Statistische Formeln in Excel	Beschreibung
=MTTELWERT(A1:F1)	Arithmetisches Mittel (der Daten A1:F1)
=GEOMITTEL(A1:F1)	Geometrisches Mittel (der Daten A1:F1)
=QUARTILE.INKL(A1:F1; n)	n-tes Quartil (der Daten A1:F1); Quartile(A1:F1;4) entspricht MAX(A1:F1)
=MEDIAN(A1:F1)	Median =QUARTILE.INKL(A1:F1; 2)
=MODUS.EINF(A1:F1)	(erster) Modalwert
=VAR.S(A1:F1)	Varianz der Stichprobe $s^2 = \frac{1}{n-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$
=VAR.P(A1:F1)	Varianz der Grundgesamtheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{N} (x_i - \overline{x})^2$
=STABW.S(A1:F1)	Standardabweichung der Stichproben
=STABW.N(A1:F1)	Standardabweichung der Grundgesamtheit
=KOVARIANZ.S(A1:F1; A2:F2)	Kovarianz der Stichprobe (der Daten A1:F1 und A2:F2)
=KOVARIANZ.P(A1:F1; A2:F2)	Kovarianz der Grundgesamtheit (der Daten A1:F1 und A2:F2)
=PEARSON(A1:F1; A2:F2)	Korrelationskoeffizient nach Pearson
=RANG.MITTELW(A1; \$A1:\$F1; 1)	Rang der Zahl A1 innerhalb der Liste A1:F1 (aufsteigend)
=RANG.MITTELW(A1; A\$1:A\$10; 1)	Rang der Zahl A1 innerhalb der Liste A1:A10 (aufsteigend)
=ACHSENABSCHNITT(A2:F2; A1:F1) =STEIGUNG(A2:F2; A1:F1)	Achsenabschnitt a der Regressionsgerade der Form $y = a + b \cdot x$; (Vektor A2:F2 sind die y -Werte, Vektor A1:F1 sind die x -Werte) Steigung b der Regressionsgeraden der Form $y = a + b \cdot x$;
	(Vektor A2:F2 sind die y-Werte, Vektor A1:F1 sind die x-Werte)
=KOMBINATIONEN(n; k)	Binomialkoeffizient; n über k
=BINOM.VERT(k; n; p; Kumuliert)	Wahrscheinlichkeit einer binomialverteilten Zufallsvariablen; Kumuliert=0 ergibt $P(X=k)$, Kumuliert=1 ergibt $P(X \le k)$
=HYPGEOM.VERT(m; n; M; N;	Wahrscheinlichkeit einer hypergeometrisch verteilten Zufallsvariablen;
Kumuliert)	Kumuliert=0 ergibt $P(X = m)$, Kumuliert=1 ergibt $P(X \le m)$
=POISSON.VERT(k; λ ; Kumuliert)	Wahrscheinlichkeit einer poissonverteilten Zufallsvariablen; Kumuliert=0 ergibt $P(X=k)$, Kumuliert=1 ergibt $P(X \le k)$
=EXPON.VERT(x; λ ; Kumuliert)	Wahrscheinlichkeit einer exponentialverteilten Zufallsvariablen; Kumuliert=0 ergibt Dichtefunktion(x), Kumuliert=1 ergibt $P(X \le x)$
=NORM.VERT(x; μ ; σ ; Kumuliert)	Wahrscheinlichkeit einer normalverteilten Zufallsvariablen; Kumuliert=0 ergibt Dichtefunktion(x), Kumuliert=1 ergibt $P(X \le x)$
=NORM.INV(p; μ ; σ)	p-Quantil einer Normalverteilung
=T.VERT(x; FG; Kumuliert)	Wahrscheinlichkeit der t-Verteilung mit FG Freiheitsgraden
	Kumuliert=0 ergibt Dichtefunktion(x), Kumuliert=1 ergibt $P(X \le x)$
=T.INV(p; FG)	p-Quantil der t-Verteilung mit FG Freiheitsgraden
=CHIQU.INV(p; FG)	p-Quantil der Chi-Quadratverteilung mit FG Freiheitsgraden
=F.INV(p; FG1; FG2)	p-Quantil der F-Verteilung mit FG1 und FG2 Freiheitsgraden
Allgemeine Formeln in Excel	Beschreibung
=ANZAHL(A1:F1)	Anzahl der Zellen in A1:F1, die eine Zahl enthalten
=ANZAHL2(A1:F1)	Anzahl der nichtleeren Zellen in A1:F1
=SUMME(A1:F1)	Summe der Zahlen in A1:F1
=SUMMENPRODUKT(A1:F1; A2:F2)	Skalarprodukt der Vektoren A1:F1 und A2:F2
=SUMMEWENN(A1:F1; ">2")	Summe aller Zahlen im Bereich A1:F1, die dem Suchkriterium entsprechen (hier: größer als 2)
=MITTELWERTWENN(A1:F1; ">2"; A2:F2)	Mittelwert jener Zahlen im Bereich A2:F2, die dem Suchkriterium entsprechen (hier: Zahl aus A1:F1 größer als 2)
=ZÄHLENWENN(A1:F1; ">2")	Anzahl der Zellen im Bereich A1:F1, die dem Suchkriterium entsprechen (hier: größer als 2)
=ZÄHLENWENNS(A1:F1; ">2"; A1:F1; "<=6")	Anzahl der Zellen im Bereich A1:F1 die größer als 2 und kleiner gleich 6 sind.
=MAX(A1:F1)	Maximalwert (der Daten A1:F1)
=MIN(A1:F1)	Minimalwert (der Daten A1:F1)
=FAKULTÄT(A1)	Fakultät der Zahl in Zelle A1
-PAROLIAI(AI)	
=WURZEL(A1) =A1^(1/n)	Quadratwurzel der Zahl in Zelle A1 n-te Wurzel der Zahl in Zelle A1