Daniel Reisinger ## Cascading tipping in real-world networks Email: daniel.reisinger@uni-graz.at Institute of Biology, UniGraz Human Factor in Digital Transformation Symposium, 2025 ### What is tipping? Tipping is the phenomenon of rapid reorganization of a system in response to small changes in environmental conditions. Bastiaansen 2022 # Nature Tipping in shallow lakes waste (nutrient load) ## Theory Tipping in simulations of ODEs ### What is cascading tipping? Cascading tipping is the phenomenon of rapid reorganization of individual sub-domains of the system with multiple points of return. Bastiaansen 2022 Subdomains of the system, z1 ... z5 #### **Control parameter** Subdomains of the system, z1 ... z5 ### **Control parameter** (increasing force acting on all subdomains of the system) **z**5 z4 **z**3 Subdomains of the system, z1 ... z5 #### **Control parameter** Subdomains of the system, z1 ... z5 ### **Control parameter** Subdomains of the system, z1 ... z5 Theory Cascading tipping in simulations in PDEs ### Pitfall Spatially heterogeneous bi-stability can look very similar to spatially homogenous multi-stability $$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$ $$\frac{dy}{dt} = c - y + y^3 - y^5$$ Bi-stable lake: clear vs turbid Tri-stable lake: clear vs turbid vs sulfur $$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$ $$\frac{dy}{dt} = c - y + y^3 - y^5$$ If the "lake" systems react **fast** $$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$ $$\frac{dy}{dt} = c - y + y^3 - y^5$$ If the "lake" systems react **slow** $$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$ $$\frac{dy}{dt} = c - y + y^3 - y^5$$ How to tell them apart? # Cascading tipping in networks Using networks as a proxy for modular systems Eagle mountain lake Nodes: 1176 Edges: 8688 Avg. degree: 14 Assortativity: 0.9 Clustering: 0.4 Location: North Texas Surface area: 35.18 km2 Water volume: 221.88 hm3 Surface elevation: 198m #### Eagle mountain lake 41 Location: North Texas Surface area: 35.18 km2 Water volume: 221.88 hm3 Surface elevation: 198m Photo credit: The Landing HOA Data: The Network Data Repository with Interactive Graph Analytics and Visualization Data: The Network Data Repository with Interactive Graph Analytics and Visualization Data: The Network Data Repository with Interactive Graph Analytics and Visualization ## **Linear Regression Model** X ... Network properties y ... Euclidean distance to original tipping shape | Assortativity
Coefficient | | Modularity | Transitivity | Betweenness
Centrality | Eigenvector
Centrality | | |------------------------------|-------|------------|--------------|---------------------------|---------------------------|--------| | -0.570 | 0.027 | -0.006 | -0.269 | -0.099 | -0.400 | -0.173 | ## **Linear Regression Model** X ... Network properties y ... Euclidean distance to original tipping shape | Assortativity
Coefficient | | Modularity | Transitivity | Betweenness
Centrality | Eigenvector
Centrality | | |------------------------------|-------|------------|---------------------|---------------------------|---------------------------|--------| | <mark>-0.570</mark> | 0.027 | -0.006 | <mark>-0.269</mark> | -0.099 | <mark>-0.400</mark> | -0.173 | ## **Linear Regression Model** X ... Network properties y ... Euclidean distance to original tipping shape | Assortativity
Coefficient | | Modularity | Transitivity | Betweenness
Centrality | Eigenvector
Centrality | | |------------------------------|-------|---------------------|--------------|---------------------------|---------------------------|--------| | -0.570 | 0.027 | <mark>-0.006</mark> | -0.269 | -0.099 | -0.400 | -0.173 | # Phenomenon of growing hysteresis Just like we saw in the dominos example, the effect of hysteresis can cascade through the system. # Outlook - a. How to use this for early warning signal analysis? - b. How to find appropriate diffusion equations? - c. Better describe the phenomenon of growing hysteresis.