Daniel Reisinger

Cascading tipping in real-world networks

Email: daniel.reisinger@uni-graz.at

Institute of Biology, UniGraz

Human Factor in Digital Transformation Symposium, 2025

What is tipping?

Tipping is the phenomenon of rapid reorganization of a system in response to small changes in environmental conditions.

Bastiaansen 2022

Nature Tipping in shallow lakes

waste (nutrient load)

Theory Tipping in simulations of ODEs

Theory
Tipping in simulations of ODEs

Theory
Tipping in simulations of ODEs

Theory
Tipping in simulations of ODEs

Theory
Tipping in simulations of ODEs

What is cascading tipping?

Cascading tipping is the phenomenon of rapid reorganization of individual sub-domains of the system with multiple points of return.

Bastiaansen 2022

Subdomains of the system, z1 ... z5

Control parameter

Subdomains of the system, z1 ... z5

Control parameter (increasing force acting on all subdomains of the system) **z**5 z4 **z**3

Subdomains of the system, z1 ... z5

Control parameter

Subdomains of the system, z1 ... z5

Control parameter

Subdomains of the system, z1 ... z5

Theory
Cascading tipping in simulations in PDEs

Pitfall

Spatially heterogeneous bi-stability can look very similar to spatially homogenous multi-stability

$$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$

$$\frac{dy}{dt} = c - y + y^3 - y^5$$

Bi-stable lake: clear vs turbid

Tri-stable lake: clear vs turbid vs sulfur

$$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$

$$\frac{dy}{dt} = c - y + y^3 - y^5$$

If the "lake" systems react **fast**

$$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$

$$\frac{dy}{dt} = c - y + y^3 - y^5$$

If the "lake" systems react **slow**

$$\frac{\partial y}{\partial t} = c + y - y^3 + g(z, y) + D\frac{\partial^2 y}{\partial z^2}$$

$$\frac{dy}{dt} = c - y + y^3 - y^5$$

How to tell them apart?

Cascading tipping in networks

Using networks as a proxy for modular systems

Eagle mountain lake

Nodes: 1176 Edges: 8688 Avg. degree: 14 Assortativity: 0.9 Clustering: 0.4 Location: North Texas Surface area: 35.18 km2 Water volume: 221.88 hm3 Surface elevation: 198m

Eagle mountain lake

41

Location: North Texas Surface area: 35.18 km2 Water volume: 221.88 hm3

Surface elevation: 198m

Photo credit: The Landing HOA Data: The Network Data Repository with Interactive Graph Analytics and Visualization

Data: The Network Data Repository with Interactive Graph Analytics and Visualization

Data: The Network Data Repository with Interactive Graph Analytics and Visualization

Linear Regression Model

X ... Network properties

y ... Euclidean distance to original tipping shape

Assortativity Coefficient		Modularity	Transitivity	Betweenness Centrality	Eigenvector Centrality	
-0.570	0.027	-0.006	-0.269	-0.099	-0.400	-0.173

Linear Regression Model

X ... Network properties

y ... Euclidean distance to original tipping shape

Assortativity Coefficient		Modularity	Transitivity	Betweenness Centrality	Eigenvector Centrality	
<mark>-0.570</mark>	0.027	-0.006	<mark>-0.269</mark>	-0.099	<mark>-0.400</mark>	-0.173

Linear Regression Model

X ... Network properties

y ... Euclidean distance to original tipping shape

Assortativity Coefficient		Modularity	Transitivity	Betweenness Centrality	Eigenvector Centrality	
-0.570	0.027	<mark>-0.006</mark>	-0.269	-0.099	-0.400	-0.173

Phenomenon of growing hysteresis

Just like we saw in the dominos example, the effect of hysteresis can cascade through the system.

Outlook

- a. How to use this for early warning signal analysis?
 - b. How to find appropriate diffusion equations?
 - c. Better describe the phenomenon of growing hysteresis.