MIXED AND HYBRID PETROV-GALERKIN FINITE ELEMENT
DISCRETIZATION FOR OPTIMAL CONTROL OF
THE WAVE EQUATION

GILBERT PERALTA* AND KARL KUNISCH?

ABSTRACT. A mixed finite element discretization of an optimal control problem for the
wave equation with homogeneous Dirichlet boundary condition is considered. For the
temporal discretization, a Petrov-Galerkin scheme is utilized and for the spatial dis-
cretization we apply the Raviart-Thomas finite elements. A priori error analysis is proved
for this numerical scheme. A hybridized formulation is proposed and by applying the
Arnold-Brezzi post-processing method, better convergence rates with respect to space
is observed. Interchangeability of discretization and optimization holds both for mixed
and hybrid formulations. Numerical experiments illustrating the theoretical results are
presented using the lowest-order Raviart-Thomas elements.

1. INTRODUCTION

In this paper, we propose mixed and hybrid space-time finite element discretizations for
the optimal control of the wave equation written as a first order hyperbolic system in terms
of the pressure and velocity. We consider the following linear-quadratic optimal control
problem:

T
Minimize J(u,p,v) = %/ /Qoz(p(t,o:) —pa(t,z))* + Blo(t, ) — vy(t,z)|* dadt
0

+ ;/OT/Qu(t,x)dedt (1.1)

subject to the state equation

Oyp — dive = u, in (0,7) x Q,
0w —Vp=0, in (0,T) x Q, (12)
p=0, on (0,7T) x 09,
p(0) = po, v(0) =vo, in
over all distributed controls
u € L*(0,T; L*(Q)). (1.3)
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Equation (1.2) describes the evolution of small amplitude pressure waves in a Newtonian
fluid or elastic solid, where p = p(t,z) € R and v = v(t,z) € R? denote the pressure
and velocity field at time ¢ € [0,7] and position z € ), respectively. These equations can
be obtained by linearizing Euler’s continuity and momentum equations. Throughout this
paper, we assume that € is a bounded convex polygonal domain in R?. Here, we focus on
the two-dimensional case, nevertheless, three-dimensional bounded domains can be treated
in analogous manner.

The state equation (1.2) with an additional linear term in the momentum equation also
arises in modeling heat dynamics with finite speed of propagation. Indeed, starting from
the energy balance law for the rate of change of temperature 6 we have

cpo = —divg+u (1.4)

where c is the specific heat, p is the density of the material, u is an external source or control
and ¢ is the heat flux. Suppose that there is a time delay between the heat flux and the
temperature gradient. This assumption results in the following Cattaneo heat flux law

q(t+7,z) = —kVO(t, x) (1.5)

where k > 0 is the heat conductivity and 7 > 0 is a constant representing the relaxation time.
If 7 = 0 then Cattaneo’s law reduces to the well-known Fourier’s law of heat conduction.
Applying a first order Taylor approximation to (1.5) yields

TO:q+ q = —kV0. (1.6)

After time-reversal and normalization, we observe that (1.4) and (1.6) take the form of (1.2)
with an additional first order term in the momentum equation. For simplicity of exposition,
we only consider the case of (1.2), nevertheless, the analysis presented here can be adapted
to the system (1.4) and (1.6). We refer the reader to [29] for more details and related
models.

The use of mixed finite elements for the optimal control of elliptic and parabolic partial
differential equations has been of interest for researchers in the past decade, see for instance
[11, 32, 33]. The choice of mixed finite elements is advatangeous when one needs to keep
track of the flux instead of the displacement. However, for hyperbolic problems there is
little work in this direction. The authors in [19] address a priori error analysis for the
semidiscretization of the optimal control problem under the positivity constraint on the
mean of the distributed control, that is,

1 T
— u(t,z)dtdx > 0.
ey J, J,

There are, however, some works that deal with mixed finite element approximations of hy-
perbolic partial differential equations, see [5, 7, 13, 16, 24], for example, and the references
therein.

There are two main approaches in the discretization of the wave equation

Opw — Aw =u (1.7)

with homogeneous Dirichlet boundary condition via mixed method, namely the velocity-

pressure and displacement-stress formulations. In the velocity-pressure formulation, the

wave equation (1.7) is rewritten as a first-order system in the form of (1.2) with p = w and

v = Vw. On the other hand, in the displacement-stress formulation, one introduces the

stress field o = Vw and rewrites the above wave equation as the following system
{ Opw — dive = u,

1.8
o—Vw=0. (18)
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One can then discretize this system with respect to space as in the elliptic case, and proceed
with a centered difference time stepping scheme for the approximation of the acceleration
to obtain a fully discrete system. This strategy has been also considered for acoustic wave
equations with Neumann boundary conditions in [4, 14, 20]. Regardless of the formulation
(1.2) or (1.8) for mixed finite elements, the Dirichlet boundary condition is a natural one,
while the Neumann boundary condition is an essential boundary condition.

For the spatial discretization of the state equation (1.2), we shall use mixed finite el-
ements, specifically the Raviart-Thomas finite elements [28]. Implementing mixed finite
elements for this system is well-suited when the problem is written as a Cauchy problem on
its usual state space setting. For smooth initial data and control, the resulting finite ele-
ments will be conformal. With respect to time-discretization we shall use a Petrov-Galerkin
scheme consisting of continuous piecewise linear ansatz functions and discontinuous piece-
wise constant test functions in time. The same strategy has been employed in [21] for the
optimal control of the wave equations with either distributed, Dirichlet or Neumann control
in displacement-velocity formulations.

Although the proposed Petrov-Galerkin scheme is formulated globally in time, it results
into in a time-stepping scheme by approximating the integrals through the trapezoidal
rule. As an outcome, the tracking part of the cost functional will be discretized by the
trapezoidal rule as well. The key by-product of the described numerical scheme is that
the two approaches discretize-then-optimize and optimize-then-discretize coincide. In other
words, the adjoint system of the discretized optimal control problem is a discretization of
the adjoint system for the continuous optimal control problem.

It is well-known that the above Petrov-Galerkin scheme is a variant of the Crank-Nicolson
scheme, and hence has the capability of second order accuracy with respect to time. How-
ever, when this method is applied to the optimal control problem (1.1)-(1.3), we are only
able to obtain a linear order of convergence due to the fact that the time-discretization of
the adjoint equations will consist of discontinuous piecewise constant ansatz functions. For
optimal control governed by parabolic problems, second order accuracy can be obtained
using an appropriate post-processing strategy utilizing the midpoints of the subintervals
induced by the temporal partition, see [1, 23].

The rest of the paper is organized as follows: In section 2, the well-posedness of (1.1)-(1.3)
based on semigroup theory is briefly presented. Space-time mixed finite element discretiza-
tion and the hybridization of this problem will be discussed in Section 3, and a priori error
estimates will be proved in Section 4. In the hybrid formulation, the continuity of the nor-
mal components of the discretized stress along the interelement boundaries is relaxed by
introducing a Lagrange multiplier. As in the elliptic case, a simple post-processing of this
Lagrange multiplier yields better convergence rates with respect to space for the optimal
pressure and control, at the expense of an additional computing time. In Section 5, we
discuss specific details for the implementation. Finally, numerical examples based on the
lowest order Raviart-Thomas element will be presented in Section 6.

2. WELL-POSEDNESS OF THE OPTIMAL CONTROL PROBLEM

In this section, we briefly discuss the theoretical framework of our optimization problem,
specifically the well-posedness of the state equation (1.2). In order to set up the weak
formulation of (1.2), we introduce several notations: Let Xo = L?(Q), X; = H}(Q), Vo =
L?(Q)? and V; = H(div,Q) = {v € V : divv € Xo}. We shall use the notations (v, w)
and ||v|| for the inner products and norms on X, and Vg, and likewise (v, w); and ||v||; for
the inner product and norm on L?(I, X), where I = (0,7, and X is a given Banach space.
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Define the product space H = Xy X V5 and the linear operator A: D(A) C H — H by
A(pa 'U) = —(dIV v, VP)

with domain D(A) = X; x V;. Applying the divergence theorem, we can see that A is a
skew-adjoint operator, that is, A* = —A, and that it has a dense domain. As a consequence
of Stone’s theorem, A generates a unitary group on H. System (1.2) can be recasted as an
abstract Cauchy problem on H as

d
2 P(@),v(0)) + Alp(1), v(1)) = (u(t),0), tel,
((0),v(0)) = (po, vo)-
Applying classical results for semigroups of bounded linear operators, see [25] for instance,
given an initial data (pg,vo) € H and control u € U := L*(I, X;), (2.1) has a unique mild

solution (p,v) € C(I, H) and there exists a constant C' > 0 independent of the data, solution
and control such that

Sujp{\lp(t)H +lo@N} < C(lullr + llpoll + [[voll)- (2.2)

In terms of PDEs, this means that
(p7 —Pt + le ¢)I + ('U, _wt + VSO)[ = (U, @)I + (p07 QO(O)) + (’Uo, ¢(0))

for every (p,%) € HY(I,X1) x HY(I,V1) such that ¢(T) = 0 and ¥ (T) = 0. This remark
follows immediately from a typical density argument. If in addition the data satisfies

(2.1)

(po,vo) € D(A) and u € WH(I, Xy) (2.3)
then the mild solution of (2.1) satisfies
(p.v) € C(I, D(A)) x CY(I, H) (2.4)

where D(A) is equipped with the graph norm. Moreover, there is a constant C' > 0 such
that

sup{[|0ip(t) || + 0w (D) + V(D) + [ldivo ()]}
tel
< Clllullwrr1,x0) + IVPoll + llvol| + [|div vol]).

Under the regularity assumptions (2.3) on the data and control, we can see that the solution
(p, v) satisfies the variational equation

(Op, o)1 — (divo, @)1 + (0w, ¥)1 + (p,divep)r = (u, @)1

for all (¢,1) € L3(I,Xo) x L*(I, V). This variational formulation will be the basis for the
finite element discretization of our optimal control problem.

All throughout this work, we assume that a, 8 > 0 and v > 0, and at the very least the
desired states satisfy pg € L?(I, Xo) and vgq € L3(I, V).

Theorem 2.1. Given py € Hy and vy € V, the optimal control problem (1.1)—(1.3) admits
a unique solution (u,p,v) € U x L*(I, H).

Proof. The proof of this theorem follows from standard weak sequential arguments as in
[30] for linear-quadratic optimal control problems. a

By means of the control-to-state mapping u + (p,v) = (p(u),v(u)) from U into L*(I, H)
defined through (1.2) we introduce the reduced cost functional j : U — R given by

J(u) = J(u, p(u), v(u)).
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Then the optimal control problem (1.1)-(1.3) can be equivalently expressed as

min j (u). (2.5)

The first order necessary optimality condition for the control problem (2.5) is
j'(@)du =0 VoueU. (2.6)

This condition is also sufficient due to the linear-quadratic structure of the optimal control
problem under consideration. Using the mild solution (w,y) = (w(u),y(u)) of the adjoint
system
—wy +divy = a(p(u) —pg), in I x €,
-y, + Vw = f(v(u) — vg), in I xQ,

(2.7)
w =0, on I x 012,
w(T) =0, y(T) =0, in €,
the first derivative of the reduced cost functional in the direction of du € @ is given by
§'(w)du = (yu + w(u), du);. (2.8)

This can be proved using an approximation argument applied to the initial data, desired
state and control and applying the regularity (2.4) and the continuity of the solutions (2.2).

Consequently, from (2.8) the optimality condition (2.6) reduces to
= —y tw(a). 2.9)

(
The existence and uniqueness of mild solutions in C(I, H) to the adjoint system (2.7)
follows from the fact that the generator A is skew-adjoint. Indeed, we can express (2.7) as
the backward-in-time Cauchy problem

—%(w(t% y(t) + A (w(t),y(t)) = (a(p(t) — pa(t)), B(v(t) —va(t))), tel,
(w(T),y(T)) = (0,0).
In terms of PDEs, the mild solution to (2.7) satisfies the variational equation

(0 —divm,w)r + (Om — V& y)r = a(w —wa, )1 + BY — Yg. 1)1 (2.10)

for every (£,m) € HY(I,X,) N HY(I, V1) such that £(0) = 0 and n(0) = 0.

In the case that u € Wh(I, Xy), ps € WH(I,Xy) if @ > 0 and vy € WHY(I, V)
if 3 > 0, then from (2.4) we have (p,v) € WH1(I,H), and as a consequence (w,y) €
C(I,D(A)NCYI, H).

3. MIXED AND HYBRID FINITE ELEMENT DISCRETIZATIONS

In this section, we describe the Petrov-Galerkin scheme for the discretization of the
state equation using mixed finite element method for the spatial variable. Suppose that
{Tn} is a family of quasi-regular triangulations of  parametrized by the meshsize h =
max g7, diam(K). For a nonnegative integer r, define the space of piecewise polynomial
and Raviart-Thomas finite element spaces

X;, ={pn € Xo : prlx € Pr VK € T},
Vi ={v, € Vi:vp|x €PXP, VK € Ty},

where x = (z,y) represents the spatial variable and P, is the space of polynomials in K of
degree at most 7. It is known that

divVy = X7J (3.1)
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and there exists a projection operator p, : H'(Q)? — V7, such that

div(ppv) = m divo (3.2)

where 7, is the orthogonal projection from X, onto Xj. Moreover we have
Ip — mnpll < CH™Hlpllgrss,  Vp € H™H(Q), (3-3)
v — ppoll < CR™ o] grsr, Yo e H Q)2 (3.4)
Partition the interval T as 0 =ty < t; < ... <ty =T and let Iy = {0} and I; = (¢;_1,1;]
for j = 1,...,M. We consider the case of uniform time stepsizes, that is, 7 = ¢; — ¢t;_1

for every j. To formulate the space-time discretization of (1.2), we introduce the following
space consisting of continuous piecewise linear functions in time with values in X and V7,

Xhi = {pne € C(L, X]) : prlr, € PHI;, Xp)},
Vi = {vne € C(L, V) wpilr, € PHIL V)Y,
and the space of discontinuous piecewise constant functions in time with values in X} and
Vi
Xiw = {pue € L(1, X3) : pricl1, € P05, X)), paic(0) € X7},
Ve = {one € L2(I,V}) s vnglr, € PO(1;, V), van(0) € Vi)
Here, P"(I;, X) is the space of polynomial functions in I; of degree at most r with values

in a Banach space X.

3.1. Discretization. Define the multilinear form any, : X5, x V5, x XJ, x V;k — R by

ank(Dhk, Vnks Ohk, Yui) = (OePhis 0nk) 1 — (Aivone, ©nk)1 + (0:Vnk, i) 1
+ (Pris div by )1 + (Pre(0), ©rk(0)) + (Vrr(0), 205, (0)).

For the discretization of the state equation (1.2) with a given control upy € Upg, we consider
the following: Find (pak, vnr) € X}, x V7, such that

ank(Phk, Uk, Ohk> ur) = (Unk, Pni)1 + (o, ©rk(0)) + (vo, 95, (0)) (3.5)

for all (@i, PYps) € Xip ¥ V;k Here, Uy, C U and different possible choices will be
mentioned below. The corresponding discrete optimal control problem reads as follows

min  J(unk, Prk, Vnk) subject to (3.5). (3.6)

Unk EURK

As in the continuous case, by means of the discrete control-to-state operator wupg +—
(pri(unk), Vi (upk)) and the discrete reduced cost functional

Jnk(Unk) = J (Unk, Pk (Unk ), Vnk (Unk)),
(3.6) can be reformulated as
min jkh(uhk). (37)

Uk EUnk
The first order necessary and sufficient condition for @p, € Upi to be the optimal con-
trol is jj . (Unk)dun, = 0 for every dupr € Upp. In terms of the solution (whk,yYp,) =

(whk (unk), Yng (unk)) € X5y ¥ V;k of the discrete adjoint equation

ank(Enkes Mpk> Whics Yi) = (ks Pk (Unk) — Pa)1 + BN Uik (Unk) — V)1 (3.8)

for every (&nk,Mpi) € XJp X Vi, the first order directional derivative of the discrete cost
is given by

-/

Ine (Ui )0unk = (Yunk + Whi (Wnk) 1, Sunk) 1,
for every upk, oupk € Ung-
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Remark 3.1. Let us mention a possible discretization of the control space. Let upy be the
solution of (3.7). With the choice Upy = X;k, we have i, = —y ‘wpi(ank). On the other
hand, if we take Upy, = X}, then tpy = —y~ Hppwpg (Ung), where Iy, : X}; — X7, 1s the
projection operator such that

(Ihxwhi, rk)1 = (Whi, PrE)T, Ywn, € Xpp 0 € Xpop.

Let us now express the discrete problem (3.5) more explicitly. Though (3.5) is formulated
globally in time, it results in a time-stepping scheme. By approximating the time integrals
through the trapezoidal rule we obtain a variant of the Crank-Nicholson scheme. Here, for
the discretization of the control space, we choose the same discretization as for the pressure,
that iS, Uhk = X;;k

We follow the usual strategy of discretizing the optimal control problem (2.5), that is,
by discretizing explicitly both the state and control spaces. Another quite popular method
is the so-called wvariational discretization introduced by Hinze [18]. In this discretization
concept, the state space is discretized while the space of controls is not. Although the control
lies in a continuous control space, it is a discrete object since it is implicitly discretized in
terms of the discrete adjoint variable and through projection.

Define the bilinear form b : Vi x X7 — R by

b(vh, pn) = (div s, pp).

In the following, a superscript will refer to the value at the time nodes, for example, p"™ =
Phk(tm) and ™ = vpi(ty,). Also, let xs be the indicator function of a set S.

Let ¢y, € X} and v, € V. Taking oni = X1,,n and ¥, = x1,,%, in (3.5) we obtain
the following: For m = 0 we find

(pousoh) = (po, ¥n), (voﬂdjh) = (1’07"/’h) Von € Xy, ), € VZ, (3.9)
and for m =1,..., M we have
1

—(" =P on) — 1b(vm +o" o) = 1(Um +u™ " on),  Von € X,

21 2 (3.10)
;(Um — 0" y,) + §b(1/’h»pm +p" ) =0, Vi, € V7.
If upg = 0 then this scheme preserves the energy at every time step, that is, [|[p™|]>+|v™|* =
lP°112 + [|v°]|? for every m.

For the realization of the discrete adjoint equation (3.8) as a time-stepping scheme, we
take &pk = dm&n and 1y, = ¢mMy,, where &, € X, 0, € V. Further {¢,, : 0 <m < M}
are the linear Lagrange elements (hat functions) with respect to the temporal partition, to
obtain the following: For m = M we have

1 1 e’ .
(& w™) + 50(y™, ) = S0 =i’ €n), VE € X,
1 M 1 M B, m M (38.11)
;("h,y ) — §b(nh,w )= 5(” —vg,n,), Vn, €V,
Form=M —1,...,1 we have
1 m m+1 1 m m—+1 m m r
;(ghaw —w )+§b(y +y ,fh):a(p — Pa 7£h)7 theXha
1 . 1 X (3.12)
;(nh»ym - mer ) - §b(nhawm + mer ) = ﬂ(vm - v?:nh)v vnh € V;u
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and for m = 0 we have

(€ w” — ') + 26" 6) = S0 &), Ven € X7,
(3.13)

0

Nl

(1 8° — ") — b0 ') = D (0* —wm,), i, € Vi
Note that the fully discrete adjoint system (3.11)-(3.13) is an approximation of (3.8) and
under appropriate regularity assumptions the error between the solutions at the time nodes
is second order in time. In contrast to the usual Crank-Nicolson scheme, we have half-steps
at the first and last time-steps and the right hand sides are approximated by the box-rule.

The existence of solutions for the fully discrete state and adjoint equations can be estab-
lished immediately by induction over m and the fact that for each m the system matrix is
injective, hence bijective since the associated linear system is finite-dimensional and square.

Due to the approximation of the integrals, the solutions of the above discrete state and
adjoint equations are different from the original Petrov-Galerkin formulations (3.5) and
(3.8). However, by using an appropriate approximation of the cost functional, we will see
below that the corresponding adjoint equations corresponds to the system (3.11)-(3.13).
Consider the discretized cost functional

M—-1

at (1 m m 1

hauntns o) = 5 (100 = 2812+ 30 o™ = P+ G - 1?) 1)
m=1

BT (1 = 1 b
+ (G000 = o1 3 o = o+ o = 017 + Ju
m=1

Here the tracking part of the functional is approximated by the trapezoidal rule, while the
control cost is computed exactly. Set

jhk (uhk) = Jhk (Uhkvphk (Uhk)a Uhk (uhk))o

Given upr € Upg, the first order derivative of the reduced cost jpir in the direction of
dupp € Upy is given by

j;lk(uhk)(?uhk (315)
M-1
—ar( (0 — 1%, 65°) + > " - pop™) + LM — g, 6p™)
2 d» ] d» ) d >
1 = 1
+ 57(2('00 — v, 0v%) + Z (v™ — v ™) + i(UM — v, 5'UM)> + v(unk, Ounk) s
m=1

where (0ppk, dVRE) = (Prk (dUunk), Vak(dupk)). We claim that
e (unr)ouny, = (Yunk + Wik, Sung)r, (3.16)

- o
for every upk,0unk € Upk, where (wik,Yni) = (Whi(unk), Yni(unk)) € Xpj X Vi is the
solution of (3.11)-(3.13). Because we are in the unconstrained case, it is enough to prove
the claim in the case where dp° = 0 and 6v° = 0. First using (pn, ;) = (W™, y™) as a test
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function in the discrete state equation (3.9) and (3.10) with u™ replaced by du™, we obtain
l T T
S = Z {(6p™, w™) — =b(6v™, w™) + (60, y™) + =b(y™,0p™)}
— 2 2
M T T
= Z{((gpm—17wm) 4 §b(5vm—17wm) 4 (5vm—17ym) _ 5b(ym’(spm—l)}
m=2

M
+ )0 (0w um T w™). (3.17)

m=1

Do S

Because duyy, is piecewise linear in time and wy,y, is piecewise constant in time, the trapezoidal
rule applied to (dunk,wrk)r,, is exact on each subinterval I,,, and thus

M
> %(‘mm +0um T w™) = (Sung, whe)r-
m=1
On the other hand, taking (£,,m;,) = (6p™, dv™) as a test function in the discrete adjoint
equation (3.11)-(3.13) we have
M-1 - -
S = S {Gr™ wm ) = Zh(op™, g™ + (G0, y™ ) + Th(ou™, wm )}

m=1
M—1

+ Z {at(p™ — pi', 0p™) + pr(v™ — v}, 0v™)}
m=1

T T
M gl M)+ O (0wl 50, (319)

Reindexing the first sum in (3.18), comparing to (3.17) and using (3.15) proves claim (3.16).
As a consequence the process of discretization and optimization commute for the above
Petrov-Galerkin approximation.

3.2. Hybridization. We discuss a hybridized formulation of the mixed finite element method
discussed in the previous subsection. Following the idea in the elliptic case [2], we relax
the continuity of the normal component of the velocity along the interelement boundaries
by introducing Langrange multipliers on each of the interior edges. The advantages and
disadvantages of hybridization will be discussed in the numerical section. We recall the
discontinuous Raviart-Thomas finite element space

Y ={v, € Vo:up|x € P2@xP, VK € T}
and the space of multipliers
My = {\y € L*(&}) : Aple € P Ve € &}

where &/ is the set of all interior edges of T,. The spaces Y7, f’zk, My, and Mﬁk are
defined analogously as before. Here r is a nonnegative even integer. Let II} € L£(X }TL'H, M)
and P,TQ S £(Xg+17X,:72) be the L?-projections onto M} and X}T;Q, respectively. Also,
define RZH M x X — X,:H according to

Iy Ry (Anypn) = Ans

P£_2(RZ+1(Ahaph) 7ph) = Oa for r Z 27

for each (Ap,pr) € M x X7. In the case r = 0, we simply write R} \j, instead of R} (An,pn).
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Define the bilinear forms by, : Y}, x X7 — R and dj, : Y}, x M] — R by

bh(vn,pr) = Y / pn div oy, dz
KeT, VK
dh(vh,)\h) = Z / [’Uh] . I/)\h dx,
ecgi V¢
where [v}p,] is the jump across the edge e, and the corresponding bilinear forms by, y : Y7, X
Xp, = Rand dpr: Yy, x MJ, — R for time-dependent variables

bh,1(Vhis Phk) = /Ibh(vhk(t)aphk(t))dt

dh,I('Uhka )\hk) = /jdh (’Uh]~C (t), Ak (t)) dt.

Also, consider the multilinear form apny : Xj, X Y3, x M. % )N({L’k X f’;k X M,Zk - R
defined by

ank (Dhi, Vhks Abk> Phk, ks k) = (OeDhk, Phi) 1 — On 1 (Vnks ©nk) + (Op0ni, ¥)1
+ bn, 1 (Vs Prk) — dn 1 (Vs iak) 4 di 1 (g Ank)
+ (Pri(0), 91k (0)) + (V1k(0), ¥44(0)) + (Ark(0), pri(0))-
The hybrid formulation of (1.2) that we consider is the following: Find (ppk, Vnk, Ank) €
Xpp x Y x My, such that
ank(Phks Vnks Ahks Phks Whk» Bhk)
= (unk; k)1 + (Pos Prk(0)) + (vo, Pk (0)) + (Ao, wni(0)) (3.19)

for every (gp{hk,t/)hk, Uhk) € X,Ck xf"zk xM,’;k. We take \g € L%(E}) such that Ao, = pole for
every e € &,. This is a natural choice since physically, the Lagrange multiplier approximates
the trace of the pressure on the interelement boundaries.

For the hybrid formulation, the discrete reduced cost functional is defined by

Ju(unk) = J(Unk, Pak (Unk ), Uik (Unk))

where (Dhk, Unk, Ank) € Xip X Y, x Mg, is the solution of (3.19), and the corresponding
optimal control problem is given as

min  jg(upk). (3.20)

Uhk GX}TLzl

Notice that the space X Z;l is used as a discretization of the control space. The motivation
of this choice originates from the case of elliptic PDEs, where the post-processed Lagrange
multiplier posseses better convergence properties than the computed scalar state upx, see
[2] for instance.

To compensate the additional degrees of freedom arising from the inter-element Lagrange
multipliers, we will solve the discrete state equations with an additional penalization term,
at the expense of an additional error. As a result, the corresponding linear systems at each
time step can be reduced. For this purpose, we replace the form ayx by the form

a5, (Phkes Vhks Ay Phks Whik hk) = Ghik (Dhk, Vhk, Ak, Phies Whiy k) + €50, 1( Ak hk)-
where sp, 1 : M}, x M}, — R is given by

st Ovcgna) 1= [ s Oue(®) )t = 5 [ [ Natynatyasa

e
ec&y
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This penalization is adapted from the case of elliptic equations, see [26] for instance.
With the above penalized discrete state equation, the first order directional derivative of
the discrete cost is given by

I (ung)oun, = (Yunk + whr(unk), Sung) 1,
for every wupng,duny € Xjt, where (whk, Ypk, pnk) = (Wi (Unk), Yp(unk), pnn(unk)) €
- 2 -
X x Yy, x Mj, is the solution of the penalized discrete adjoint equation satisfying the
variational equation

A Enkes ik Chkes Whiks Ynges k) = (Enkes Pk (Unk) — pa)1 + BN Yk (unk) — va)r (3.21)

for every (Enk, Mg, Chk) € Xpp X Y X M7, However, instead of solving the above ad-
joint equation, we replace the discrete pressure ppi(upi) by the post-processed Lagrange
multiplier RZ+1(>\hk (uhk),phk (uhk)).

Using a similar process as in the mixed formulation, we have the following time-stepping
formulation of (3.19) if we take vpr = Pm@n, Ynp = Om¥y and ppg = Gmpin, Where
on € X7, ¢, €Y} and py, € MJ: For m = 0 we have

(poa¢h) - (pOaQDh)v (’anwh) - (v()awh)v (>‘O7H’h) = ()‘Oﬂlu‘h)

for all v, € X;, 4, € Vi, un € M] and for m =1,..., M we have

- 1 m m— 1 m m— r
(p™ —p™ 1,s0h)—§bh(v +v 1,<ph)=§(u +u™ " on), Ven € X,

Nl

1
o™ — ,U'm—l7 +2p , m + m—1
( Yn) + Son(n, p™ +p™7) (3.22)

1
+ idh(d)h?)\m + Am_l) = 07 v¢ia € YZ’

dh(varvm*l,,uh) 7€Sh()\m+)\m71,,u,h) =0, Yupe€ M;:

Taking Enx = Gmns Mg = GmMy and Chk = G Ch, where &, € X7, my, € Y and ¢, € M[
in (3.21), the discrete adjoint equation of the penalized problem is the following: For m = M
we have

e w™) + by ) = SR OM M)~ pl &), Ve € X,
i 8

T 2
dn(y™, Cn) + esn (G, ™) =0, VG, € My,

1 1 .
(nhu yM) - §bh(nh7wM) - §dh(nhvuM) (UM - Ué”ﬂ?h)a VTIh € Yh7 (323)

form=M—1,...,1 we have

1 1
—(&n ™ — w™ ) + Son(y™ + y" &)

= (RPN — Pt &n),  VEn € X,

1 1 1

—(,y™ — y" ) - 2 0n (1, w™ + w™ ) — S (1™ + ) (3.24)
= ﬁ(’vm - len7,th)7 V'r]h S YZ,

dh(ym + ,ym-i-l’ Ch) + ESh(ChnU/m + :u’m+1) = 07 VCh € M}TLu
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and for m = 0 we have

1 1 «
— (& —w') + ibh(ylagh) = §(RZ+1(>\07PO) —p3,&n), Ve, € X;,

5(”0 - vga nh)7 Vnh € Yq}ﬂw (325)

( 7<h> 758h(€h7 ) (Cha :u’o) = 07 VCh € M;;

1 1
(¥ —y') — fbh(nh,wl) — §dh(nh,u1) =

bl =

If € > 0 then one can see that the system is coercive, hence, existence follows from the
Lax-Milgram Lemma. If € = 0 then one can prove the existence of a triple (p™, v™, A™) by
induction using a similar method as in the elliptic case, see for instance [28]. Further, if the
initial discrete velocity is chosen in such a way that v° € V7], then it follows that v™ € V7,
for every m. In particular, this implies that the pressure and velocity components of the
solution to (3.22) with e = 0 are equal to those of (3.10). Indeed, this follows immediately
from the fact that if v, € Y7, then dp,(vp, up) = 0 for every up € M} if and only if v, € V7,
see [2] for the proof. The said remark also applies to (3.23)-(3.25).

Observe that the above discrete state and adjoint equations, without the penalization
term, are the hybridization of the discrete state and adjoint equations in the mixed for-
mulation. This means that discretization and optimization commute even in the hybrid
formulation.

4. ERROR ANALYSIS FOR THE MIXED FORMULATION

In this section, we prove a priori error estimates for the solution of the continuous optimal
control problem (2.5) and its discretization

Hg} Jnk(unk) == Jin(Unk, Prk(Unk) Uik (Unk)) (4.1)
Uhk

where (pri(unk), Vik(unk)) € Xi) X Vi, is the solution of the fully discrete state equation
(3.9)—(3.10). To do this, let us also introduce the following semidiscrete optimal control
problem

gleigjhk(u) 1= Jnk (w, prr (), vk (u)). (4.2)
Denote by @ps and uj, the solutions to (4.1) and (4.2), respectively.
Lemma 4.1. Let X be a Hilbert space. Then for each u € C(I,X) such that u|;, €
P, X) for allm =1,...,M we have

Jull} = S (@) + S (DI + 2TZ{nu 2+ (ultm) u(tm-1))} (43)

In particular, it holds that

M
-
5 Z ) + utm—1)lI* < Jullf. (4.4)

Proof. Let {¢m}M_, be the linear Lagrange basis functions on I with respect to the above
partition so that ¢J (tk) = J,5x. Then we can write u = Z% o @mu(tym). Using this repre-

sentation of u along with the identities ||y ||* = &, (¢m, dm—1) = 5 and (¢, ¢) = 0 for
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|m — p| > 1 we obtain (4.3). Expanding the norm in the sum yields

M
7Y lultm) + ultm—1)I

M
= 7[w(O)* + 27 > {llultm) > + (w(tm), ultm—1))} = 7llu(T)]*.
m=1

from which the estimate (4.4) follows. O

Recall that the solution (ppr,vnk) can be written as

M M
Pk =Y bmp™s k= Y Gmv™
m=0 m=0

where p™ = ppi(t™) and v™ = vpk(t). Therefore, we have the estimate
< m m . .
[prillr + lvrkllr < Cr nggmagM{Hp |+ [lo™ (I} (4.5)

To establish the stability of the semidiscrete state equation, we shall use the discrete
analogue of the Gronwall lemma: For nonnegative numbers u,,v, and w,, if u, < v, +
Z:;é wyuk, then u, < v, exp(zz;é wy). For a given control u € C(I, L*()) we denote
its piecewise linear Lagrange interpolation by

M
Pru = Z Omutm).
m=0

Obviously, Pru € C(I, L*(Q)) and Pru

1,, € P, L?(Q)) for each m =1,..., M.

m

Lemma 4.2. Let (ppi(u), vpi(u)) be the solution of the fully discrete state equation (3.9)-
(3.10) with control u € WH1(I,L?(Q)). Then there exists a constant Cr > 0 independent
of u such that for every 0 < 7 <T we have

m m 0 0
omax {lp™ |+ [lv™ [} < Cr(lp”ll + 17l + 1 Prullp)- (4.6)

In particular, it holds that
Ik (@)1 + ons(@)lr < Cr(llp°)] + 10°] + | Prull). (4.7)
Proof. Using the test functions o5, = p’ + p’~! and 1, = v’ + v'~! in the discrete state
equation (3.9)-(3.10) and the Cauchy-Schwarz inequality we obtain
1%+ 1> = 112 = oM 1P < 7l + a2 20 (|l + 1)

for every 1 < £ < M. Taking the sum over all 1 < ¢ < m for a given 1 < m < M, one can
deduce that

m m
o™ 1+ o™ 12 < P12 + 100017 + 7 llu’ +ufHP2 4 D arllpf].
{=1 £=0

Applying the discrete Gronwall lemma, the inequality 7(m + 1) < 2T and the fact that Pru
and u coincide at the temporal nodes we obtain

m
™I + o) < esT(|p°||2 O S Pl + Pfu“u?).
=1

By Lemma 4.1, we obtain the estimate (4.6) after taking square roots. Finally, (4.7) is a
direct consequence of (4.5) and (4.6) O
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Now let us prove a priori error estimates for the discrete state equations under additional
regularity assumptions on the state equations and the control.

Theorem 4.3. Let (ppi(u), vpi(u)) be the solution of the fully discrete state equation
(3.9)-(3.10) for a given control w € WH(I, L*(Q)), and suppose that p € H3(I,Xg) N
HYI,H™(Q)) and v € H3(I,Vo) N HY(I, H™t1(Q)?). Then there is a constant C > 0
independent of T and h such that

lpnse(u) = p(w)|[r + Jvnk(w) —v(u)|r < C(r* + A7,
Proof. Tt is enough to prove the following estimate

lp"™ = p(tw)ll + 0™ = v(tm) || < C(r2 + h™1)

for each 0 < m < M. First, let us separate the error into discrete and projection errors
according to

P = p(tm) = €' + &' = (p" — mp(tm)) + (Tap(tm) — p(tm))
V" —w(tm) =7+ TR = (07 = ppv(tm)) + (R0 (Em) — v(tm)).
The projection errors can be estimated from above thanks to (3.3) and (3.4) as follows
el + 70 < CR™ (Ipll e (r i) + 0llzoe (a1 ()2))- (4.8)
On the other hand, for each 1 < m < M, the errors é)" and 7" satisfy the equations
1 Am sm—1 1 ~m ~m—1 1 ~m ~m—1
;(eh =& en) t ;(Th =R Pn) — §b(7’h + 7, on)
1 AN A — m m m
+ 55(11’;”% + €p 1) - 7(51h390h) + (€2h7¢h) - (€3h7¢h)

where the terms on the right hand side are given by
1 1 1
ey, = = (p(tm) — p(tm-1)) — §5tp(tm) - §atp(tm—l)

sgllz = (phv(tm) - 'U(tm) - phv(tm—l) + v(tm—l))

— =

1 1
eny, = ;('v(tm) —V(tm-1)) — iatv(tm) - iatv(tm_l).
By rewriting the term e7}, as the integral

1
€ = gy | (bm = 8)(tms = )07p(s) ds

and similarly for €%} , we have the estimate

leThll7,, + llesillZ,, < CT(Io/p(s)lIF,, + 107 v(s)IIE,,)-
On the other hand, from interpolation theory we likewise have the estimate
%m S CT_QhQ(T‘-‘rl) ||’U(tm> — v(tm_1>||i2(Im,H’"+1(Q)2)

< CTRUINO| 3 s, iy

e

Taking the test functions @y, = é* + &' and 9, = 7" + 7'~ " and applying the same
strategy as in the previous lemma we obtain
m—1
& 117 + 17517 < Co(r? + R + ) 4r|jég )%,
£=0
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where Cr is a constant depending on [|07p(s) ||z, [|07v(s)||r and [|8v||2(r,mr+1(0)2)- There-
fore by the discrete Gronwall’s Lemma we have

lER | + 1731 < (72 + A7+,
Combining this inequality with (4.8) proves the desired estimate. O

Recall that (wpy(u), yp,(uw)) € XJ, ¥ V', is the solution of the corresponding discrete
adjoint equation with the pair (ppi,vnr) = (Prr(w), var(w)). One can write

M M

m m

Whi = E X1, W Yue = E X1, Y
m=0 m=0

where w™ = wpk (™), Y™ = Yui(tm) and x;,. is the indicator function on I,,, so that

< m ™|}
lwonillz + lynills < Cr | max {{lw™[| +[ly™ ][}

Lemma 4.4. Let (wpi(u),y,,(u)) be the solution of the fully discrete adjoint equation
(3.11)-(3.13). Then there exists a constant C > 0 independent on u such that

m m
< _ _
(Dax o™l +lly™ 1} < Clpas = pallz + vk = valls),

and thus we have
lwak (W)l + [[yne (W)l < Cllpak(w) — pallr + [[vre(u) —vallr)

Proof. The proof is similar to the one given for the discrete state equation where we take
(&n,mp) = (W™, y™) and (&,,m,) = (W™ +w™ T y™ +y™F) for 1 <m < M — 1 as the
test functions. O

Theorem 4.5. Let (wpi(u), Yy, (w)) be the solution of the fully discrete adjoint equation
(3.11)-(3.13) for a given control u € WH(I,L3(Q)), and assume that w € H3(I, Xo) N
HYI,H™Y(Q)) and y € H3(I, Vo) N HY(I, H"(Q)?). Then there is a constant C' > 0
independent of T and h such that

lwnie(u) = w(w)llz + llyns(w) = y(w)llr < C(r +h").

Proof. As in the proof of the previous theorem, it suffices to establish the following a priori
estimate at the time nodes

[w™ —w(tm)|| + Y™ = y(tm)ll < C(7 + A1)
for each 1 < m < M. Using a similar decomposition as in the case of state equations, we
only need to estimate the error terms €)' = mw(ty,) —w™ and 7" = pLY(tm) — ym

First we consider the case where m = M. Recall from (2.10) that for each & € H(I, X)
and n € HY(I, V) such that £(0) = 0 and 1(0) = 0 we have
(0§, w) +b(y, §) + (9m, y) — b(n, w) = alp = pa,§) + B(v — va,m).

Taking £ = ¢p&, and n = dumy,, evaluating at ¢ = T and using the fact that w(T) =0
and y(T") = 0 yields

a(p(T) = pa(T), &n) + B(u(T) — v4(T),my) =0,
for every &, € X and n;, € V. Using this equation together with (3.11) and the fact that

eM = —wM and 2 = —yM we obtain
) R oT . BT .
[én ||2 + (17 ||2 = 7(p(T) —phk(T)’eﬁ/I) + 7(’0(T) - 'Uhk(T)vrhM)'

Applying Cauchy-Schwarz inequality and Theorem 4.3 we obtain
M
e’ | + 173" || < C72.
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In the case where 1 < m < M — 1 we follow the same method as in the fully discrete
state equation to get

1 ~m ~m 1 ~m ~m 1 ~m ~m 1 ~m ~m
;(Sh,eh —epthy + ;(nhﬂ'h —Pp )+ §b(7'h +RpT ) — §b(nhaeh +eérth

= (&n,€1h) + (M, €31) + (M, €53) + a(p(tn) — p™, &n) + B(v(tm) — 0™, )
+ %(8tp(tm) - atpd(tm)agh) + g(atv(tm) - 8tvd(tm)v nh)

where €7}, €5}, and €%}, are defined by

0 = ~(0tm) = wltm1)) = 3000 () = 5000t 1)
5 = ~(pnyltm) — ltm) — pyy(tmer) + yltsn))
= ~ltn) — y(tms1) = 50(tn) — 300y (tms).

With these quantities can now proceed as before to establish the desired a priori estimate

by taking the test functions &, = & + ¢ and n), = #" + 7", The main difference is

that the last two terms in the above equation are estimated from above as
T(10ip(tm) = Orpate)|| + 104 (tm) — Opva(tm)]])

< C1([lp = pall 1 (1041,x0) + 1V = Vall 21 (1041, x0)2)-

This leads to a linear order with respect to 7. O

Theorem 4.6. Let (4,p,v) and (Unk, Pk, Ong) be the solutions of the continuous and
fully discrete optimal control problems (2.5) and (4.1), respectively. Suppose that u €
H(I, H™(Q), p,w € HY (I, Xo)nH' (I, H™(Q)) and 0,5 € HY(I, Vo) H (I, H™+(Q)?).
Then

@ — ankllr + 1P = Prrllr + 10 = Opellr < C(r + A"

Moreover, if (w0,y) and (Wpk, Ypy) are the corresponding optimal adjoint states, then
10 — @nillr + 117 = Gnalls < Cl7 + R,

Proof. The proof follows from the stability estimates given Lemmas 4.2 and 4.4, the a priori
error estimates in Theorems 4.3 and 4.5, and by adapting the methodologies presented in
[23] in the case of parabolic equations.

Let P/, be the orthogonal projection from U onto Xj, and let 4n; = PJ, 4. Applying
the error estimates (3.3) and (3.4) we have

line — ullr < C(r> + A1), (4.9)
By optimality, we deduce that
3" (@) (g — ng) = Jhy (i) (@nk — ar) = Jpe(@nk) (Gnk — k) = 0. (4.10)

According to the linear-quadratic structure of the optimal control problem and (4.10), we
obtain

Yane — anll7 < 33 (Whi) (@nk — Gnk, Gak — Unk)
= Jron (i) (g — i) — o, (Gnke) (Unk — Uni)
= Jron (i) (g — i) — o, (@) (ke — Gnk) + G (@) (Gnk — Gnk) — §' (@) (Gnk — Gnr)-
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Utilizing the representations of discrete reduced cost in terms of the adjoint variable wp,
we have the following estimate
Jin (@) (@nk = k) = Gin (@) (@ns — )
= (Yunk + Wk (unk), Unk — Unk)r — (Y8 + Wai (W), Uk — Unk)1
< {(Wllank — allr + llwnk(@nr) — wak (@)1} Gk — Gnk 1.

Using the equations satisfied by wp (Gng) and wpi (@) we obtain
lwnk (k) — wak (@)1 < C([prk(tnk) = prr(@)1 + [[vak (k) — var(@)]lr)
< C|Pr(tink — )1
= C(llank —ullr + llu — Pral|1)
< Cllane — ullz + 7|l (1,2 (0)))
where C' is a constant independent of h and k. Similarly, it holds that
Jron (@) (ke — i) — 5 (@) (@ns — Gnk)
= (Y + wpk (@), Grk — Unk) — (Y8 + w(Q), Grk — Unk)
< Cllw(u) — we (@)1l dnk — tnkl 1
Therefore, by the triangle inequality,
[tnk — Unkllr < Cy (7 + lldnk — allr + lw(@) — whe(@)]1)-
According to Theorem 4.5 and the estimate (4.9) we obtain
[ank —ull; < Cy(r+ R, (4.11)

The error estimate for the optimal states can be established by writing (p — ppr, © — Vp) =
(p(@) —pni(a), v(w) —vnpg (@) + (Pre (@) —Prk (Unk ), Ve (@) — vk (Tnk)), the stability estimates
for the discrete state equations given in Lemma 4.2, and the error estimate (4.11) for the
optimal controls. Similar decompositions for the optimal adjoint states can be done to prove
the corresponding a priori error estimates. O

5. IMPLEMENTATION WITH THE LOWEST-ORDER RAVIART-THOMAS ELEMENTS

In this section, we present the corresponding linear systems for the proposed Petrov-
Galerkin mixed and hybrid finite element discretization of the state and adjoint equations.
A gradient algorithm approximating the solutions of the fully discretized reduced problem
will also be given.

5.1. Linear Systems. Consider a fixed triangulation 7. Let 7, = {Kj, : 1 < j < N}
be the list of triangles in Tp, and let &, = {eg, : 1 < € < My} be the list of edges with a
given fixed global orientation. Given an edge ey, there exist two triangles say Kj(,), and
Ki(¢)n sharing the common edge ey, or there is one element K4, containing it. Let x;)p,
and X;(y), be the nodes in Kj), and K;), opposite to e, respectively. Let Kj), be
the element that contains ey, having the same orientation with ey, and let vy, be the unit
normal inward to K, hence outward to Kjy),. On a boundary edge we set vy, = v
where v is the unit outward normal to 9.

First, let us introduce a basis for the lowest-order Raviart-Thomas finite element space,
see [3, 17] for instance. Define

1 _ 1 _
Pon(x) = 5lesnl | Kjonl N(X = X(0n) XK, o — SleinlKicen] H(X = i) XK

where x4 denotes the characteristic function of a set A. In the case where there is only
one element containing the edge ey, we ignore the second term in the above definition.
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Then {1, : 1 < £ < My} forms a basis for V?L. On the other hand, letting w;n = XK;,,
the set {p;n : 1 < j < Np,} forms a basis for XJ). Let C), € RNw*No B, e RMiXNn and
Aj, € RMaxMr he the matrices defined by

(Ch)ij = (@in,jn),  (Bn)ie = (win, divaby,),  (An)ex = (Pons Yrn)-

Now we can write the resulting linear system for the fully discrete state equation. For
m=1,..., M, equation (3.10) can be expressed as

C, -iB! Py C, IBF pmt 4T TCp(u™ +u™ 1)
5Bn Ay v )\ —5Bn A vl 2 0 '

This system may be solved by various methods such as LU factorization. Alternatively, a
reduction can be done by eliminating p” and then substituting it in the second equation.
Performing this process, we obtain the following equation for v™

2
Rfv™ = Ryv™ ! — 7-ZB;L(um +u™ ) — 7B p™ !

and after solving for v™, we can determine p"™ from
pm _ pmfl + gch—lBT(,Um + ,Umfl) + g(um + umfl)
where
+ 7 —1pT
R, =A,+ ZBhCh By, .

Note that C}, is a diagonal matrix hence it can be easily inverted. In fact, the entries of C},
are given by (Ch)i; = 0;;|K;n|. Thus, in the case of uniform triangulations, Cj, = |K|In,
where | K| denotes the common area of triangles in the mesh. Also, since Ay, is symmetric
and positive-definite so is the matrix RZ. Therefore, we can solve for v via the conjugate
gradient (CG) method.

For the approximations of the desired states, we take pgn and vy, the projections of py
and vy in X, and V?Lk, respectively. By doing a similar procedure for the fully discrete
adjoint equations (3.11)-(3.13), we obtain the following: For m = M we have

I} «
Ryy™ = SrAn™ — o)) + B - pi),
« T
WM = S — i) - 26 BTy Y,
form=M —1,...,1 we have

— m m m m a m m
R,Tym =R,y 4 rBLw™ + BTAL(v™ — ) + §Tth(p - i),

w™ = wmt — gCEIB;?(y’” +y" ) +ar(p™ - plf),

and for m = 0 we have
-

Yy =y + §A;1Bhw1 + gT(vo —vY)
ot
2
The discretized cost functional can be computed through, see Lemma 4.1,

a
w =w' = SC By + 570" - 1)

Jkn(Ukh, Pkhs Vikn) = %{Oé(chpo,po) + B(Apv°,0%) + (Cpu’, u0)}

M
+ % ST {a(Chp™ + p™ ), ™) + B(AR (W™ + ™), 0™) + (Cr(w™ +u™ ), u™) )

m=1
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Now we discuss the corresponding linear systems for the (regularized) hybrid formulation.
For this approach, we use the following basis functions (see [3])

12’3j+1,h(33ay) = (2,0)xk,,
'2’3j+2,h(33ay) =(0,9)xk;
{p3j+3,h(33a y) = (. — T,y — J;)XK,
for j = 1,..., Ny, where (Z;,y;) is the centroid of the triangle K; in the mesh 7,. The

set {'Jth 1 < j < 3Ny} forms a basis for Y. Let M, be the number of interior edges

and for simplicity, we suppose that they are the first ]~\~4h in the list of edges &,. This is of
course not necessary in the implementation. Define A;, € R3V»>X3Nn B, ¢ R3NaXNr and
Dy, € R3Nw M by

(An)ke = @pioPen)s  (Br)je = (on, divabyy),  (Dn)ie = /SK(QZ) )ﬁ)z VX, dx

for 1 < k0 < 3Np, 1 <j <N, 1<ir< M, and K(ﬂzg) is the element containing

the support of ¥,. Furthermore, from the basis {@s; }?gf of X} consisting of discontinuous

linear Langrange elements on 7j, we define the matrix F), € RV»*3Nn by

(Fn)ie = (©ni, Phe)-

Before we proceed, let us discuss an efficient implementation of post-processing the Lan-
grange multiplier. For each element K, denote by ey for k& = 1,2,3 the sides of K

following the given orientation of the element. Given A, € MY, let A, € R3M satisfy

An3iek = Anjce)

for each j =1,..., Ny and k = 1,2,3. By introducing the N; x 3N}, matrix

-1 1 1
Ly=1Iy, ® 1 -1 1
1 1 -1

where Iy, is the identity matrix of size N; and ® is the Kronecker product, one can easily
check that

R}I\y = L.

Following the same procedure as in the mixed formulation, the linear system for the
regularized hybridized discrete state equations (3.22) are

~ ~ 2 ~ ~
R;vm = R}:vm_l — 7—ZB;LF;L(U"’ + um_l) —7Bpp™!
pm :pmfl + %C}:lBT(,Um + ,vmfl) + th(um + umfl)
1
AT = _)\m—l 4 gD’ZC(,Um +vm—1)
form=1,..., M, where
Dt i s ST o T T
Rh = Ah :l: ZBhCh Bh :l: %Dh‘Dh .

The approximations of the desired states that we take are the projections pgn and vgy, of
pa and vg in X}, and V%k, respectively. Similar representations can be obtained from the
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hybridized adjoint equations: For m = M we have

~ ~ o ~ ~
RZyM = gTAh(’UM — ’U(Jiw) + ZTQBhFh(Lh)\M —pg/l),

@ ~ T
w" = gTFh(LhAM —py) - §Ch "By,
1
,uM = _ngj;yMa
form=M —1,...,1 we have

3, H—, m m 1 m m a D im m
R;ym =R,y L4 rBruw™ + BTAR (V™ — V) + ETQBhFh(Lh)\ - ),
w" =t = 2O B (y" 4y ) 4 arFu (LA™ = i),

m m 1 m m
"t =—p +1—ng(y T ym),

and for m = 0 we have
T 15 B
y' =y + S A (Buw' + D) + 57(0° = vg)
@ ~ T 15
w® = w! + §TFh(Lh)\O —pY) — §Ch 'Bly!,
0 T 1_THr 1
=——epu — =Dy .
H D) H 9 h Yy
The corresponding reduced cost can be also calculated as in the mixed case, however, we
replace the discrete pressure ppi by the post-processed Lagrange multiplier R}L)\hk.
It is important to point out that the efficient solution for v™ by the CG method requires
the use of a preconditioner. In our implementation we use RZ without its last term as
preconditioner, that is,

~ 2 ~ ~
Py =An+ %th,;lB{.

The choice of our basis functions for Y% and X? imply that the matrices A, and By, are
diagonal, hence, the preconditioner P, is also diagonal and therefore P, L can be easily
computed. This leads to cheaper computations in the use of the preconditioner for the CG
method.

5.2. Optimization. We present the algorithm for numerically solving the discrete opti-
mization problem using the Barzilai-Borwein (BB) version of the gradient method in [6].
We only present the hybridized formulation, the case of mixed formulation being similar. In
the following, we denote by (pi ., v}, Aflk) and (w},, Yb,., i) the discrete state and adjoint
variables corresponding to the control uj, in the ith iteration.

The BB gradient method can be viewed as the secant version of Newton’s method and is
known to be superlinearly convergent in the quadratic case for two-dimensions [6]. In step
5, the second iteration for the gradient method is taken from the steepest descent method.
Alternatively, one may consider an inexact line search with a suitable steplength selection
criterion, for example, Armijo’s rule. The steplengths in step 5 are alternately computed,
however, one may choose either of the given formulas for all iterates. Numerical experiments
in [15] shows better performance when using alternate BB stepsizes instead of a single one.
The steplengths are calculated with respect to the Euclidean inner product and norm. In
the computation of the gradients, we used the post-processed Lagrange multiplier of the
discrete adjoint equation instead of the dual pressure.
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Algorithm. BB Gradient Method for (3.20) with Post-processing.

1. Initialize control ugk, tolerance 0 < € < 1, iteration number ¢ = 0,
and maximum number of iterations iya > 1.

Compute discrete state (pi,, vt ., A¢,).

Compute discrete adjoint (w} ., Yb,, i)

Set g; = —(vuly, + e R phy)-

If i = 0 take s; = 1. Otherwise, compute

G N

6u;lk = u;lk - ué;cla
69" = gi — gi—1,
and take
_ (Ot 0g) /169" (1%, if 7 is even
' \6ui |12/ (0ut ., 8g%), if i is odd.
6. Set uyj,! = uj, + sig; and Slolve (Pﬂgl?v?t?, N )-
Compute cost ji = Jhk (upi,', RRAL vik)-
8. If i > 0 and |j; — ji—1|/4i < € then stop. Otherwise, increment ¢ and return to
step 3. If i = iax then terminate algorithm.

=~

We use the linear interpolant determined by the values of R}J‘Zﬁk at the time nodes, that
is one may replace Il in step 4 by the operator Iy, defined by

M
Mk Ri = > 65 Ry i (tm)-
m=0
Finally, an alternative stopping criterion is ||yul, + HuxRhput, |lr < €, that is, when the
optimality residual is less than the prescribed tolerance.

6. NUMERICAL EXAMPLES

In this section, we present numerical examples illustrating the performance of the above
schemes. In all examples, we utilized a uniform triangulation of the unit square Q = (0,1)?
and a final time 7" = 1. The algorithm presented in the previous section was implemented in
Python 3.6.4 (Python Software Foundation, https://www.python.org/) on a 2.5 GHz Intel
Core i5 with 4 GB RAM.

Example 1. We partition the time domain [0, 7] = [0, 1] into a uniform grid with stepsize
7 = 0.01, and the spatial domain © with mesh size h = 1/2/20, which corresponds to a
triangulation with 441 nodes, 800 elements and 1240 edge elements. The parameters in the
cost functional are a = 10, 8 = 1 and v = 10~°. Each linear system is solved by the CG
method, with a preconditioner in the hybrid case, and stop the loop if the relative error of
the iterates is less than 1072, The BB gradient algorithm is terminated if the relative error
between consecutive cost function values is less than 1076,
For the target states, we take the following functions

pa(t,x) = cos(mt) sin(27z) sin(27y)
va1 (t, x) = 2(1 + sin(nt)) cos(2mz) sin(27y)
Va2 (t, &) = 2(1 + sin(wt)) sin(27wx) cos(27y).
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Nave'd
T
%‘5’ ‘7

FIGURE 1. Components of the desired velocity (second row) and optimal
velocity (first row) in the hybrid formulation at the final time 7" = 1.

FIGURE 2. Numerical optimal controls in the mixed formulation (left) and
hybrid formulation (right) at the final time T' = 1.

In the mixed method, the gradient algorithm converges after 257 iterations with optimality
residual |[yugn + wenl|r = 2.244615 - 107* and a relative error 8.612485 - 10~7. On the
other hand, for the hybrid method with penalization parameter ¢ = 107'°, the algorithm
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FIGURE 3. Desired pressure (lower left), optimal pressure (upper right),
Lagrange multiplier (lower right) and post-processed Langrange multiplier
(upper left) obtained from the hybrid formulation at the final time 7" = 1.

terminated after 237 iterations with a relative error 3.243596 - 10~7 and optimality residual
| yurn + Hpe R pun || = 1.477414 - 1074,

The corresponding optimal costs are given by j* = 2.360099 - 10~! in the mixed formu-
lation and j* = 3.762223 - 102 in the hybrid formulation. Therefore, in this example, the
hybrid method performs significantly better than the mixed method, however, at the cost
of additional computing time. Even though the hybrid method requires less BB iterations,
each iteration takes a longer time compared to the mixed method. This is due to the fact
that the linear systems have larger dimensions, hence more iterations are needed in the
preconditioned CG method at each time step in the solution of the primal and dual state
variables.

Example 2. In this example, we verify the a priori error estimates presented in the previous
section. We take a« = f = v = 1. With a fixed time step 7 = 0.001, we consider uniform
triangulations with mesh sizes hy = v/2/k for k = 10,20, 30,40, 50. On the other hand, with
a fixed mesh size h = v/2/128, we consider uniform time steps 7, = 27% for k = 2,3, 4,5, 6.
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T || — 9|1 |Pri — Bl 1

2 1.97457¢-2 — 2.42642¢-2 —

3 9.87531e-3  0.999638 1.05635e-2 1.199736
4 4.34953e-3  1.182967 5.19673e-3  1.023418
5 2.08948e-3 1.057712 3.79922e-3 0.451900
6 1.18253e-3 0.821268 3.47910e-3 0.126989

T lane —allr 19 —9llz [@nk — @1

272 4.90382e-2 — 2.70641e-1 — 4.87109e-2 —

273 3.59071e-2 0.449638 1.13310e-1 1.254962  3.60907e-2  0.432618
271 1.85337e-2  0.954117 5.59352¢-2  1.019592  1.86964e-2  0.948866
275 9.81962e-3 0.916411 2.77950e-2 1.008929  9.91155e-3  0.915577
276 5.73147e-3  0.776761 1.37523e-2  1.015149 5.78348e-3  0.777172

TABLE 1. Order of convergence for the temporal discretization errors of
the primal, dual and control variables in the mixed formulation with a
fixed mesh size h = \/§/128.

h |Onk — o|I1 |Bni — Bz

V2/10  9.68051e-2 — 5.47729e-2 —

V2/20  2.50667e-2  1.949309 2.31854e-2 1.240246
V2/30  1.12194e-2  1.982651 1.48175e-2 1.104206
V2/40 6.33071e-3  1.989116 1.09365e-2 1.055669
V2/50  4.06061e-3 1.990106 8.68256e-3 1.034275

h [unk — a1 1Une — 9llz [ Wny — ]| 1

V2/10  4.58623e-2 — 6.86261e-2 — 4.58625e-2 —

V2/20  2.17804e-2  1.074277 1.71310e-2 2.002147 2.17611e-2  1.075562
V2/30  1.43633e-2  1.026809 7.25090e-3 2.120440 1.43494e-2  1.027003
V2/40 1.07318e-2 1.013151 3.78227e-3  2.262228 1.07229¢-2  1.012683
V2/50 8.57158e-3 1.007235 2.19437e-3 2.439806 8.56656e-3  1.006143

TABLE 2. Order of convergence for the spatial discretization errors of the
primal, dual and control variables in the mixed formulation with a fixed
time stepsize 7 = 0.001.

Let us construct an exact solution of the optimal control problem (1.1)-(1.3). For this
purpose, we consider the following functions as our exact state variables

P(t, x) = cos(rt) sin(27x) sin(27y)
01(t,2) = 2(1 + sin(wt)) cos(27wz) sin(27y)
Ua(t, ) = 2(1 + sin(nt)) sin(27x) cos(2my)



MFEM AND HFEM FOR OPTIMAL CONTROL OF WAVE EQUATION 25

and the following functions as our exact adjoint state variables
w(t, ) = — sin(nt) sin(27x) sin(27y)
71(t, ) = 2(1 + cos(wt)) cos(2mx) sin(27y)

Ga(t, ) = 2(1 + cos(mt)) sin(27x) cos(27y).

For the exact control we take % = —vy~'w. In order for these to be the solution of the

optimal control problem, we add the source term f = p; — divo — @ on the right hand side
of the pressure equation. On the other hand, we take vg = © and pg = p + o~ (w; — divy)
as our desired states.

In order to compare the exact solutions with the numerical solutions of the discretized
optimal control problems, we used the projections of p, w, @ in X }Lk, and the Fortin pro-
jections of v and y in V,llk as our reference exact solutions. Components of the Fortin
projection are approximated using one-dimensional Gaussian quadrature of order 5. The
temporal and spatial discretizations are given in Tables 1 and 2. We observe the orders of
convergence O(7) and O(h), respectively. Notice that we have an approximate quadratic
order of convergence for spatial discretizations errors for the velocity and dual velocity. This
superconvergence property of the discrete velocity to the Fortin projection of the exact ve-
locity in V,llk has been observed in the elliptic case for uniform triangulations, see [9, 26].

Example 3. We repeat the previous example, but now using the hybrid formulation. In
Tables 3 and 4 are the spatial and temporal discretization errors using the penalization
parameter ¢ = 10710, Likewise, orders of convergence O(7) and O(h) are depicted. Also,
aside from quadratic convergence for the velocity and dual velocity as in the mixed case,
we also have the quadratic convergence of the post-processed Lagrange multiplier to the
optimal pressure. In general, the hybrid method produces smaller discretization errors than
the mixed method.

T [|vne — 01 | R Ans — D1

272 1.91298¢-2 — 2.33391e-2 —

273 9.27560e-3  1.044308  9.34886e-3 1.319888
274 4.31369e-3  1.104520  3.86461e-3 1.274467
275 1.86585e-3  1.209089 1.35711e-3 1.509788
276 1.12349e-3 0.731843  6.85827e-4  0.984619

T |lane — allr |Uni — 9llz | R} fing — |1
272 4.68382¢-2 — 2.61446e-1 — 4.68386e-2 —
273 3.38109e-2 0.470196 1.13340e-1 1.205861 3.39109¢-2  0.465949
2-% 1.81167e-2 0.900166 5.59217e-2 1.019171 1.82437¢-2  0.894353
275 8.92338¢-3 1.021661 2.76304e-2 1.017154  8.91864e-3 1.032501
276 4.63449¢-3 0.945181 1.37316e-2 1.008752  4.69841e-3  0.924652

TABLE 3. Order of convergence for the temporal discretization errors of the
primal, dual and control variables in the hybrid formulation with a fixed
mesh size h = \/5/128.
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h [Ohk — vll1 [R}Anr — D1

V2/10  9.73067e-2 — 3.86323e-2 —

V2/20  2.51530e-2 1.951810  9.94719e-3 1.957447
V2/30 1.12374e-2 1.987174  4.40737e-3  2.007601
V2/40 6.33127e-3  1.994374  2.46261e-3  2.023262
V2/50  4.05998¢-3  1.991202 1.57285e-3  2.009182

he o any —allr 19 —9llz |1R}, fink — o1

V2/10  2.11584e-2 — 6.86047e-2 — 2.11357e-2 —

V2/20  5.92906e-3 1.835355 1.77591e-2  1.949752 6.01040e-3 1.814147
V2/30  3.13590e-3  1.570910 8.09026e-3  1.939094 3.28053e-3 1.493315
V2/40  2.24462¢-3 1.162328 4.78327e-3  1.826791 2.43164e-3 1.040860
V2/50 1.88271e-3 0.787950 3.34550e-3 1.602145 2.09457e-3 0.668716

(10]
(11]

(12]
(13]

14]

TABLE 4. Order of convergence for the spatial discretization errors of the
primal, dual and control variables in the hybrid formulation with a fixed
time stepsize 7 = 0.001.
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