggregate level (with a correlation
coe�cient of ρ = 0.85).
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Figure A.1.2: Correlation of labor productivity growth obtained from national accounts and
the Sra�an system

A.2 Annual Ranking Positions of Industries

Table A.1: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 1967 to 1973

1967 1968 1969 1970 1971 1972 1973

1 Agriculture 16 14 18 36 30 24 50
2 Horticulture, orchards etc. 21 31 49 27 29 25 27
3 Agricultural services; landscape gardeners etc. 41 41 39 10 10 44 40
4 Forestry 30 32 32 7 7 47 52
5 Fishing 28 37 47 8 8 45 51
6 Extr. of crude petroleum, natural gas etc. 53 53 53 53 53 1 8
7 Extr. of gravel, clay, stone and salt etc. 40 49 46 5 5 49 46
8 Food, beverages and tobacco 1 2 1 51 51 3 3
9 Mfr. of textiles, wearing apparel, leather 20 20 11 18 21 33 22
10 Mfr. of wood and wood products 38 46 44 1 1 53 48
11 Mfr. of paper prod.; printing and publish. 31 45 29 13 14 40 34
12 Mfr. of re�ned petroleum products etc. 51 52 52 52 52 2 15
13 Mfr. of chemicals and man-made �bres etc. 10 7 23 42 43 11 6
14 Mfr. of rubber and plastic products 36 47 42 4 4 50 49
15 Mfr. of other non-metallic mineral products 33 43 40 6 9 46 42
16 Mfr. and processing of basic metals 37 50 45 3 2 52 47
17 Mfr. of machinery and equipment n.e.c. 13 5 14 30 37 17 5
18 Mfr. of ICT equipment 39 48 43 2 3 51 45
19 Mfr of electrical, optical and medical equipment 11 16 19 31 35 19 7
20 Mfr. of transport equipment 15 34 34 23 20 34 53
21 Furniture and other mfr. n.e.c. 6 6 7 28 34 20 14
22 Electricity 52 12 51 47 47 7 25
23 Gas and water supply 50 22 48 44 44 10 30
24 Construction 2 3 4 49 49 5 21
25 Sale and repair of motor vehicles etc. 22 18 15 25 28 26 4
26 Wholesale 18 8 10 48 48 6 2
27 Retail trade of food etc. 4 19 12 26 27 27 16
28 Department stores 25 35 24 20 17 37 23
29 Re. sale of phar. goods, cosmetic art. etc. 27 29 20 11 12 42 32
30 Re. sale of clothing, footwear etc. 8 15 8 17 19 35 20
31 Other retail sale, repair work 19 38 6 35 33 21 10
32 Hotels and rest 32 25 5 37 38 16 24
33 Land transport; transport via pipelines 42 23 28 38 39 15 19
34 Water transport 43 1 3 50 50 4 1
35 Air transport 14 27 50 39 40 14 29
36 Support. trans. activities; travel agencies 24 21 26 22 25 29 36
37 Post and telecommunications 17 17 9 19 26 28 28
38 Financial intermediation 49 24 17 32 24 30 26
39 Insurance and pension funding 23 30 27 29 23 31 18
40 Activities auxiliary to �nan. intermediat. 34 44 37 9 6 48 41
41 Real estate 3 4 2 40 36 18 11
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42 Renting of machinery and equipment etc. 44 39 36 12 11 43 44
43 Computer and related activities 45 36 30 34 32 22 31
44 Research and development 29 40 35 15 13 41 35
45 Consultancy etc. and cleaning activities 48 33 33 24 22 32 43
46 Publ. Administration 5 10 22 46 46 8 9
47 Education 9 13 16 41 41 13 13
48 Health 12 11 21 43 42 12 12
49 Social institutions 7 9 13 45 45 9 17
50 Sewage and refuse disp. and similar act. 35 42 41 16 15 39 39
51 Membership organizations n.e.c. 46 28 38 21 18 36 37
52 Recreational, cultural, sporting activities 47 51 31 33 31 23 38
53 Other service activities 26 26 25 14 16 38 33
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Table A.2: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 1974 to 1980

1974 1975 1976 1977 1978 1979 1980

1 Agriculture 2 50 52 7 12 23 6
2 Horticulture, orchards etc. 8 28 33 19 23 25 8
3 Agricultural services; landscape gardeners etc. 28 42 40 38 38 39 26
4 Forestry 18 39 37 48 35 34 30
5 Fishing 27 35 39 40 34 37 24
6 Extr. of crude petroleum, natural gas etc. 51 4 51 9 53 51 50
7 Extr. of gravel, clay, stone and salt etc. 22 47 47 44 43 45 22
8 Food, beverages and tobacco 1 2 53 1 1 2 2
9 Mfr. of textiles, wearing apparel, leather 9 20 17 36 26 17 13
10 Mfr. of wood and wood products 24 49 44 43 44 43 21
11 Mfr. of paper prod.; printing and publish. 17 34 31 37 31 32 17
12 Mfr. of re�ned petroleum products etc. 47 6 49 14 52 52 46
13 Mfr. of chemicals and man-made �bres etc. 45 13 14 11 29 9 12
14 Mfr. of rubber and plastic products 23 46 45 41 42 46 20
15 Mfr. of other non-metallic mineral products 26 43 41 39 39 41 23
16 Mfr. and processing of basic metals 21 48 46 45 41 44 19
17 Mfr. of machinery and equipment n.e.c. 3 8 10 16 32 13 4
18 Mfr. of ICT equipment 20 45 43 42 40 42 18
19 Mfr of electrical, optical and medical equipment 5 10 12 15 25 5 41
20 Mfr. of transport equipment 4 32 48 51 17 26 14
21 Furniture and other mfr. n.e.c. 40 24 9 22 15 8 3
22 Electricity 37 21 32 26 33 38 37
23 Gas and water supply 42 16 50 23 48 50 44
24 Construction 49 1 6 4 9 14 1
25 Sale and repair of motor vehicles etc. 10 19 20 34 21 16 5
26 Wholesale 53 3 4 50 51 3 47
27 Retail trade of food etc. 11 9 19 29 6 24 9
28 Department stores 34 29 24 30 22 48 33
29 Re. sale of phar. goods, cosmetic art. etc. 33 33 27 18 20 28 15
30 Re. sale of clothing, footwear etc. 30 11 13 21 45 21 7
31 Other retail sale, repair work 44 14 11 17 11 49 34
32 Hotels and rest 6 12 15 10 49 19 11
33 Land transport; transport via pipelines 48 18 28 31 13 12 39
34 Water transport 52 5 1 2 2 1 53
35 Air transport 12 25 29 20 50 29 43
36 Support. trans. activities; travel agencies 36 51 25 24 30 35 35
37 Post and telecommunications 16 23 16 13 47 18 10
38 Financial intermediation 50 31 7 35 16 53 42
39 Insurance and pension funding 32 52 21 52 10 31 40
40 Activities auxiliary to �nan. intermediat. 25 44 42 47 37 47 28
41 Real estate 46 53 2 53 8 4 51
42 Renting of machinery and equipment etc. 29 37 38 46 28 40 29
43 Computer and related activities 41 15 22 25 19 10 38
44 Research and development 13 41 35 32 27 36 31
45 Consultancy etc. and cleaning activities 39 17 23 27 24 22 27
46 Publ. Administration 15 22 3 3 7 6 48
47 Education 35 26 8 6 4 7 49
48 Health 43 38 18 8 3 15 45
49 Social institutions 7 7 5 5 5 11 52
50 Sewage and refuse disp. and similar act. 31 40 36 49 46 33 25
51 Membership organizations n.e.c. 38 36 30 28 14 30 36
52 Recreational, cultural, sporting activities 14 30 26 12 18 20 16
53 Other service activities 19 27 34 33 36 27 32
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Table A.3: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 1981 to 1987

1974 1975 1976 1977 1978 1979 1980

1 Agriculture 9 10 49 5 20 12 49
2 Horticulture, orchards etc. 26 21 47 21 27 19 45
3 Agricultural services; landscape gardeners etc. 35 39 42 43 31 30 32
4 Forestry 27 47 31 45 33 41 27
5 Fishing 34 46 34 42 41 39 34
6 Extr. of crude petroleum, natural gas etc. 4 4 28 52 32 7 11
7 Extr. of gravel, clay, stone and salt etc. 40 42 41 39 40 34 39
8 Food, beverages and tobacco 2 1 46 1 3 4 52
9 Mfr. of textiles, wearing apparel, leather 25 30 18 31 22 42 29
10 Mfr. of wood and wood products 42 44 38 40 38 35 38
11 Mfr. of paper prod.; printing and publish. 32 33 32 30 34 27 35
12 Mfr. of re�ned petroleum products etc. 7 8 22 50 30 8 19
13 Mfr. of chemicals and man-made �bres etc. 15 29 7 47 12 10 18
14 Mfr. of rubber and plastic products 39 41 40 41 37 36 37
15 Mfr. of other non-metallic mineral products 38 37 36 36 35 31 41
16 Mfr. and processing of basic metals 43 40 39 38 39 37 40
17 Mfr. of machinery and equipment n.e.c. 46 13 6 12 16 53 20
18 Mfr. of ICT equipment 41 43 37 37 36 33 36
19 Mfr of electrical, optical and medical equipment 13 28 4 18 17 46 10
20 Mfr. of transport equipment 22 22 16 10 51 47 50
21 Furniture and other mfr. n.e.c. 10 14 5 17 19 49 43
22 Electricity 53 5 48 32 13 23 31
23 Gas and water supply 18 15 27 49 14 20 46
24 Construction 5 2 2 15 1 3 2
25 Sale and repair of motor vehicles etc. 20 16 15 46 48 48 53
26 Wholesale 3 3 8 6 2 2 3
27 Retail trade of food etc. 12 32 10 51 49 11 9
28 Department stores 36 36 44 35 47 44 14
29 Re. sale of phar. goods, cosmetic art. etc. 33 35 30 44 42 18 16
30 Re. sale of clothing, footwear etc. 48 27 25 13 11 45 12
31 Other retail sale, repair work 49 11 35 25 44 13 6
32 Hotels and rest 8 12 50 19 15 29 47
33 Land transport; transport via pipelines 50 31 53 14 10 9 23
34 Water transport 1 9 3 28 53 1 1
35 Air transport 24 26 26 27 46 25 13
36 Support. trans. activities; travel agencies 29 25 19 20 18 40 21
37 Post and telecommunications 28 23 52 3 9 22 7
38 Financial intermediation 51 6 1 2 7 5 51
39 Insurance and pension funding 52 17 20 9 52 6 17
40 Activities auxiliary to �nan. intermediat. 47 38 45 29 45 32 44
41 Real estate 44 53 29 53 23 52 48
42 Renting of machinery and equipment etc. 31 52 23 26 28 43 28
43 Computer and related activities 11 20 13 16 24 21 22
44 Research and development 37 45 43 34 29 28 30
45 Consultancy etc. and cleaning activities 19 24 17 23 25 24 24
46 Publ. Administration 6 7 9 7 6 50 8
47 Education 16 18 14 8 5 38 5
48 Health 23 49 24 48 8 15 33
49 Social institutions 17 51 11 4 4 51 4
50 Sewage and refuse disp. and similar act. 30 48 33 33 43 17 42
51 Membership organizations n.e.c. 45 34 12 22 21 26 26
52 Recreational, cultural, sporting activities 14 50 51 11 26 14 15
53 Other service activities 21 19 21 24 50 16 25
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Table A.4: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 1988 to 1994

1988 1989 1990 1991 1992 1993 1994

1 Agriculture 15 7 17 30 36 5 25
2 Horticulture, orchards etc. 30 45 28 22 13 37 49
3 Agricultural services; landscape gardeners etc. 45 36 35 43 32 27 38
4 Forestry 44 29 49 23 19 42 40
5 Fishing 36 33 47 38 15 28 42
6 Extr. of crude petroleum, natural gas etc. 35 27 30 29 12 38 41
7 Extr. of gravel, clay, stone and salt etc. 40 42 41 34 28 33 47
8 Food, beverages and tobacco 2 1 2 12 51 1 3
9 Mfr. of textiles, wearing apparel, leather 21 21 34 19 37 41 31
10 Mfr. of wood and wood products 41 39 42 33 30 31 44
11 Mfr. of paper prod.; printing and publish. 46 43 32 42 33 29 48
12 Mfr. of re�ned petroleum products etc. 50 20 46 40 20 21 50
13 Mfr. of chemicals and man-made �bres etc. 28 12 24 20 10 22 15
14 Mfr. of rubber and plastic products 39 41 39 35 26 32 46
15 Mfr. of other non-metallic mineral products 43 35 44 39 25 35 39
16 Mfr. and processing of basic metals 37 40 40 31 29 30 45
17 Mfr. of machinery and equipment n.e.c. 5 10 48 17 49 9 5
18 Mfr. of ICT equipment 38 38 38 32 27 34 43
19 Mfr of electrical, optical and medical equipment 19 15 52 4 6 44 8
20 Mfr. of transport equipment 11 17 22 47 35 17 23
21 Furniture and other mfr. n.e.c. 12 9 51 5 46 52 7
22 Electricity 33 31 29 28 16 23 34
23 Gas and water supply 16 23 26 10 21 47 33
24 Construction 3 2 53 8 34 53 2
25 Sale and repair of motor vehicles etc. 25 47 20 49 18 46 9
26 Wholesale 8 53 9 1 53 3 10
27 Retail trade of food etc. 49 16 7 18 4 45 14
28 Department stores 17 50 11 21 11 19 53
29 Re. sale of phar. goods, cosmetic art. etc. 24 37 25 15 41 16 28
30 Re. sale of clothing, footwear etc. 14 24 4 16 22 36 22
31 Other retail sale, repair work 9 51 3 13 8 7 12
32 Hotels and rest 10 8 14 53 42 49 21
33 Land transport; transport via pipelines 13 14 50 27 43 20 16
34 Water transport 1 49 1 7 23 12 4
35 Air transport 20 48 21 52 7 43 30
36 Support. trans. activities; travel agencies 29 13 43 41 38 15 29
37 Post and telecommunications 32 22 12 25 9 13 20
38 Financial intermediation 7 5 13 6 5 39 13
39 Insurance and pension funding 6 4 15 48 48 26 17
40 Activities auxiliary to �nan. intermediat. 42 30 45 26 31 25 37
41 Real estate 47 11 16 14 45 51 24
42 Renting of machinery and equipment etc. 31 44 31 37 24 10 35
43 Computer and related activities 23 18 10 51 2 11 18
44 Research and development 34 34 37 24 14 24 27
45 Consultancy etc. and cleaning activities 22 19 19 36 44 18 32
46 Publ. Administration 18 6 8 9 52 14 52
47 Education 53 3 27 3 3 50 11
48 Health 4 26 23 11 50 4 6
49 Social institutions 51 32 36 2 1 2 1
50 Sewage and refuse disp. and similar act. 48 46 33 44 17 48 36
51 Membership organizations n.e.c. 27 52 6 45 47 40 51
52 Recreational, cultural, sporting activities 26 28 5 46 39 8 19
53 Other service activities 52 25 18 50 40 6 26
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Table A.5: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 1995 to 2001

1995 1996 1997 1998 1999 2000 2001

1 Agriculture 22 14 14 13 18 16 18
2 Horticulture, orchards etc. 19 35 18 31 36 40 42
3 Agricultural services; landscape gardeners etc. 29 31 27 26 32 24 19
4 Forestry 21 32 24 25 24 45 11
5 Fishing 38 30 26 23 21 36 24
6 Extr. of crude petroleum, natural gas etc. 17 18 22 22 15 25 36
7 Extr. of gravel, clay, stone and salt etc. 33 26 33 18 31 32 26
8 Food, beverages and tobacco 3 9 1 41 3 8 2
9 Mfr. of textiles, wearing apparel, leather 18 17 16 29 12 20 37
10 Mfr. of wood and wood products 31 29 29 19 29 31 28
11 Mfr. of paper prod.; printing and publish. 26 22 23 33 22 21 33
12 Mfr. of re�ned petroleum products etc. 10 20 36 12 16 22 35
13 Mfr. of chemicals and man-made �bres etc. 11 15 6 32 6 13 39
14 Mfr. of rubber and plastic products 32 27 31 20 28 33 29
15 Mfr. of other non-metallic mineral products 35 23 28 24 26 29 30
16 Mfr. and processing of basic metals 34 28 32 17 30 30 27
17 Mfr. of machinery and equipment n.e.c. 40 52 5 49 52 5 46
18 Mfr. of ICT equipment 30 25 30 21 27 34 25
19 Mfr of electrical, optical and medical equipment 43 46 12 10 46 9 20
20 Mfr. of transport equipment 20 44 46 6 25 18 16
21 Furniture and other mfr. n.e.c. 51 43 9 48 9 12 43
22 Electricity 42 16 35 39 10 37 14
23 Gas and water supply 25 13 15 36 17 41 10
24 Construction 46 2 50 30 51 50 53
25 Sale and repair of motor vehicles etc. 50 50 49 3 47 46 4
26 Wholesale 6 1 53 51 1 1 50
27 Retail trade of food etc. 47 53 37 50 37 52 51
28 Department stores 28 34 10 28 23 48 38
29 Re. sale of phar. goods, cosmetic art. etc. 12 41 19 9 11 23 23
30 Re. sale of clothing, footwear etc. 9 39 17 8 45 42 3
31 Other retail sale, repair work 8 12 40 40 53 15 13
32 Hotels and rest 23 51 7 47 8 53 40
33 Land transport; transport via pipelines 15 47 25 44 44 43 12
34 Water transport 5 4 2 53 2 3 1
35 Air transport 39 21 38 15 41 17 31
36 Support. trans. activities; travel agencies 41 33 42 35 19 14 44
37 Post and telecommunications 16 11 11 37 20 19 7
38 Financial intermediation 53 10 4 7 49 11 8
39 Insurance and pension funding 44 8 21 4 14 39 47
40 Activities auxiliary to �nan. intermediat. 36 36 20 16 33 35 22
41 Real estate 4 49 52 43 50 7 45
42 Renting of machinery and equipment etc. 37 24 34 27 35 27 32
43 Computer and related activities 52 42 3 38 42 49 9
44 Research and development 45 19 41 14 34 28 21
45 Consultancy etc. and cleaning activities 48 48 13 46 39 38 34
46 Publ. Administration 13 6 47 5 5 4 52
47 Education 2 3 51 1 4 10 49
48 Health 7 5 44 2 7 6 6
49 Social institutions 1 7 48 52 48 2 5
50 Sewage and refuse disp. and similar act. 24 37 39 34 40 44 41
51 Membership organizations n.e.c. 27 38 8 11 38 26 15
52 Recreational, cultural, sporting activities 14 45 45 45 13 51 48
53 Other service activities 49 40 43 42 43 47 17
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Table A.6: Annual ranking positions of Danish industries with regard to their impact on labor
productivity growth from 2002 to 2007

2002 2003 2004 2005 2006 2007

1 Agriculture 33 20 26 19 40 21
2 Horticulture, orchards etc. 42 32 25 20 23 19
3 Agricultural services; landscape gardeners etc. 39 31 36 25 38 28
4 Forestry 15 42 27 36 28 49
5 Fishing 36 45 37 22 26 35
6 Extr. of crude petroleum, natural gas etc. 18 48 28 35 48 44
7 Extr. of gravel, clay, stone and salt etc. 29 40 44 28 32 31
8 Food, beverages and tobacco 53 2 1 1 47 7
9 Mfr. of textiles, wearing apparel, leather 13 24 23 38 15 23
10 Mfr. of wood and wood products 31 36 41 29 36 33
11 Mfr. of paper prod.; printing and publish. 24 25 21 17 31 22
12 Mfr. of re�ned petroleum products etc. 27 49 19 43 43 40
13 Mfr. of chemicals and man-made �bres etc. 51 14 33 7 25 46
14 Mfr. of rubber and plastic products 32 38 42 27 35 30
15 Mfr. of other non-metallic mineral products 26 34 40 24 30 34
16 Mfr. and processing of basic metals 30 39 43 30 34 32
17 Mfr. of machinery and equipment n.e.c. 4 12 5 31 4 2
18 Mfr. of ICT equipment 28 37 45 26 33 29
19 Mfr of electrical, optical and medical equipment 19 18 16 47 6 5
20 Mfr. of transport equipment 23 6 48 41 12 41
21 Furniture and other mfr. n.e.c. 11 15 3 9 7 15
22 Electricity 47 29 53 45 29 36
23 Gas and water supply 41 47 11 42 42 42
24 Construction 3 1 8 48 2 53
25 Sale and repair of motor vehicles etc. 16 3 12 12 50 10
26 Wholesale 7 7 6 2 1 50
27 Retail trade of food etc. 45 26 4 5 16 3
28 Department stores 12 11 14 13 14 11
29 Re. sale of phar. goods, cosmetic art. etc. 38 27 18 16 46 26
30 Re. sale of clothing, footwear etc. 34 17 46 8 17 38
31 Other retail sale, repair work 9 19 39 4 5 14
32 Hotels and rest 40 53 13 51 10 12
33 Land transport; transport via pipelines 17 50 31 37 9 45
34 Water transport 8 4 20 32 18 6
35 Air transport 49 23 22 3 11 18
36 Support. trans. activities; travel agencies 43 21 24 49 13 16
37 Post and telecommunications 6 8 30 21 44 9
38 Financial intermediation 2 5 7 6 22 17
39 Insurance and pension funding 20 10 29 14 8 4
40 Activities auxiliary to �nan. intermediat. 44 46 34 23 27 25
41 Real estate 52 33 49 44 53 52
42 Renting of machinery and equipment etc. 25 30 35 33 37 27
43 Computer and related activities 22 9 15 46 19 20
44 Research and development 37 44 50 34 41 37
45 Consultancy etc. and cleaning activities 48 35 17 15 45 48
46 Publ. Administration 1 13 51 18 3 39
47 Education 10 16 2 53 24 1
48 Health 46 51 10 52 51 51
49 Social institutions 5 52 9 50 52 13
50 Sewage and refuse disp. and similar act. 35 43 38 40 20 43
51 Membership organizations n.e.c. 21 41 52 10 49 8
52 Recreational, cultural, sporting activities 14 28 32 11 39 24
53 Other service activities 50 22 47 39 21 47
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A.3 Additional Figures

Figure A.3.1: Contribution of technical change, employment, factor substitution and �nal
demand to annual labor productivity growth
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Figure A.3.2: Contribution of ICT manufacturing (ICM), computer-related services (ICS) and
electricity to labor productivity growth.
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Annex B

Annex to Chapter 4

B.1 Comparing the Ghosh and Leontief Model

The following section deals with the development of the ICT sector among the
industry network according to conventional linkage measures based on the Ghosh
and Leontief model. We further analyze how results change with di�erent prices
(current versus constant) and when capital �ows are taken into account.

ICT and related industries Ranking

Constant Prices Current Prices
1966 1976 1986 1996 2006 1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 24 19 8 3 3 6 5 2 3 4
Mfr. of other electrical machinery
and apparatus 17 12 18 24 29 19 13 20 23 29
Mfr. of radio and communicat. equipm. etc. 11 9 31 18 7 22 10 27 16 11
Mfr. of medical and optical instrum. etc. 32 32 56 57 20 26 29 48 48 26
Computer activities excl. software
consultancy and supply 37 37 34 33 41 40 38 37 32 39
Software consultancy and supply 31 36 29 31 36 34 34 28 31 35

Table B.1: Ranking position of total forward linkages (TFL) for ICT industries in the Ghosh
model (constant and current prices)

ICT and related industries Ranking
Constant Prices Current Prices

1966 1976 1986 1996 2006 1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 6 5 2 3 4 12 21 28 37 16
Mfr. of other electrical machinery
and apparatus 19 13 20 23 29 99 108 112 97 104
Mfr. of radio and communicat. equipm. etc. 22 10 27 16 11 21 18 26 6 6
Mfr. of medical and optical instrum. etc. 26 29 48 48 26 4 5 7 15 5
Computer activities excl. software
consultancy and supply 40 38 37 32 39 22 20 9 19 15
Software consultancy and supply 34 34 28 31 35 67 63 41 55 51

Table B.2: Ranking position of total forward linkages (TFL) of ICT industries in the Leontief
model (constant and current prices)
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(a) TFL of ICT incl. capital �ows in constant prices

ICT and related industries Ranking
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 24 19 8 3 3
Mfr. of other electrical machinery and apparatus 17 12 18 24 29
Mfr. of radio and communicat. equipm. etc. 11 9 31 18 7
Mfr. of medical and optical instrum. etc. 32 32 56 57 20
Computer activities excl. software consultancy and supply 37 37 34 33 41
Software consultancy and supply 31 36 29 31 36

(b) TFL of ICT without capital �ows in constant prices

ICT and related industries Ranking Number
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 27 26 40 18 6
Mfr. of other electrical machinery and apparatus 31 27 30 35 44
Mfr. of radio and communicat. equipm. etc. 35 32 58 32 9
Mfr. of medical and optical instrum. etc. 60 62 82 74 63
Computer activities excl. software consultancy and supply 33 30 32 55 54
Software consultancy and supply 22 22 33 73 66

(c) Change in positions with respect to Table (a)

ICT and related industries Change in Ranking
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers -3 -7 -32 -15 -3
Mfr. of other electrical machinery and apparatus -14 -15 -12 -11 -15
Mfr. of radio and communicat. equipm. etc. -24 -23 -27 -14 -2
Mfr. of medical and optical instrum. etc. -28 -30 -26 -17 -43
Computer activities excl. software consultancy and supply 4 7 2 -22 -13
Software consultancy and supply 9 14 -4 -42 -30

(d) ICT direct forward linkages (DFL) including capital �ows

ICT and related industries Ranking Number
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 17 13 5 2 2
Mfr. of other electrical machinery and apparatus 24 16 19 31 52
Mfr. of radio and communicat. equipm. etc. 35 23 45 26 10
Mfr. of medical and optical instrum. etc. 43 46 60 57 14
Computer activities excl. software consultancy and supply 38 24 27 23 35
Software consultancy and supply 31 28 24 29 37

(e) Change in positions of DFL with respect to Table (a)

ICT and related industries Change in Ranking
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 7 6 3 1 1
Mfr. of other electrical machinery and apparatus -7 -4 -1 -7 -23
Mfr. of radio and communicat. equipm. etc. -24 -14 -14 -8 -3
Mfr. of medical and optical instrum. etc. -11 -14 -4 0 6
Computer activities excl. software consultancy and supply -1 13 7 10 6
Software consultancy and supply 0 8 5 2 -1

Table B.3: Comparison of forward linkages of the ICT sector and related industries in the
Ghosh model
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Figure B.1.1: Change in row variance for the ICT sector and related industries between 1966
and 2007 (Ghosh model). Note: The x-axis denotes time (1965=0, 2010=45).
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Figure B.1.2: Change in row variance for selected sectors between 1966 and 2007 (Ghosh
model). Note: The x-axis denotes time (1965=0, 2010=45).
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(a) TFL of ICT incl. capital �ows in constant prices

ICT and related industries Ranking
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 98 101 78 54 27
Mfr. of other electrical machinery and apparatus 10 10 12 11 4
Mfr. of radio and communicat. equipm. etc. 35 16 34 22 13
Mfr. of medical and optical instrum. etc. 47 33 42 34 14
Computer activities excl. software consultancy and supply 105 87 67 40 32
Software consultancy and supply 102 74 58 47 7

(b) ICT direct forward linkages (DFL) including capital �ows

ICT and related industries Ranking Number
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 25 26 30 30 33
Mfr. of other electrical machinery and apparatus 23 23 25 18 9
Mfr. of radio and communicat. equipm. etc. 14 21 13 21 23
Mfr. of medical and optical instrum. etc. 11 10 9 8 20
Computer activities excl. software consultancy and supply 12 20 23 22 14
Software consultancy and supply 19 17 24 20 12

(c) Change in positions of DFL with respect to Table (a)

ICT and related industries Change in Ranking
1966 1976 1986 1996 2006

Mfr. of o�ce machinery and computers 73 75 48 24 -6
Mfr. of other electrical machinery and apparatus -13 -13 -13 -7 -5
Mfr. of radio and communicat. equipm. etc. 21 -5 21 1 -10
Mfr. of medical and optical instrum. etc. 36 23 33 26 -6
Computer activities excl. software consultancy and supply 93 67 44 18 18
Software consultancy and supply 83 57 34 27 -5

Table B.4: Comparison of forward linkages of the ICT sector in the Leontief model

ICT and Ranking

related industries

With respect to the Ghosh model, forward linkages

based on the Leontief model moved in ranking by . . . positions
Direct Forward Linkages Total Forward Linkages
1966 1976 1986 1996 2006 1966 1976 1986 1996 2006

Mfr. of o�ce machinery -8 -13 -25 -28 -31 -74 -82 -70 -51 -24
and computers
Mfr. of other electrical 1 -7 -6 13 43 7 2 6 13 25
machinery and apparatus
Mfr. of radio and 21 2 32 5 -13 -24 -7 -3 -4 -6
communicat. equipm. etc.
Mfr. of medical and 32 36 51 49 -6 -15 -1 14 23 6
optical instrum. etc.
Computer activities 26 4 4 1 21 -68 -50 -33 -7 9
Software consultancy and supply 12 11 0 9 25 -71 -38 -29 -16 29

Table B.5: Comparison of direct and total forward linkages in the Ghosh and Leontief models
(constant prices)
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Figure B.1.3: Change in row variance for ICT-sector and related industries between 1966 and
2007 (Leontief model). Note: The x-axis denotes time (1965=0, 2010=45).
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1966 1976 1986 1996 2006

Ghosh

Direct Forward Linkages

18 30009 Mfr. of electrical and optical equipment 7 8 11 11 13
41 72000 Computer and related activities 12 11 12 13 11
21 401000 Electricity 31 33 33 37 31

Total Forward Linkages

18 30009 Mfr. of electrical and optical equipment 7 7 9 11 10
41 72000 Computer and related activities 15 14 15 18 17
21 401000 Electricity 33 33 35 35 33

Leontief

Direct Forward Linkages

18 30009 Mfr. of electrical and optical equipment 13 11 12 12 14
41 72000 Computer and related activities 40 31 24 15 4
21 401000 Electricity 30 22 20 19 17

Total Forward Linkages

18 30009 Mfr. of electrical and optical equipment 12 12 12 12 11
41 72000 Computer and related activities 28 27 25 21 13
21 401000 Electricity 34 30 29 30 31

Table B.6: Ranking position of the ICT manufacturing and service sector and the electricity
sector from 1966 to 2006
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B.1.4.1 Direct Forward Linkages Ghosh Model

B.1.4.2 Total Forward Linkages Ghosh Model

B.1.4.3 Direct Forward Linkages Leontief Model

B.1.4.4 Total Forward Linkages Leontief Model

Figure B.1.4: Rank change over time in the Ghosh and the Leontief models
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Annex to Chapter 5

C.1 A Note on Knowledge Spillovers in an R&D Net-

work

The focus in chapter 5 lies on the pervasive character of a GPT and not on its
potential to trigger phases of strong innovative activity. However, it is possible
to extend the framework to further factors of production, such as investments in
R&D or the employment of heterogeneous labor, by letting the algorithm search
for the most innovative industries among the supplier network. Introducing R&D
expenditures for the period between 1987 and 2006, gives further insights into
Denmark's high position among innovation leaders in Europe. For this sake, we
incorporate R&D intensity into the analysis of direct and indirect commodity �ows
in order to measure the total knowledge embodied in the sectoral product. The
existing framework is modi�ed by using instead of the sectoral constribution to
annual output the industrial share in total domestic R&D expenditures as scaling
parameter in eq. (5.4). Furthermore, we premultiply the fundamental matrix of
the absorbing Markov chain (based on commodity �ows) in eq. (5.6) by the direct
R&D intensity per industry (i.e. sectoral R&D expenditures per gross output).
This gives the mean number of times the embodied knowledge �ow originating
in one sector passes through other industries in the domestic producer network1

before the corresponding product reaches �nal demand.
Data on annual R&D expenditures were retrieved from the OECD Analytical

Business Enterprise Research and Development database (ed. 2009 based on ISIC
Rev. 3.1). The 20 sectors listed in this database were disaggregated according to
our 66-sector classi�cation by assuming an equal distribution of R&D investments
across subindustries. Furthermore, for those industries that do not report any
R&D activity, we assume minimum expenditures in the amount of 1.5% per cent of
sectoral value added. The analysis was undertaken for parameter values β = 1,γ =
1, this means that coupling is taken into account and the resulting hierarchical
order is presupposed to be �at. Figure C.1.1 shows that by the late 1980s, a great
share of R&D resources went to the ICT manufacturing sector, indicating the early
e�orts made to adjust the production system to the new technology. In fact, this
sector spanned the bulk of industries in manufacturing and services at that time
and acted as the second innovation pillar besides the chemical industry with its

1Note that in the following analyis only domestic transaction �ows were taken into account.
For more elaborated approaches that consider di�erences in R&D spending between the ex-
porting and importing country see, e.g., Hauknes and Knell (2009) and Papconstantinou et al.
(1998).
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focus on biotechnology. Comparing this �gure to the technical tree of 1997, one
can observe that the machinery sector has become a core of the network. This
increasing dominance in research activities can be associated with wind power
generation and to a lesser extent to biotechnology. Since the machinery sector
belonged to the ICT-manufacturing community before, its evolution reveals the
role of ICT as an enabling technology. However, in the mid-1990s R&D became
more and more directed towards ICT services, which also shows the signi�cance
of the latter activity in domestic production (see Fig. C.1.3).

Table C.1: Evolution of the technical tree based on the R&D network 1988�2006. The �rst
column gives the sector ID, the second and third column indicate the economic activity and
corresponding abbreviation, respectively, the columns 4-12 record the ranking of each industry
according the robustness score in descending order (pos), the parent industry (par), as well as
the number of desc (desc). The value 0 in par denotes the root node, parameter α in the tree
learning algorithm was set to 0.5.

1988 1997 2006
ID Activity Label pos par desc pos par desc pos par desc

pos par desc pos par desc pos par desc
1988 1997 2006
pos par sub pos par sub pos par sub

1 Agriculture and horticulture AGR 65 11 0 65 11 0 65 11 0
2 Forestry FOR 60 17 0 62 19 0 63 39 0
3 Fishing FISH 66 17 0 66 19 0 66 11 0
4 Mining and quarrying MIN 63 17 0 63 19 0 64 11 0
5 Manufacture of food, tobacco MFOOD 43 11 0 42 11 0 46 11 0
6 Textiles and leather products MTEXT 22 11 0 22 11 0 15 11 0
7 Manufacture of wood etc. MWOOD 50 11 0 50 11 0 57 11 0
8 Manufacture of paper etc. MPAP 29 11 0 26 11 0 25 11 0
9 Printing etc. MPRINT 37 11 0 47 11 0 30 11 0
10 Oil re�nery etc. OIL 64 17 0 64 19 0 59 11 0
11 Manufacture of chemicals MCHEM 13 0 9 6 0 16 2 39 26
12 Pharmaceuticals MPHARM 19 11 1 15 11 2 14 11 0
13 Manufacture of rubber etc. MRUB 15 11 0 16 11 0 13 11 0
14 Manuf.of glass, concrete etc. MGLASS 58 11 0 60 11 0 61 11 0
15 Manufacture of basic metals MBMET 33 17 0 36 11 0 35 11 0
16 Manufact. of fabricated metal MFMET 23 17 0 27 19 0 27 11 0
17 Manufacture of ICT ICT 4 0 50 2 0 23 5 11 15
18 Electronic/Electrical equipment MELTR 10 17 0 12 17 0 17 17 0
19 Manufacture of machinery MMACH 7 17 0 3 17 9 4 0 0
20 Manuf. of motor vehicles etc. MVEH 53 17 0 55 19 0 33 11 0
21 Mf. of ships, transport equip. MTRAN 24 17 0 49 19 0 60 11 0
22 Manuf.of furniture,other manuf MOTH 5 17 0 7 11 0 7 11 0
23 Repair, inst. of machinery etc RMACH 26 17 0 38 19 1 58 17 0
24 Electricity, gas and steam ELC 21 17 0 14 19 0 19 17 0
25 Water collect.puri�cation etc WAT 45 17 0 33 17 0 34 39 0
26 Sewerage, waste collection etc. WASTE 28 17 0 18 17 0 22 17 0
27 Construction CON 32 17 0 37 17 0 41 17 0
28 Sale, repair of motor vehicles SRVEH 25 17 0 21 11 0 24 11 0
29 Retail sale RET 30 17 0 31 17 0 28 39 0
30 Land transport, pipelines LTRANS 11 17 0 10 17 0 16 11 0
31 Water transport WTRANS 56 17 0 53 23 0 51 17 0
32 Air transport ATRANS 38 17 0 46 17 0 52 11 0
33 Support activities for transp. STRANS 31 17 0 35 39 0 32 39 0
34 Postal and courier activities POST 9 17 0 13 17 0 10 17 0
35 Accommodation, food service HOT 14 17 0 20 11 0 21 11 0
36 Publishing activities PUBL 35 17 0 51 11 0 47 39 0
37 Radio,TV, movie,video,sound pub RADIO 17 17 0 29 39 0 26 39 0
38 Telecommunications TELE 8 17 0 9 17 0 11 17 0
39 IT and information service ICS 2 0 1 1 0 11 1 0 23
40 Financial service activities FIS 42 17 0 28 39 0 23 39 0
41 Insurance and pension funding INS 39 17 0 11 39 0 12 39 0
42 Other �nancial activities OFIS 61 17 0 43 39 0 45 39 0
43 Buying, selling of real estate REAL 62 17 0 54 17 0 53 39 0
44 Renting of resident. buildings RENTRB 46 17 0 45 17 0 40 17 0
45 Owner-occupied dwellings OWNB 36 17 0 34 17 0 29 17 0
46 Legal, account., cons.activit. BUS 1 0 0 4 17 0 6 39 0
47 Architecture and engineering ARCH 48 17 0 52 39 0 48 39 0
48 Research and developm.(market) RD 52 12 0 32 12 0 54 11 0
49 Research and dev. (non-market) RD (nm) 49 17 0 25 17 0 55 39 0
50 Advertising, market research ADV 6 17 0 8 39 0 9 39 0
51 Oth.techn.serv.,veterinary act OTSERV 57 17 0 58 39 0 44 39 0
52 Rental and leasing activities RLACT 44 17 0 41 17 0 38 17 0
53 Employment activities EMPL 18 17 0 23 39 0 31 39 0

Continued on next page



Table C.1 � continued from previous page

1988 1997 2006
ID Activity Label pos par sub pos par sub pos par sub

54 Travel agent activities TRAV 40 17 0 39 17 0 43 17 0
55 Cleaning, other business serv. OBUS 3 0 0 5 0 0 3 11 0
56 Rescue service ect. (market) RESC 59 39 0 61 39 0 62 39 0
57 Public administration ect. PUB 12 17 0 17 17 0 20 39 0
58 Adult-,other education(market) OEDU 47 17 0 40 17 0 39 39 0
59 Education (non-market) EDU 27 17 0 30 17 0 37 39 0
60 Human health activities HEALTH 54 17 0 59 12 0 50 39 0
61 Residential care RCARE 55 17 0 57 11 0 56 11 0
62 Arts,entertainm.,other culture CULT 51 17 0 56 39 0 49 39 0
63 Sports, amusement, recration RECR 41 17 0 48 17 0 42 17 0
64 Activities of membership org. MEMB 16 17 0 19 17 0 18 17 0
65 Repair of personal goods RPERS 20 17 0 24 17 0 8 17 0
66 Other personal services OPSERV 34 17 0 44 11 0 36 11 0
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