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Abstract. Two related numerical schemes for the realization of the Mortensen observer
or minimum energy estimator for the state reconstruction of non-linear dynamical systems
subject to deterministic disturbances are proposed and compared. Both approaches rely
on a polynomial approximation of the value function associated with the energy of
the disturbances of the system. Such an approximation is obtained via interpolation
considering not only the values but also first and second order derivatives of the value
function in a set of sampling points. The scheme is applied to four examples and the
results are compared with the well known extended Kalman filter.
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1. Introduction

We consider a non-linear dynamical system subject to linear disturbances of the form

ẋ(t) = f(x(t)) + Fv(t), t ∈ (0, T ],
x(0) = x0 + η,

where f : Rn → Rn, F ∈ Rn,m, x0, η ∈ Rn. Here, it is assumed that v and η are
unknown perturbations resulting from modeling and measurement errors or incomplete
system knowledge. Our interest is to use a priori information about the dynamics f, F, x0
together with (perturbed) output data y on [0, T ] to construct a state estimate x̂ such that
x̂(t) ≈ x(t) for all t ∈ [0, T ]. For this purpose, we assume linear measurements subject to
linear disturbances

y(t) = Cx(t) + µ(t),

where C ∈ Rr,n is known and µ ∈ L2(0, T ;Rr) is unknown. The problem of reconstructing
and predicting signals from partially known data has a far reaching history dating back at
least to the seminal works by Wiener [36], Kalman [19,20] and Stratanovich [35]. While the
viewpoint in these articles relies on stochastic disturbances and therefore focuses on filtering
theory, in this manuscript, we consider a deterministic, control theoretic perspective and
aim at approximations x̂ characterized by an observer of the form

˙̂x(t) = f(x̂(t)) + L(t, x̂(t))(y(t) − Cx̂(t)), t ∈ (0, T ],
x̂(0) = x0,
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where L is an appropriately chosen (non-linear) observer gain, sometimes also called output
injection operator. While this observer structually resembles Luenberger observers [27],
this work is concerned with a different approach. In particular, we will discuss numerical
approximation schemes for the so-called Mortensen observer or minimum energy estimator,
see [16, 30] which selects the observer gain as L(t, x̂(t)) = ∇2

ξξV(t, x̂(t))−1C⊤ where V
denotes a minimal value function for a time and output dependent Hamilton-Jacobi-
Bellman (HJB) equation. It is well-known that this specific choice is a non-linear extension
of and coincides with the Kalman-Bucy filter in the linear quadratic case, see [13]. Moreover,
it can be interpreted as an optimal estimate in the sense that it computes trajectories
that are associated with perturbations of minimal energy. Though the general approach
and some of its theoretical properties have been studied extensively in the literature, see,
e.g., [8,22,23,28,29], a numerical realization that goes beyond the case n = 3 does not seem
to be available. The main reason being that the observer gain depends on the (Hessian of
the) solution to a high-dimensional HJB equation which is known to suffer from the curse
of dimensionality [5]. In [6], a neural network based approach was numerically investigated
for the Mortensen observer for a class of non-linear oscillators corresponding to system
dimensions n = 2.

At the same time, in the context of optimal feedback control where similar numerical
obstacles have to be overcome, research has recently seen a tremendous progress. Without
being an exhaustive list, let us for example mention value function approximations based
on sparse grids [15,21], polynomials [7, 18], tensor techniques [11,33] or machine learning
[25,31,32], respectively. Let us also mention [26] which discusses learning optimal feedback
laws in a more general context. Here, we follow the recent work [2, 24] where a (sparse)
polynomial learning technique has been proposed which exploits the connection between
the open-loop (Pontryagin maximum principle) and the closed-loop (HJB equation) point
of view by first sampling the value function and its gradient and subsequently solving a
(sparsity promoting) least squares problem. Let us emphasize that, despite its conceptual
similarity to those works, value function approximations tailored to the Mortensen observer
differ considerably from the optimal feedback framework for several reasons. First of all,
the HJB equation does explicitly depend on the output trajectory y resulting in a generic
time-dependent source term which has to be taken into account. In particular, we will
point out that already in the linear quadratic case, the structure of the value function with
respect to the temporal and the spatial components differ significantly, complicating the
choice of appropriate polynomial basis functions and their degrees. Furthermore, in contrast
to an optimal feedback law, the computation of the observer gain involves the inverse of
the Hessian which is prone to numerical errors if, e.g., finite difference approximations were
used. Finally, since the aforementioned works on feedback control deal with the problem of
optimal stabilization (or tracking to zero), sampling of the value function is naturally done
within a sufficiently large region around the origin. On the contrary, for the minimum
estimation problem, we will see that an accurate approximation is particularly important
along the observer trajectory which of course is unknown a priori.

With this in mind, our contributions are as follows:
• Based on the theoretical characterization of the Mortensen observer by means

of an optimal control problem, we derive a differential Riccati equation (DRE)
(depending on the adjoint state) which provides Hessian information of the value
function. In particular, this allows us to appropriately enrich the data set for our
least squares problem.



NUMERICAL REALIZATION OF THE MORTENSEN OBSERVER 3

• By combining quasi-random Halton sampling around the trajectory of an extended
Kalman filter, we propose a numerically efficient data generation procedure. This
strategy is theoretically motivated by the fact that the extended Kalman filter can
be understood as a first-order approximation to the Mortensen observer.

• Resorting to its original formulation in [30], in addition to the Luenberger-type
formulation of the Mortensen observer, we also address an alternative formulation
which is based on the pointwise (in time) minimization of the value function over
the state space and numerically investigate its performance when compared to the
first formulation. In a similar spirit, we also compare the extended Kalman filter to
our approximations of the Mortensen observer with particular emphasis on systems
whose value functions exhibit a spatially strongly non-quadratic behavior.

• With regard to its applicability in the context of larger state space dimensions, we
utilize a hyperbolic cross approximation which allows us to compute HJB-based
observers up to dimensions n = 40.

Notation. If not mentioned otherwise, ∥ · ∥ will denote the Euclidean norm on Rd,
where the dimension d varies. The associated scalar product is denoted by ⟨·, ·⟩. Further
we denote by Id the identity matrix of dimension d. The space of matrices with d1 rows
and d2 columns and real entries will be denoted by Rd1,d2 . If not mentioned otherwise
it is equipped with the Frobenius norm. For 1 ≤ p ≤ ∞ we denote by Lp(0, T ;Rd) the
Lebesgue spaces, while H1(0, T ;Rd) denotes the Sobolev space of functions with a first
weak derivative in L2(0, T ;Rd). All mentioned function spaces are equipped with their
respective standard norms. For two Banach spaces X and Y we denote by L(X, Y ) the
space of linear and bounded mappings from X to Y . For a function f : X → Y its Fréchet
derivative is denoted by Df . In case X and Y are finite dimensional, we identify Df with
the Jacobian matrix.

2. The Mortensen observer

In this section we briefly recall the motivation and definition of the well-known Mortensen
observer and the essential concepts needed for its construction. A more thorough discussion
can be found in [6], for example, see also the original work [30]. The strategy of the approach
at hand is to minimize the energy of the disturbances in the system. The mathematical
derivation is based on a specific optimal control problem. For fixed t ∈ (0, T ], ξ ∈ Rn, and
y ∈ L2(0, T ;Rr) it reads

inf
x∈H1(0,t;Rn)
v∈L2(0,t;Rm)

J(x, v; t) := 1
2∥x(0) − x0∥2 + 1

2

∫ t

0
∥v(s)∥2 + α∥y(s) − Cx(s)∥2 ds,

s.t. e(x, v; t, ξ) := (ẋ − f(x) − Fv, x(t) − ξ) = 0.

(2.1)

For ξ ∈ Rn the corresponding minimal value function is defined by

V(t, ξ) := inf
(x,v) s.t.

e(x,v;t,ξ)=0

J(x, v; t), t ∈ (0, T ], V(0, ξ) := 1
2∥ξ − x0∥2. (2.2)

From the point of view of optimal control theory problem (2.1) differs from the classic
literature with respect to the boundary condition which is given at the right boundary of
the time interval instead of the left one. Indeed the system evolves backwards in time,
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which has a crucial effect on the numerical treatment. Systems that are stable when
considered forward in time might turn unstable when considered as evolving backwards in
time. This issue will be discussed in more detail in our examples.

We recall that V can be characterized as the solution of the Hamilton-Jacobi-Bellman
equation associated with (2.1). Since the state equation evolves backwards in time, in our
case the HJB equation is given as a forward equation and reads

∂tV(t, ξ) = −∇ξV(t, ξ)⊤f(ξ) − 1
2∥F ⊤∇ξV(t, ξ)∥2 + α

2 ∥y(t) − Cξ∥2,

V(0, ξ) = 1
2∥ξ − x0∥2.

(2.3)

Depending on the regularity of the underlying control problem one might have to consider
viscosity solutions instead of classical ones, c.f. [14]. In [8] conditions were given which
ensure that V is in fact space-time C1-regular in a neighborhood of the model.

The Mortensen observer is defined via a pointwise minimization of the value function,
i.e.,

x̂M(t) := arg min
ξ∈Rn

V(t, ξ). (2.4)

Under appropriate assumptions it can be characterized as a solution of the observer equation
˙̂xM(t) = f(x̂M(t)) + α∇2

ξξV(t, x̂M(t))−1C⊤(y(t) − Cx̂M(t)), t ∈ (0, T ],
x̂M(0) = x0,

(2.5)

c.f. [8].
In the derivation and motivation of our numerical strategies we assume that the underly-

ing system and functions fulfill all necessary assumptions needed to ensure well-definedness
of (2.4) and well-posedness of (2.5). This specifically includes sufficient smoothness of the
value function. A theoretical result on these issues for systems with a quadratic right-hand
side can be found in [8], where existence of a solution x̂M ∈ H1(0, T ;Rn) was established.

Relation to the Kalman filter. In the case of linear dynamics, i.e., f(ξ) = Aξ for
some A ∈ Rn,n, it can be shown that the value function is quadratic in ξ and explicitly
given by

V(t, ξ) = 1
2(ξ − x̂(t))⊤Σ(t)−1(ξ − x̂(t)) + α

2

∫ t

0
∥y(s) − Cx̂(s)∥2 ds, (2.6)

where
Σ̇(t) = A Σ(t) + Σ(t) A⊤ − αΣ(t) C⊤C Σ(t) + FF ⊤, Σ(0) = In,

˙̂x(t) = Ax̂(t) + αΣ(t) C⊤(y(t) − Cx̂(t)), x̂(0) = x0,
(2.7)

c.f. [6]. Note that Σ(t) coincides with the inverted Hessian ∇2
ξξV(t, x̂(t))−1 and is given as

the solution of a differential Riccati equation, while x̂ is given as the solution of the observer
equation which agrees with the formulation in (2.5). System (2.7) is the deterministic
version of the widely used Kalman-Bucy filter [19, 20].

The extended Kalman filter. In engineering practice observers for non-linear problems
are frequently based on the use of the Kalman filter on a linearization of the system at
the observer trajectory. This leads to the so-called extended Kalman filter which for our
setting is formulated as
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Σ̇(t) = Df(x̂K(t)) Σ(t) + Σ(t) Df(x̂K(t))⊤ − αΣ(t) C⊤C Σ(t) + FF ⊤, Σ(0) = In,

˙̂xK(t) = f(x̂K(t)) + αΣ(t) C⊤(y(t) − Cx̂K(t)), x̂K(t) = x0.
(2.8)

In contrast to (2.7) here the differential Riccati equation is coupled with the observer
equation. For our non-linear examples we will employ an implementation of this extended
Kalman filter as a first approximation of the Mortensen observer. While the extended
Kalman filter is a powerful technique, we shall also present an example demonstrating
that the state reconstruction x̂M based on Mortensen can significantly differ from the state
reconstruction x̂K obtained by means of the extended Kalman filter.

We further point out that the extended Kalman filter and the Mortensen observer are
closely related. Both are based on feeding the observation defect back into the model using
gains that are characterized via respective differential Riccati(-type) equations. To see that
the latter holds for the Mortensen observer consider the second order spatial derivative of
the HJB (2.3)

∂t∇2
ξξV(t, ξ) = −∇2

ξξV(t, ξ)Df(ξ) − Df(ξ)⊤∇2
ξξV(t, ξ)

− ∇2
ξξV(t, ξ)FF ⊤∇2

ξξV(t, ξ) − D
(
Df(ξ)⊤

)
∇ξV(t, ξ) + αC⊤C

− ∇3
ξ3V(t, ξ)

(
f(ξ) + FF ⊤∇ξV(t, ξ)

)
.

(2.9)

Due to (2.4) it holds ∇ξV(t, x̂M(t)) = 0 for all t ∈ [0, T ]. With (2.9) it follows

∂t∇2
ξξV(t, x̂M(t)) = −∇2

ξξV(t, x̂M(t))Df(x̂M(t)) − Df(x̂M(t))⊤∇2
ξξV(t, x̂M(t))

− ∇2
ξξV(t, x̂M(t))FF ⊤∇2

ξξV(t, x̂M(t)) + αC⊤C

− ∇3
ξ3V(t, x̂M(t))f(x̂M(t)).

(2.10)

We define Π(t) = ∇2
ξξV(t, x̂M(t))−1 and multiply (2.10) with Π(t) from the left and the

right. Subsequently the Mortensen observer can be characterized via

Π̇(t) = Df(x̂M(t))Π(t) + Π(t)Df(x̂M(t))⊤ − αΠ(t)C⊤CΠ(t) + FF ⊤

+ Π(t)∇3
ξ3V(t, x̂M(t))f(x̂M(t))Π(t), Π(0) = In,

˙̂xM(t) = f(x̂M(t)) + αΠ(t) C⊤(y(t) − Cx̂M(t)), x̂M(t) = x0,

(2.11)

and thus a comparison with (2.8) shows that the gains for the extended Kalman filter and
the Mortensen observer are characterized via Riccati(-type) equations that differ only by
the summand involving the third derivative of the value function.

However, since usually the third derivative ∇3
ξ3V is not available in practical computations,

this characterization does not offer any advantages when approximating the Mortensen
observer.

3. Polynomial approximation of the value function

In this work we propose a scheme for the numerical approximation of the Mortensen
observer for non-linear systems. We will consider two different strategies, namely construc-
tion by pointwise minimization of the value function according to (2.4) and by solving the
observer equation (2.5). For both approaches an appropriate approximation of the value
function V is essential.



6 TOBIAS BREITEN†, KARL KUNISCH⋆, AND JESPER SCHRÖDER†

Due to the curse of dimensionality solving the HJB equation (2.3) for V is extremely
challenging for systems of medium and high state dimension. Instead, we sample the
value function and use linear regression to obtain a polynomial approximation of V. This
approach is inspired by [2], where the samples of the value function are augmented by
samples of its gradient. We extend this idea to also sampling the Hessian matrices. Indeed,
the structure of the observer equation (2.5) calls for an accurate approximation of the
Hessian of V. Here the Hessian samples turn out to be very helpful.

In the following we describe the steps necessary for the approximation of the value
function. First we discuss the generation of a data set for training by solving open-loop
optimal control problems and differential Riccati equations. The former yields the values
and first order derivatives of the value function, while the latter provides the Hessian
matrices. Subsequently we shall present the construction of an appropriate polynomial
basis using Chebyshev polynomials and the hyperbolic cross index set. Approximation
properties of hyperbolic cross based polynomials are well analyzed in the literature. We
refer to, e.g., [12, Section 4.2] where convergence rates in terms of Sobolev- and Besov space
norms are provided. Finally we are prepared to construct a polynomial approximation of
the value function V using linear regression.

3.1. Generating a dataset.

First we generate a data set of the form{
(ti, ξi), V(ti, ξi), ∇ξV(ti, ξi), ∇2

ξξV(ti, ξi)
}N

i=1
. (3.1)

Our strategy of choosing the sample points (ti, ξi) is presented below. First we discuss
how the value function and its first and second order derivatives are evaluated for such a
given point. For this purpose let (t∗, ξ∗) ∈ (0, T ] ×Rn denote a generic sampling point. We
numerically solve the associated open-loop optimal control problem (2.1) using a gradient
descent approach based on Pontryagin’s maximum principle. According to this principle an
optimal triple (x̄, v̄, p) ∈ H1(0, t∗;Rn) × L2(0, t∗;Rm) × H1(0, t∗;Rn) consisting of a state
trajectory, control and adjoint state satisfies the first order necessary optimality condition:

˙̄x = f(x̄) + F v̄, x̄(t∗) = ξ∗, (3.2)
−ṗ = Df(x̄)⊤p − αC⊤(y − Cx̄), p(0) = x0 − x̄(0), (3.3)

v̄ + F ⊤p = 0. (3.4)

Note that v̄ + F ⊤p coincides with the gradient of the reduced cost functional J̃ which is
given by

J̃(v; t) = J(x(v), v; t),
where x(v) denotes the solution of the state equation with control v, i.e., e(x(v), v; t, ξ) = 0
holds.

With a representation of the gradient at hand we can set up the gradient descent scheme.
We denote by vj the control chosen in the j-th iteration, xj and pj are the corresponding
solutions of the state and adjoint equations, respectively. We express the corresponding
gradient as Gj = vj + F ⊤pj .

For choosing a stepsize in each iteration of the gradient descent we opt for a combination
of the Barzilai-Borwein step-size-control [3, 4] and a specific line search scheme. In the
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k-th iteration the initial stepsize is set to σk
−1, where

σk := ⟨Sk−1, Yk−1⟩
⟨Sk−1, Sk−1⟩

, for even k, and σk := ⟨Yk−1, Yk−1⟩
⟨Sk−1, Yk−1⟩

, for odd k, (3.5)

and Sk−1 := vk − vk−1 and Yk−1 := Gk − Gk−1. The stepsize hk used in the k-th iteration
is then determined by an application of the non monotone line search introduced in [10].

Algorithm 1 Gradient descent for open-loop optimal control problem
Input: Initial controls v−1 and v0, tolerances εrel, εabs > 0.
Output: Optimal triple (x̄, v̄, p)

Set k = 0.
Compute x−1, x0 via (3.2).
Compute p−1, p0 via (3.3).
Set G−1 = v−1 + F ⊤p−1, G0 = v0 + F ⊤p0
while ∥Gk∥/∥G−1∥ > εrel and ∥Gk∥ > εabs do

Compute σk according to (3.5).
Obtain stepsize hk by non monotone line search according to [10] starting with σ−1

k .
Set vk+1 = vk − hkGk.
Compute xk+1 via (3.2).
Compute pk+1 via (3.3).
Set Gk+1 = vk+1 + F ⊤pk+1.
Set k = k + 1.

end while

Algorithm 1 allows the computation of approximations of the optimal state, control, and
adjoint state (x̄, v̄, p) for a given (t∗, ξ∗). The value of the cost functional can be computed as
V(t∗, ξ∗) = J(x̄, v̄; t∗). Via a feedback rule one obtains the gradient as ∇ξV(t∗, ξ∗) = −p(t∗)
without any additional computational cost. The data point is completed by a computation
of the Hessian which is achieved in the following manner.

Evaluation of the Hessian in sample points. First we show that Ξ(s) = ∇2
ξξV(s, x̄(s))

satisfies a specific differential Riccati equation. By the verification theorem the optimal
control can be characterized via the feedback rule [9]

v̄(s) = −F ⊤p(s) = F ⊤∇ξV(t, x̄(s)), s ∈ [0, t∗]. (3.6)

With the chain rule it follows that
d
dsΞ(s) = ∂t∇2

ξξV(s, x̄(s)) + ∇3
ξ3V(s, x̄(s)) ˙̄x(s).

Inserting (2.9) with ξ = x̄(s) yields

Ξ̇(s) = −∇2
ξξV(s, x̄(s))Df(x̄(s)) − Df(x̄(s))⊤∇2

ξξV(s, x̄(s))

− ∇2
ξξV(s, x̄(s))FF ⊤∇2

ξξV(s, x̄(s)) − D
(
Df(x̄(s))⊤

)
∇ξV(s, x̄(s)) + αC⊤C

− ∇3
ξ3V(s, x̄(s))

(
f(x̄(s)) + FF ⊤∇ξV(s, x̄(s)) − ˙̄x(s)

)
.
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With (3.6) it follows that the last summand on the right hand side vanishes and thus

Ξ̇(s) = −Ξ(s)Df(x̄(s)) − Df(x̄(s))⊤Ξ(s) − Ξ(s)FF ⊤Ξ(s)

+ D
(
Df(x̄(s))⊤

)
p(s) + αC⊤C,

Ξ(0) = In.

(3.7)

The initial condition follows directly from the definition in (2.2). After solving this DRE
we obtain ∇2

ξξV(t∗, ξ∗) = ∇2
ξξV(t∗, x̄(t∗)) = Ξ(t∗) and the data point is complete.

Remark 3.1. It is possible to augment the sampled data by the time derivative. Since
we already have access to the gradient, the time derivative ∂tV can be computed via the
HJB equation (2.3) without any noteworthy additional cost. However, this did not yield
any convincing advantages in our experiments and it is therefore omitted in this work.

Choosing sampling points. For the generation of the data set (3.1) an appropriate
choice of sampling points (ti, ξi)N

i=1 is essential. Note that we will only require evaluations
of the value function and its derivatives close to the observer trajectory x̂M. For the
approach based on solving the observer equation this can immediately be seen in (2.5).
The same holds when minimizing the value function over the space variable if one assumes
to have access to a sufficiently good initial candidate for the minimization, c.f., Section 4.

The extended Kalman filter offers an approximation x̂K of the Mortensen observer at
comparatively small computational cost. Therefore we shall sample the value function
locally around the observer trajectory x̂K. This is done in the following manner:

First NTime time sample points are determined as the Chebyshev nodes in [0, T ], i.e.,

tk = 1
2 T + 1

2 T cos
(2 (NTime − k + 1) − 1

2 π NTime

)
, k = 1, ..., NTime.

These are precisely the roots of the Chebyshev polynomial of degree NTime rescaled to the
domain [0, T ]. In the following every time sampling point tk will be individually completed
by appropriate spatial sampling points.

Turning to the spatial sampling, for each fixed k the Kalman observer trajectory
x̂K is evaluated in tk. The spatial variable ξ ∈ Rn is sampled quasi-randomly from a
hyperrectangle Qk around x̂K(tk) of the form

Qk =
n×

i=1
[x̂K(tk)i − rk,i, x̂K(tk)i + rk,i] , (3.8)

where the specific side lengths rk,i > 0 are chosen individually for every example and
depend on x̂(tk), c.f. Section 5. We take NSpace spatial samples (ξtk

h )NSpace
h=1 from Qk using

Halton quasi-random sequences1. Finally the set of sampling points is given as

(ti, ξi)N
i=1 =

NTime,NSpace⋃
k=1,h=1

{
(tk, ξtk

h )
}

consisting of N = NTime NSpace sample points.
Let us note that initially we used tensorized Chebyshev nodes as spatial samples which

worked out for examples of lower dimension. In higher dimensions, however, this is not

1https://de.mathworks.com/help/stats/generating-quasi-random-numbers.html

https://de.mathworks.com/help/stats/generating-quasi-random-numbers.html
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feasible because the tensorization quickly results in a very large number of samples. An
attempt of using random spatial samples uniformly distributed in Qk did not yield the
desired results as samples would tend to cluster instead of filling out the sampling domain
evenly. Eventually we decided to construct the samples in a quasi-random fashion as it is
done in [2].

3.2. Constructing a polynomial basis.

In this section we present the construction of the polynomial basis which we use for
the approximation of the value function. The (n + 1)-dimensional basis polynomials will
be given as products of one-dimensional Chebyshev polynomials representing the time
variable and each spatial variable separately.

First an appropriate domain
D = DTime × DSpace ⊂ R × Rn

needs to be determined. Here

DSpace =
n×

i=1
Di ⊂ Rn,

and Dtime and Di are the domains corresponding to the Chebyshev polynomials in the
time variable and in the i-th spatial variable respectively. While the choice Dtime = [0, T ]
is clear, the choice for the spatial domains is less obvious. We aim at choosing domains
as small as possible while still ensuring that for any t ∈ [0, T ] the set DSpace contains all
spatial samples (ξi)N

i=1 and the evaluations of the (unknown) observer trajectory x̂M(t).
Using the notation from (3.8) we define for all i ∈ {1, ..., n}

Di :=
[

min
k=1,...,MTime

x̂K(tk)i − rk,i, max
k=1,...,MTime

x̂K(tk)i + rk,i

]
.

By rescaling the Chebyshev polynomials (originally defined on (−1, 1)) to the respective
domains before normalizing, for the i-th spatial variable we obtain a one-dimensional
orthonormal basis of L2(Di) and denote the basis functions by (ϕi

k)∞
k=0. Analogously we

construct a basis of L2([0, T ]) denoted by (ϕTime
k )∞

k=0. These functions are used to define
the elements of the tensor-product basis of L2(D) via

Φi(t, ξ) := ϕTime
i1 (t)

n∏
j=1

ϕj
ij+1

(ξj), with i = (i1, ..., in+1) ∈ Nn+1
0 , ξ = (ξ1, ..., ξn).

Now assuming V ∈ L2 ([0, T ] × Dspace) ∩ L∞ ([0, T ] × Dspace) the value function can be
expanded into a series of the form

V(t, ξ) =
∑
i∈N0

θiΦi(t, ξ),

with θi = ⟨V, Φi⟩L2(D). This motivates the approximation of the value function in a
polynomial basis of the form {Φi}i∈J , where J ⊂ Nn+1

0 is an index set of finite cardinality.
A proper choice of J is crucial to the accuracy of the approximation and to the numerical

feasability of its computation. Especially for large spatial dimensions n one needs to pay
attention to the choice of indices to make sure that the set of basis polynomials does
not grow too large. Since the dependence of the value function on the time variable and
on the spatial variables are fundamentally different, we choose to treat them separately.
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Our treatment of the spatial polynomials is heavily inspired by what was done in [2], see
also [1], and the monograph [12], therefore we will only briefly summarize the strategy here.
Namely we make use of the hyperbolic cross index set to treat the spatial polynomials
and obtain a tensor-product basis of DSpace. For a fixed number s ∈ N the index set in
question is defined as

JSpace(s) :=

i = (i1, ..., in) ∈ Nn
0 :

n∏
j=1

(ij + 1) ≤ s + 1

 .

The elements of this basis will be fully tensorized with the polynomials (ϕTime
k )dTime

k=0 up to
some prescribed maximal degree dTime ∈ N0. We obtain the polynomial basis represented
by the index set

J = J (dTime, s) := {i = (iTime, iSpace) : iTime ∈ {0, ..., dTime}, iSpace ∈ JSpace(s)} .

Let us emphasize the independence of the polynomial degree in time from the degrees
of the spatial polynomials. It is motivated by the fact that the complexity of the value
function with respect to time might heavily differ from its complexity in space. In the
linear quadratic case for example the value function is known to be quadratic in space while
the behaviour with respect to time can be much more complex and is unknown, c.f. (2.6).
In such a setting it is reasonable to allow for a higher degree in the time polynomials
while choosing a small hyperbolic cross index for the spatial polynomials. Note that this
approach is in line with choosing the number of spatial and time samples individually,
c.f. Subsection 3.1.

3.3. Obtaining polynomial approximation by linear regression.

We finally recover the polynomial approximation of the value function by fitting its
truncated polynomial representation to the generated data of the form (3.1). In order to
allow a comparison of the performance improvements achieved by including gradients and
Hessians in the fitting process we introduce three weights β0, β1, β2 ≥ 0 corresponding to
the values of V, its gradient, and its Hessian respectively.

For the construction of the vector of sampled data we define

VV = 1√
N

(V(ti, ξi))N
i=1 ∈ RN ,

further for j = 1, ..., n we set

V∇,j = 1√
N

(
∂

∂ξj
V(ti, ξi)

)N

i=1
∈ RN ,

and finally for k, h = 1, ..., n satisfying k ≤ h we define

V∇2,k,h = 1√
N

(
∂2

∂ξkξh
V(ti, ξi)

)N

i=1
∈ RN .

The corresponding matrices are constructed as follows. For the function values we set

AV = 1√
N

(Φj(ti, ξi))i=N
i=1,j∈J ∈ RN×|J |,
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further for k = 1, ..., n we set

A∇,k = 1√
N

(
∂

∂ξk
Φj(ti, ξi)

)i=N

i=1,j∈J
∈ RN×|J |,

and finally for k, h = 1, ..., n with k ≤ h we set

A∇2,k,h = 1√
N

(
∂2

∂ξkξh
Φj(ti, ξi)

)i=N

i=1,j∈J
∈ RN×|J |.

Note that for the Hessian samples and polynomial evaluations we enforce k ≤ h to exploit
the symmetry of the Hessian matrix. This reduces the size of the least squares problem by
N n(n−1)

2 . We finally set

V =



β0 VV
β1 V∇,1

...
β1 V∇,n

β2 V∇2,1,1
...

β2 V∇2,n,n


and A =



β0 AV
β1 A∇,1

...
β1 A∇n

β2 A∇2,1,1
...

β2 A∇2,n,n


and the coordinates (θj)j∈J of the polynomial approximation of V are given as the solution
of the linear least squares problem

min
θ∈R|J |

∥Aθ − V∥2
2. (3.9)

In our implementation we solve the least squares problem using the MATLAB® backslash
routine, i.e., θ = A\V.

Remark 3.2. The results in our numerical experiments exhibit some minor oscillations.
In particular the Hessian of the polynomial approximations are prone to this issue which
might lead to noticeable deviations in the inverse. Such issues can be tackled by introducing
a regularizing term in (3.9). Note, however, that even the implementation of a simple
L2-penalty term is non-trivial in our setup. This is due to the augmentation of the sampling
by including derivatives. Furthermore, this adjustment comes with a substantial increase in
computational cost. Due to the smoothing effect of integrating the observer equation (2.5)
the moderate oscillations on the inverse Hessian did not pose an immediate problem to our
approach. We therefore decided against the application of a regularizer in the least squares
problem.

Including an appropriate regularizer can furthermore ensure sparsity of the solution. We
refer to [2] where a weighted LASSO was deployed.

4. Realization of the observer trajectory

After obtaining a polynomial approximation of the value function Vp we are in the
position to realize the Mortensen observer trajectory x̂M numerically. As announced this is
done using two different approaches namely by solving the observer equation (2.5) and by
minimizing the value function according to (2.4).
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Minimizing the value function. We construct a a discrete approximation of the
Mortensen observer trajectory on a time grid of [0, T ] using Nmin + 1 equidistant grid
points, where t0 = 0 and tNmin = T . For any k ∈ {0, ..., Nmin} we construct the observer
trajectory by setting

x̂min,k = x̂min(tk) = arg min
ξ∈Rn

Vp(tk, ξ).

The minimization is realized using a gradient scheme with an Armijo stepsize control. For
the construction of x̂min,0 we initialize the minimization by x0, which is the exact minimizer
of V(0, ·). For the construction of x̂min,k with k > 0 the initialization for the minimization
is set to x̂min,k−1. Assuming that x̂M is continuous and that Nmin was chosen large enough,
this yields a sufficiently good initial estimate justifying the choice made for the sampling
points in Subsection 3.1.

Solving the observer equation. Another approximation of the observer trajectory
x̂eq is computed by solving the observer equation where the inverse Hessian of the value
function is approximated by ∇2

ξξVp(·, ·)−1. Here a grid of Neq + 1 points with t0 = 0 and
tNeq = T is used. The equation is solved using a BDF4 scheme, where non-linearities are
handled using a Newton scheme.

5. Numerical Tests

In this section we apply the proposed methodology to four different models. First we
consider a linear model allowing a comparison with the Kalman filter. We further illustrate
the benefits of including the sampled Hessian in the regression problem and compare the
realizations via a minimization of the value function according to (2.4) and via solving
the observer equation (2.5). In the second and third example we consider two non-linear
low-dimensional oscillators and set the focus on comparing the Mortensen observer with
the extended Kalman filter. These examples further illustrate the challenges stemming
from the fact that the systems need to be considered backwards in time. As a final example
we present an agent based model of higher state-space dimension.

In the linear case the Kalman filter and the Mortensen observer are equivalent on a
theoretical level. Therefore we have access to an accurate approximation of the Mortensen
observer that our numerical results can be compared to. Since this is not the case for the
non-linear problems, we instead solve the observer equation (2.5) using a BDF4 scheme
where we compute the inverse of the Hessian ∇2

ξξV(t, x)−1 by solving the corresponding
open loop problem before solving the DRE as described in Subsection 3.1. The resulting
trajectory will be denoted by x̂M and we will consider it to be the true Mortensen observer
trajectory.

5.1. Practical aspects.

We first turn our attention to the evaluation of the value function and its derivatives
in the sampling points. Since these calculations are entirely independent of each other
they can easily be parallelized. In our implementation this is done using parfor from the
MATLAB® Parallel Computing Toolbox.

The gradient descent scheme is implemented with a relative tolerance of 10−6. For the
non-linear examples we further implement an absolute tolerance of 10−3 and terminate the
scheme once one of the tolerances is reached. The state and adjoint equations are solved by
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an application of a BDF4 scheme using 1001 time discretization points. The non-linearities
are treated by a Newton scheme with absolute tolerance 10−12. The Riccati equations
are solved using the same BDF4 scheme where the implicit time steps are realized by
the MATLAB® routine icare. Only for the four initial time steps a Newton scheme is
employed, where the absolute tolerance is set to 10−10 for the first three examples and to
10−8 for the fourth example.

For the integration of the observer equation by means of the approximated value function
we set Neq = 103 and deploy a BDF4 scheme in which non-linearities are treated using
a Newton scheme with absolute tolerance 10−8. The minimization of the approximated
value function is performed via a gradient descent scheme with relative tolerance 10−6 and
absolute tolerance 10−3 and with Nmin = 103.

The trajectory x̂K resulting from the (extended) Kalman filter and the solution Σ of the
corresponding Riccati equation are determined using the MATLAB® routine ode15s with
1001 equidistant discretization points and a relative tolerance of 10−8. When solving for
the true Mortensen trajectory via BDF4 non-linearities are treated by a Newton scheme
with absolute tolerance 10−6.

The schemes were implemented in MATLAB® R2020b and the computations were run
on a Lenovo ThinkPad T14s AMD Ryzen 7 PRO 4750U(16)@1.700GHz with 32GB DDR4
3200 MHz memory.

The MATLAB® code used to obtain the numerical results is available in [34].

5.2. Test 1: Harmonic oscillator.

For a linear example we consider an undamped harmonic oscillator. The first order form
of the model reads

ẋ(t) = Ax(t) + Fv(t), x(0) = x0,

y(t) = Cx(t) + µ(t),
where

A =
(

0 1
−1 0

)
, F =

(
0
1

)
, C =

(
1 0

)
, x0 =

(
1
1

)
.

In this formulation the first component of the state represents the position of the oscillator
while the second component corresponds to its velocity. In our computations the disturbance
of the dynamics is restricted to the velocity while the observation measures only the position.
For the artificial construction of the measured data y we set the error in the dynamics to
v(t) = 1

2 cos(6
5 t) and the observation error to µ(t) = 1

2 sin( t
2).

In order to reconstruct the state we apply our previously described methodology to
approximate the Mortensen observer. In these calculations we consider the time horizon
[0, 20]. For the polynomial approximation of the value function we set the hyperbolic cross
index to s = 5. Note that for this linear example we know a priori that the value function
is quadratic in the spatial variable. For an accurate and cost effective approximation of
V one would restrict the spatial polynomials to a maximum degree of two. For general
non-linear examples, however, such a priori knowledge is not available. We therefore
decided to include spatial polynomials of higher degrees in the basis. For each computation
the maximum degree for the time polynomials is set to be equal to the number of time
samples used. The domains Qk introduced in (3.8) for the spatial sampling are defined via
the side lengths rk,1 = rk,2 = max {0.1, 0.1 ∥x̂K(tk)∥}.
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In Table 1 we report results for different choices of sample numbers and sampling
strategies (represented by the weights (β0, β1, β2)): (i) The weights (1, 0, 0) corresponds to
the classical scheme of only considering the value function values. (ii) With the weights
(10−3, 1, 0) we pay attention mostly to the gradients. (iii) The combination (10−3, 0, 1)
implies a focus on the Hessian. (iv) Finally the weights (1, 1, 1

2) are derived from the
coefficients of the general Taylor polynomial and imply a consideration of all available
information. Note that the different weights result in different sizes of the least squares
problem. Neglecting the computational effort of evaluating the samples the burden of
approximating the value function lies in the least squares problem. We therefore decided
to compare the estimated computational cost resulting from the different strategies by
comparing the number of rows of the least squares matrix and display it in the fourth
column of Table 1. In the last three columns we present the relative errors associated with
the approximations of the Mortensen observer. The sixth column displays the relative
error of the trajectory x̂min obtained via minimization of the approximated value function
Vp, i.e.,

emin =
∥x̂min − x̂K∥L2(0,T ;Rn)

∥x̂K∥L2(0,T ;Rn)
.

The seventh column shows the relative error of the observer trajectory x̂eq obtained by
solving the observer equation using the Hessian of the approximation of the value function
∇2

ξξVp, i.e.,

eeq =
∥x̂eq − x̂K∥L2(0,T ;Rn)

∥x̂K∥L2(0,T ;Rn)
.

We further present the relative error of the inverted Hessian

egain =
∥∇2

ξξVp(·, x̂M(·))−1 − Σ(·)∥L2(0,T ;Rn,n)
∥Σ∥L2(0,T ;Rn,n)

.

All entries of the table where emin or eeq are marked as failed represent parameter
combinations that resulted in a polynomial approximation Vp for which the minimization
or respectively the integration of the observer equation did not converge.

Our experiments suggest that including the Hessian samples in the least squares problems
leads to higher accuracy both in the approximated inverted Hessian and in the resulting
observer trajectories. In row 11 the least squares matrix considering the Hessian information
has 600 rows and yields a polynomial approximation of the value function based on which
we approximate the Mortensen observer via integration of (2.5) with a relative error of
order 10−6. In our experiments we did not reach this level of accuracy without including
the sampled Hessians in the least squares problem. Row 2 of Table 1 shows that even an
increase of the number of rows in the LS-problem to 1800 results in an approximation of
the observer equation with a relative error of order 10−3. Comparing, e.g., row 11 and
row 12 we further learn that sampling only the values and the Hessians seems to be more
effective than additionally including the gradients. Not only do the gradients increase the
size of the LS-problem, in most cases the resulting approximation of the value function
also yields less accurate approximations of the Mortensen observer. Only in row 19 and
20 the two combinations of weights lead to observer trajectories with the same level of
accuracy when integrating the observer equation.

We further observe that in all parameter constellations the integration of the observer
equation yields results preferable to the ones obtained by minimization of the value function.
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relative errors
NTime NSpace (β0, β1, β2) rows egain emin eeq

1 30 20 (1, 0, 0) 600 1.7 × 10−4 2.5 × 10−4 1.0 × 10−5

2 30 20 (10−3, 1, 0) 1800 4.7 × 10−2 2.7 × 10−2 2.3 × 10−3

3 30 20 (10−3, 0, 1) 2400 1.5 × 10−4 2.4 × 10−4 7.0 × 10−6

4 30 20 (1, 1, 0.5) 3600 7.4 × 10−4 5.2 × 10−4 5.3 × 10−5

5 30 10 (1, 0, 0) 300 18.2 failed failed
6 30 10 (10−3, 1, 0) 900 1.5 × 10−1 failed 1.4 × 10−2

7 30 10 (10−3, 0, 1) 1200 1.5 × 10−4 2.4 × 10−4 7.0 × 10−6

8 30 10 (1, 1, 0.5) 1800 8.7 × 10−4 7.1 × 10−4 6.6 × 10−5

9 30 5 (1, 0, 0) 150 86.4 failed failed
10 30 5 (10−3, 1, 0) 450 20.4 failed failed
11 30 5 (10−3, 0, 1) 600 1.5 × 10−4 2.4 × 10−4 7.0 × 10−6

12 30 5 (1, 1, 0.5) 900 3.5 × 10−3 2.2 × 10−3 9.7 × 10−5

13 20 5 (1, 0, 0) 100 8.6 failed failed
14 20 5 (10−3, 1, 0) 300 24.0 failed failed
15 20 5 (10−3, 0, 1) 400 2.4 × 10−3 2.4 × 10−3 2.3 × 10−4

16 20 5 (1, 1, 0.5) 600 7.9 × 10−3 5.6 × 10−3 3.2 × 10−4

17 10 5 (1, 0, 0) 50 30.3 failed failed
18 10 5 (10−3, 1, 0) 150 6.6 failed failed
19 10 5 (10−3, 0, 1) 200 3.8 × 10−2 6.4 × 10−1 3.5 × 10−3

20 10 5 (1, 1, 0.5) 300 3.8 × 10−2 6.4 × 10−1 3.5 × 10−3

Table 1 – Comparison of the relative errors of the inverted Hessian and the two observer
trajectories obtained by minimization of V and by solving the observer equation depending on
the number of samples and weights used in the least squares problem.
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Figure 1 – Relative error of the inverted Hessian measured in the Frobenius norm plotted
along time. The computation is based on a polynomial approximation of V obtained with the
parameters NTime = 30, NSpace = 5, (β0, β1, β2) = (10−3, 0, 1), dTime = 30, and s = 5.

In row 6 we even find an example for which the observer equation leads to an approximation
with a relative error of order 10−2 while the minimization of the value function fails.

To conclude the discussion of the linear example we present Figure 1 illustrating the
development of the relative error of the inverted Hessian along time corresponding to the
parameters set in row 11 of Table 1.
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5.3. Test 2: Van der Pol oscillator.

We now turn our attention to the first non-linear example. Again we approximate the
Mortensen observer both via the minimization of Vp and via integration of the observer
equation. Both approaches yield satisfying results but again the latter requires less data to
do so. We further compare our findings to the results obtained using the extended Kalman
filter.

Specifically we consider the van der Pol oscillator. It is modelled by

d
dt

(
x1(t)
x2(t)

)
= A

(
x1(t)
x2(t)

)
−
(

0
x1(t)2 x2(t)

)
+ Fv(t),

(
x1(0)
x2(0)

)
= x0,

y(t) = C

(
x1(t)
x2(t)

)
+ µ(t),

where

A =
(

0 1
−1 1

)
, F =

(
0
1

)
, C =

(
1 0

)
, x0 =

(
0.1
0.1

)
.

The two state variables x1 and x2 correspond to the position and velocity of the system,
respectively. Note that by introducing a third variable x3 = x2

1 this system can be
transformed into one of state dimension n = 3 with a quadratic right hand side. Therefore
theoretical results presented in [8] apply.

The behaviour of this system is best characterized in terms of the phase space. All initial
values are attracted to a limit cycle. Once the limit cycle is reached the state of the system
will stay near that cycle indefinitely. Hence this system exhibits stable behaviour. However,
when considered backwards in time the system turns unstable. Especially when starting
in a point outside the limit cycle and observing the evolution of the system backwards in
time the norm of the state will increase rapidly. These dynamics pose a crucial issue in
our approach of realizing the Mortensen observer, specifically with regard to solving the
open loop control problem for a given sample point (t∗, ξ∗). In particular for large t∗ and
ξ∗ close to the limit cycle the gradient descent scheme requires an accurate initial guess for
the optimal control. In our experiments we tackled this issue in an iterative manner. For
a fixed integer Nit we first solve the optimal control problem for the tuple ( t∗

Nit
, ξ∗) using

the zero control for initialization. The resulting optimal control is used as an initialization
when solving the open loop problem for (2 t∗

Nit
, ξ∗). Therefore we have to solve Nit control

problems in order to obtain the desired evaluation of the sampling point.
For the construction of the measured data y we set the disturbance in the dynamics to

v(t) = 1
2 cos(6

5 t) and the disturbance in the observation is chosen as µ(t) = 3
10 sin(2π t).

This example is considered over the time horizon [0, 7] and the domains for spatial sampling
are set via the side lengths rk,1 = rk,2 = max {0.1, 0.1 ∥x̂K(tk)∥}.

The results are illustrated in Figure 2. In Figure 2a we show a plot of the value function
V evaluated for fixed times t for ξ inside the limit cycle.

In order to integrate the observer equation the value function was approximated using
30 and 25 sampling points in time and space, respectively. In the LS-problem only the
values and the Hessians where considered with respective weights 10−3 and 1 resulting in
a LS-matrix with 3000 rows. The polynomial basis is set via dT ime = 9 and s = 9. The
computation took roughly 20 minutes and the results are presented in Figure 2b. The
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relative error of the obtained trajectory is given by
∥x̂eq − x̂M∥L2(0,7;R2)

∥x̂M∥L2(0,7;R2)
= 1.8 × 10−3.

For the realization via the minimization of Vp we used 60 and 50 time an space samples,
respectively. In the LS-problem only values and gradients were included using weights 10−3

and 1, respectively, hence the LS-matrix has 9000 rows. The polynomial basis is given by
dTime = 17 and s = 10. Here the computation took about 90 minutes and the results are
presented in Figure 2c. They exhibit a relative error of

∥x̂min − x̂M∥L2(0,7;R2)
∥x̂M∥L2(0,7;R2)

= 3.3 × 10−3.

From Figure 2 we observe that for this particular system the Mortensen observer and
the extended Kalman filter lead to very similar trajectories for the reconstruction of the
state. The following example provides a situation where such similarities do not occur.

5.4. Test 3: Duffing oscillator.

The purpose of the following example is to show that for more complex systems there is
a substantial difference between the extended Kalman filter and the Mortensen observer.
To this end we consider the Duffing equation which in its state-space form is given by

d
dt

(
x1(t)
x2(t)

)
= A

(
x1(t)
x2(t)

)
+
(

0
−β x1(t)3

)
+ F v(t),

(
x1(0)
x2(0)

)
= x0 + η,

y(t) = C

(
x1(t)
x2(t)

)
+ µ(t),

(5.1)

where
A =

(
0 1

−λ −δ

)
, F =

(
0
1

)
, C =

(
1 0

)
.

A thorough discussion of equations of this type can be found in [17]. Again we point
out that by introducing a third variable as x3 = x2

1 this system is equivalent to one of
dimension n = 3 with a quadratic right hand side and results from [6] can be applied.
However, the results presented there require the assumption that the difference of modeled
and measured output ∥y −Cx̃∥L2(0,T ;Rr) is sufficiently small. Here x̃ is the model trajectory,
i.e., the solution of the undisturbed model equation. For systems as sensitive as the
Duffing oscillator this is a rather strong assumption because even small disturbances in the
dynamics and in the initial value may cause major differences in the resulting trajectory.

Just like the previous example this system is affected by the issue of backwards instability.
In order to compute the evaluations in the sampling points we apply the iteration described
in Subsection 5.3.

We construct the measurement y as follows: In order to prompt chaotic behaviour of the
system from t = 0 onwards we follow [6,17] and set

λ = −1, β = 1, δ = 0.3, v(t) = γ cos(ωt), γ = 0.5, ω = 1.2.

As the disturbance in the observation we consider µ(t) = 0.05 sin(2πt) and for the initial
value and disturbance we set x0 =

(
0 0

)⊤ and η =
(
−1.216 0.493

)⊤, respectively.
The results are shown in Figure 3. Figure 3a shows plots of the value function for fixed

times t evaluated around the minimizer. The frame for time t = 5 displays some numerical
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(a) Vale function for fixed times t
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(b) Approximation by solving observer equation
with pol. appr. using 750 samples
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(c) Approximation by minimizing pol. appr. of
the value function using 3000 samples

Figure 2 – Van der Pol oscillator

inaccuracies underlining the fact that the value function evaluation is not a trivial task.
We suspect that for the final value ξ =

[
−0.58 0.35

]⊤ the gradient descent solving the
open loop problem converged to a local instead of the global minimizer. Since this point
lies outside the sampling rectangle used in our approximation scheme, this did not pose
any issues while approximating the Mortensen observer.

For this example we omit the minimization of Vp and focus on the integration of the
observer equation (2.5). We consider the time horizon [0, 5]. Here the domains for spatial
sampling are defined via the side lengths rk,1 = rk,2 = max {0.1, 0.4 ∥x̂K(tk)∥}. We decided
to take 35 time and 30 space samples. The gradients ∇ξV will be omitted in the LS-problem
while the values and Hessians are considered with the weights 10−2 and 1, respectively. The
polynomial basis is constructed using dTime = 9 and s = 17. We compare our obtained state
reconstruction x̂eq to the trajectory x̂K obtained by means of the extended Kalman filter
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and with x̂M constructed as was described above. The results are presented in Figure 3b.
The reader can observe a substantial difference between the reconstructions based on the
Mortensen observer and the extended Kalman filter in the case of the Duffing equation.
We also report that our approximation of the Mortensen observer has a relative error of

∥x̂eq − x̂M∥L2(0,5;R2)
∥x̂M∥L2(0,5;R2)

= 9.4 × 10−3.

A first attempt at investigating the cause of this behaviour is presented in Figure 4.
There we compare the terms in which extended Kalman filter and Mortensen observer
differ, c.f. Section 2. In Figure 4a the ratio of the additional term in the Mortensen DRE
and the right hand side of the extended Kalman filter DRE

Π(t)∇3
ξ3V(t, x̂M(t))f(x̂M(t))Π(t)

Df(x̂M(t))Π(t) + Π(t)Df(x̂M(t))⊤ − αΠ(t)C⊤CΠ(t) + FF ⊤

is plotted over time. In Figure 4b we present the relative difference of the observer gains

∥Π(t)C⊤ − Σ(t)C⊤∥
∥Π(t)C⊤∥

.

Clearly the quantifiers for the difference between the extended Kalman filter and the
Mortensen observer are significant for the Duffing oscillator. They give a first explanation
for the noticeable difference in the state reconstruction based on these two methods. In the
same figure we also present these quantifiers for the Van der Pol oscillator. It turns out
that they are considerably smaller. These observations certainly deserve further research.

5.5. Test 4: Cucker-Smale model.

Finally we consider the Cucker-Smale model for agent based optimal consensus control.
It should be noted that the original intent of modeling consensus behaviour is not considered
in our discussion. We are interested in this model merely for its non-linear dynamics and
the fact that the state space dimension can be easily adjusted by varying the number of
agents. In order to apply our strategy to a system of medium sized state space dimension we
consider the uncontrolled system with a disturbance. We discuss a system with Na agents
with states (zi, qi) ∈ R2 × R2, for i = 1, ..., Na. Here zi and qi correspond to the position
and the velocity of the i-th agent moving in the plane. The dynamics are characterized by
the equations

d
dtzi = qi

d
dtqi = 1

Na

Na∑
j=1

qj − qi

1 + ∥zj − zi∥2 + vi

yi = zi + µi,

where vi is the disturbance in the dynamics and µi represents the disturbance in the
measurement. Analogous to the examples discussed above only the velocities are affected
by system disturbances and the measurement consists of only the positions. The initial
position and velocity of the i-th agent are set to

zi(0) = qi(0) = 1
2

[
cos(2iπ

Na
)

sin(2iπ
Na

)

]
.
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(a) Value function around the minimizer
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(b) Approximation by solving observer equation with pol. appr. using 1050 samples

Figure 3 – Duffing equation

This choice places the agents on a circle around the origin and equips them with an initial
velocity pointing straight away from the origin. For the construction of the measurement y
we set the disturbance in the velocity of the i-th agent to

vi(t) = 0.3√
Na

[
0 1

−1 0

]
qi(0).

For the error in the measurement we set

µi(t) = sin(2π t) 0.8√
Na

[
0 1

−1 0

]
qi(0).

We note that the direction of the disturbances is chosen to be orthogonal to the respective
initial velocities. The specific choices for the initial condition and disturbances is not
required to ensure satisfying results for our numerical scheme. Choosing random initial
conditions from an appropriate domain and combining them with more general disturbances
leads to approximations with the same order of accuracy. This particular setting was
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Figure 4 – Comparing Van der Pol and Duffing

chosen because it leads to a visual representation with comparatively little overlap in the
resulting trajectories.

Again we focus only on the state reconstruction via the integration of the observer
equation. For our computation we set the number of agents to Na = 10 resulting in a
state space of dimension n = 40 and the time horizon is set to [0, 5]. The domains for the
spatial sampling are characterized by the side lengths rk,i, where for k = 1, ..., NTime and
i = 1, ..., Na we set

rk,2i = rk,2i−1 = rk,2i+ n
2

= rk,2i−1+ n
2

= max
{

0.1,

∥∥∥∥[x̂K(tk)2i−1
x̂K(tk)2i

]∥∥∥∥} .

We use 20 time and 10 space samples, respectively and the polynomial basis is constructed
based on setting dTime = 10 and s = 4. The LS-problem considers the sampled values of V
with a weight of 10−3 while the Hessians are entering with the weight 1. The computations
for this example took roughly 160 minutes. The resulting approximation of the Mortensen
observer is compared with the extended Kalman filter in Figure 5b and Figure 5d and we
observe that they agree.

6. Conclusion

Two schemes for the numerical realization of the Mortensen observer were proposed.
The examples under consideration show that both are viable options. In particular the
integration of the observer equation based on an approximation of the value function
yields satisfying results for systems of small and moderate state space dimension. The
experiments further suggest that it is beneficial to not only consider samples of the values
of the value function but also take its derivatives into account. Additionally, one of the
examples shows that the Mortensen observer can substantially differ from the extended
Kalman filter.
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Figure 5 – Cucker Smale equation
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