
Abstract - Partial discharges, mainly caused by an 

insufficient drying processes or different types of 

contamination, reduce the lifetime of a transformer, and thus 

lead to expensive rework costs. Herein, a decision support 

system for partial discharges of transformers occurring in 

oven and filling processes is introduced. Based on machine 

learning (ML), partial discharge results are evaluated in 

dependency of various manufacturing parameters and an 

automated prediction tool to guide the production with 

preventive actions is developed. The required data, obtained 

from sensors and manufacturing sources, is used to train 

supervised learning algorithms that aim to predict and 

classify partial discharges. To achieve adequate accuracy and 

reliability, multiple ML and data mining techniques are 

applied, including feature engineering, clustering, and final 

evaluation of performance by cost factors. The evaluation 

results show that the introduced ML models effectively detect 

and classify early test failures in oven and filling processes, 

resulting in a successful identification of key factors and 

consequently to more efficient action derivation. Overall, the 

potential of decision support systems as a valuable tool in the 

field of transformers is emphasized. 
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I.  INTRODUCTION 
 

 Existing studies have highlighted the potential of 

machine learning (ML) in predictive quality control [1,2]. 

However, in industrial engineering the available data is 

limited, or the products are highly individualized. Our goal 

is to show in the context of transformers that a practical 

application is now possible. After all, damage to a main 

part of a transformer is associated with considerable costs. 

 In this study, critical and non-critical transformers 

were classified for the final partial discharge test, with an 

additional time series analysis of various sensor data on the 

product quality of the installed materials. Due to the 

complex relationships of production processes, our work 

highlights the importance of domain expert knowledge in 

the development of the ML models, which has also been 

noted as essential in previous studies [2,3]. Finally, we 

evaluate the strengths and weaknesses of common ML 

algorithms for oven and filling processes. 

 Recently, Suschnigg et al. [4] mentioned that industrial 

companies will be confronted with increasingly more 

complex production processes in the future, where a variety 

of factors can influence the final product quality. To 

identify patterns in quality data, various data mining as 

well as cleaning methods for general industry processes 

have been investigated in the past [3,5]. Building on this, 

Burggräf et al. [2] showed how these techniques could be 

successfully applied to sensor data from machines to 

improve preventive prediction of failure products in 

practice. Other scholars also see potential for 

improvements in overall business performance through 

predictive analytics [6,7]. However, to the best of our 

knowledge, no successful use case for partial discharge 

prediction exists in the literature. 

 The novelty is subject to complete automation for the 

production employee, whereby additional criteria, such as 

the planned delivery date, are also included in the final 

decision of the preventive quality action. This evaluation 

also extends the knowledge of existing studies in the 

application of supervised learning methods in quality 

prediction [8]. We also recognized that the interplay of data 

quality and explainable predictions is necessary for an 

effective integration in the process [9]. Finally, the results 

outlined that even with a small minority class of less than 

150 partial discharge transformers, we were able to develop 

an accurate system for predicting test failures, while also 

allowing production employees to understand the decisions 

made by the artificial intelligence (AI). 

 

 

II.  USE CASE 
 

 Transformers are complex industrial products that are 

manufactured in various manual steps. The final partial 

discharge test in the test laboratory is decisive in 

determining whether the product meets the customer's 

required quality and can therefore be delivered. To narrow 

down the multitude of influencing factors, the oven and 

filling processes were chosen in this study, as these 

manufacturing steps have a high degree of digitalization. 

By implementing Industrial Internet of Things (IIoT), 

sensor data from the machines can thus be automatically 

stored in databases [6]. In our application, we use two oven 

systems, both of which are parameter controlled. Fig. 1 

shows oven A, which can dry up to five active parts of 

transformers simultaneously using low-frequency heating 

and circulating air. 
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Fig. 1. Production plant oven A for the drying process 

 

Dew point, pressure and temperatures in the plants are 

recorded in different sequences over the process time and 

evaluated in pressure temperature control (PTC) reports. 

 Afterwards, the installation of the active part in the 

tank begins and the final product is isolated from the 

atmosphere. After a historical data analysis, however, we 

found that seasonal influences can increase the partial 

discharge occurrence. Through internal experiments from 

the past, domain experts know that woods, e.g., can rewet 

during this tanking period. Therefore, we also include 

sensor data from our internal weather stations from the 

halls in the analysis to take external factors into account in 

the ML model. Downstream, the transformer is filled with 

oil, whereby different pump runs and circuits are conducted 

to ensure high quality. Fig. 2 shows the filling process. 

 

 
 

Fig. 2. External filling system for filling processes 

 

 During the standing time until the partial discharge 

test, the oil impregnate the transformer and it is finalized 

by the production employees. Historical repair actions are 

divided into three classes, no action, light action, and heavy 

action, with a binary differentiation made for simplicity. 

The goal is thus to develop a system for improved decision-

making that identifies critical transformers early enough so 

that quality actions can be initiated at the right time. The 

implementation of these actions is then illustrated by the 

automation of the decision support system. 

 

 

III.  MODEL OVERVIEW 
 

Overall, the model incorporates data from various 

departments such as quality, engineering, manufacturing, 

test field and planning. The step-by-step implementation is 

illustrated by the architecture in Fig. 3. 

 

 
 

Fig. 3. Architecture of the ML methodology 

 

The data integration is mainly done from different SQL 

databases and the entire extract, transform, load (ETL) 

process is done via Alteryx [10]. After all, a total of 12 raw 

tables were linked at transformer level, whereby initially 

the filling checklist had a data quality of 68% consistent 

available data on average for all features. During data pre-

processing, a lot of time was spent on cleaning the data, 

which ultimately accounted for 70% of the entire Data 

Science Lifecycle (DSL). The biggest challenges were 

different measurement methods, which were resolved 

through process knowledge. This is in line with Schuetz et 

al. [6] that collaboration with domain experts is essential 

for the knowledge generation of the model. The production 

operator has the possibility to perform two quality 

predictions for partial discharges in the process. The first 

after the end of the oven process and the second after the 

end of the oil circulation. In our study, process records 

from January 2022 onwards are used, as various plant 

retrofits before this date can lead to false conclusions. In 

addition, this selection allows consistent data to be 

available for each month in 2022, which was used for the 

further correlation analysis of the weather data on product 

quality. In total, this analysis covers 447 oven processes 

and 406 external filling processes. 

 First, the target processes and interesting partial 

discharge results from the past were discussed in expert 

meetings. With the knowledge generated, the raw data was 

then automatically linked and cleaned, creating an 

appropriate data quality through plausibility checks. 

Overall, plant parameter checks enabled an absolute 

increase in ML accuracy of 7%. The feature engineering 

methodology here is based on hypotheses from process 

experts, whereby 32 additional parameters were considered 

in the oven and filling process for the evaluation of the ML 
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model. Finally, 112 parameters were assessed for 

significance to evaluate the algorithms. To correctly 

classify transformers for partial discharges, we evaluated 

Decision Tree, Logistic Regression, Random Forest and 

XGBoost as part of the case study. The Naive Bayes 

classifier was also tested on the raw data, but due to 

dependent predictors, only discriminative models were 

used in the final algorithm selection. For ML training, we 

chose a 70/30 split of the data. We justify this choice by the 

fact that we use a larger dataset for the validation according 

to the non-conformity cost (NCC) criterion to evaluate the 

correct ML test predictions. To take the imbalance of the 

data into account in the classification, attention was paid to 

the minority class of true positives, i.e., real partial 

discharges. This different evaluation methodology thus 

helps to select the ML model that best identifies future total 

losses preventively in the manufacturing process. In 

addition, the selected models are retrained daily using a 

random sample so that performance over time can be 

monitored by the data scientist using dashboards. 

Following the visual analytics dashboard of Suschnigg et 

al. [4], we created interactive dashboards in our server 

structure, where specific correlations can be examined 

through filter methodologies from the entire data mining 

process. The decision support system is presented in Fig. 4. 

 

 
 

Fig. 4. Decision support system for partial discharges 

 

 In the production environment, the production operator 

accesses the current ML models through analytical apps. 

When a process is finished, the user can request actual 

manufacturing data with a call request and thus perform a 

live quality forecast. Automatically, the last process batch 

is identified, and a partial discharge failure probability is 

calculated for each transformer. Our focus is on 

explainable AI, so all-encompassing process diagrams, 

significant outlier parameters in the process and statistics 

of similar good and bad transformers are presented to the 

production operator as part of an interactive report. This 

helps the user to interpret quality-influencing factors from 

oven and filling processes and thus to implement 

preventive actions in the next step. To make the decision-

making process transparent and efficient, predefined 

actions are suggested and details of the action can be 

documented by means of a comment field. For example, 

Fig. 5 shows the production operator's user interface for 

documenting the actions for the oven A model. 

 

 
 

Fig. 5. User interface for preventive filling process actions 

 

In the event of high failure probabilities for partial 

discharges, the planning and test field departments are 

informed directly by means of an automated email, 

including the report and the metadata for the action. Each 

action taken in turn helps the AI system to learn from the 

effects of the preventive actions taken. 

 

 

IV.  EVALUATION 
 

 To select the correct ML methodology, four different 

algorithms were trained on the existing process data. In the 

initial training, the oven model refers to 617 and the filling 

model to 394 transformers. 

 

A.  Selection of the Best Performing Algorithms 

 

The algorithms of the initial training are shown in Table I. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

  

  

 

  TABLE I 

RESULTS OF THE TESTED ALGORITHMS 

Explanation: True negative (TN), False positive (FP), False negative (FN), 

True positive (TP), True positive non-conformity costs (TP-NCC) 
 

 

 
Algorithms 

ML OVEN MODELS (N = 617 Transformers) 

Accuracy 

[%] 

TN 

[%] 

FP 

[%] 

FN 

[%] 

TP 

[%] 

TP-NCC 

[€] 

XGBoost 83.3 97 3 79 21 199,461 

Random Forest 82.5 99 1 91 9 - 

Logistic Regression 81.8 100 0 100 0 - 

Decision Tree 76.5 88 12 77 23 74,473 

 

 

 
Algorithms 

ML FILLING MODELS (N = 394 Transformers) 

Accuracy 
[%] 

TN 
[%] 

FP 
[%] 

FN 
[%] 

TP 
[%] 

TP-NCC 
[€] 

Random Forest 82.2 98 2 84 16 3,639 

XGBoost 81.2 96 4 79 21 48,720 

Logistic Regression 80.7 100 0 100 0 - 

Decision Tree 70.8 83 17 80 20 - 
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 In this study, we evaluate the performance of the 

algorithms as follows. On the one hand, we rank the 

algorithms according to their accuracy, which leads us to 

the first conclusion. Logistic Regression and Decision Tree 

did not provide good overall accuracy, but the Decision 

Tree in the oven model achieved the best value for 

predicting the actual percentage of partial discharges. If a 

transformer is assigned the value true positive, we could 

have correctly identified it early on. In this use case, 

however, the goal is to preventively identify the 

transformers in need of repair, whereby we also need 

algorithms with a low prevalence error. Here, the XGBoost 

method was shown to be the best choice in both processes, 

correctly classifying the largest number of NCC in each 

case, as well as providing stable prediction accuracy. To 

extend the findings, the Decision Tree for the oven process 

and the Random Forest for the application of the filling 

process were included in the further analysis to compare 

the productive algorithms over time. 

 The significance test of the features was done by the 

permutation importance of Gini impurity. This ranking 

provided new insights into the parameters influencing oven 

and filling processes on partial discharges. For example, 

the existing knowledge of maximum temperatures in the 

oven, process end values and tanking times could be 

optimized and extended by these findings. In general, the 

process times of individual sequences, the humidity in the 

halls, the temperature fluctuations in the plants, as well as 

the technical specification of the transformers showed a 

high feature importance after hyperparameter tuning. We 

were also able to develop a novel methodology for the 

automated time series analysis of the dew point curves, 

which highlights humidity indicators for the process 

experts and takes them into account in the ML model. 

Using explainable AI, it is thus possible to adjust future 

process parameters based on the new quality indicators. 

 

B.  Evaluation and Implementation in a Live Application 

 

To check the effectiveness of the models, partial discharges 

from production were predicted and compared with model 

test forecasts. The key points for the evaluation are shown 

in Table II. 

 

 

 

 

 

 

 
 

 

 The result was that five out of seven transformers with 

partial discharges could be predicted correctly preventively 

in the process. Two transformers after the oven process and 

three transformers after the finalization of the filling 

process. The model calculated failure probabilities for 

insufficient oven processes from 70% to 82% and failure 

probabilities for critical filling processes from 56% to 75% 

for an actual test damage. The assessment of the predictive 

power was analyzed in detail by verifying the PTC reports 

with process experts, as well as retrospectively through 

physical quality sampling on the shop floor. 

 In addition, we subsequently show in our study the 

results when performing a live practice test of the preferred 

XGBoost algorithms from the ML model in later 

production (see Table III). 

 

 

 

 

 

 

 

 

 

 In the second step, the value of the true positive class 

decreased and approached the initial test model. It should 

be noted that in this use case, preventive actions are 

significantly more cost-effective compared to a total loss 

with a delivery delay, whereby the misclassified partial 

discharges do not significantly minimize the company's 

turnover. With a failure probability of more than 50%, 

production employees had to take an action directly after 

the end of the process, which in turn represents a causal 

relationship to the final test field result. Therefore, we 

consider it essential that the ML models are linked to the 

real quality actions taken and thus learn from them in the 

future. 

 

 
 

Fig. 6. Extrapolated NCC of the true positive (TP) partial discharges 

 

 The illustration shown in Fig. 6 visualizes how the ML 

algorithms behaved over time. The timestamp of the 

retraining of the models is plotted on the horizontal axis 

and the vertical axis shows the respective monetary sum of 

the correctly classified NCC from the past in Euros. The 

data scientist can thus use the NCC from the quality to 

monitor whether one of the classification algorithms 

deviates significantly to perform a new selection of the 

classification algorithm. For example, we documented that 

the oven Decision Tree exceeded the XGBoost twice, with 

  TABLE II 

RETROSPECTIVE EVALUATION OF THE ML MODELS 

 

PERIOD: 02/01/2023 - 02/03/2023 (8 ½ Weeks)  

Number of Transformers [#] 
Hit Rate of the Target Variable for  
Actual Partial Discharges [%] 

92 71 

  TABLE III 

PRODUCTIVE INSTANCE OF THE ML MODELS 

 

PERIOD: 03/03/2023 - 19/05/2023 (11 Weeks)  

Number of Transformers [#] 
Hit Rate of the Target Variable for 
Actual Partial Discharges [%] 

124 24 
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the selected ML model reaching the threshold again within 

two days. This effect is shown by the random sample of the 

30% of validation data used to calculate the extrapolated 

value for the accruing NCC of the past partial discharges 

since January 2022. On the other hand, our study shows 

that the oven models follow the same trend, but that the 

XGBoost is preferable for these specific data. 

 

 

V.  DISCUSSION OF RESULTS 
 

 The potential of broad data availability for predicting 

test results in production was demonstrated by our practical 

evaluation [11]. Our experience showed that domain 

knowledge is not only necessary at the beginning of the 

DSL but should be understood as an iterative process in 

each ETL step. It is important to note the causalities of the 

process data for the prediction in the ML model. If two 

events occur various times together, it cannot be assumed 

that the events are in a cause-effect relationship [6]. 

Therefore, we see it as necessary to check the plausibility 

of the predictions by means of explainable AI or to apply 

causal discovery [12]. In a further step, the influence 

parameters from upstream production processes, the 

storage conditions of purchased parts and particle 

measurements in the halls are also to be included in the 

analysis. In addition, the true positive rate could be further 

improved, but this could not be implemented at the time of 

the study because the databases have not yet been expanded 

across all processes. Thus, we see it as mandatory in the 

future that machines are comprehensively equipped by 

means of IIoT. Another point of discussion would be to 

conduct a quality prediction in advance after the technical 

design of the transformer. This would provide additional 

information for retrograde planning and thus further 

optimize the production flow. In relation to the specific 

study, however, the effectiveness of XGBoost in practical 

cases for test field results of industrial products could be 

emphasized, whereby we call for further research in other 

application domains. 

 

 

VI.  CONCLUSION 
 

 The results show that even with limited amount of 

data, accurate predictions of partial discharges in 

transformers are still possible. By evaluating different ML 

algorithms, it was shown that XGBoost achieved the best 

performance. The model was implemented in a productive 

environment where production employees access the 

current predictions and evaluate quality-influencing factors 

via interactive report to derive actions. The use of 

explainable AI is crucial to make the predictions plausible 

and to set the most appropriate actions. Evaluation of the 

models against real-world data showed that five out of 

seven transformers with partial discharges were detected 

preventively. A live test phase in production also visualized 

how the algorithms behaved over time according to the 

NCC decision criterion. It has been shown that predictive 

quality control could identify significant rework costs at an 

early stage. Moreover, we would like to draw attention to 

the need for collaboration between data scientists and 

domain experts to ensure that data cleaning and data 

interpretation are done correctly. In general, it can thus be 

shown that factory acceptance tests can be made more 

sustainable and cost-efficient through decision support 

systems with limited data and highly customized products. 
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