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Abstract. A tensor decomposition approach for the solution of high-dimensional, fully nonlin-
ear Hamilton-Jacobi-Bellman equations arising in optimal feedback control of nonlinear dynamics
is presented. The method combines a tensor train approximation for the value function together
with a Newton-like iterative method for the solution of the resulting nonlinear system. The tensor
approximation leads to a polynomial scaling with respect to the dimension, partially circumventing
the curse of dimensionality. A convergence analysis for the linear-quadratic case is presented. For
nonlinear dynamics, the effectiveness of the high-dimensional control synthesis method is assessed in
the optimal feedback stabilization of the Allen-Cahn and Fokker-Planck equations with a hundred
of variables.

1. Introduction. Richard Bellman first coined the expression “curse of dimen-
sionality” when referring to the overwhelming computational complexity associated
to the solution of multi-stage decision processes through dynamic programming, what
is nowadays known as Bellman’s equation. More than 60 years down the road, the
curse of dimensionality has become ubiquitous in different fields such as numerical
analysis, compressed sensing and statistical machine learning. However, it is in the
computation of optimal feedback policies for the control of dynamical systems where
its meaning continues to be most evident. Here, the curse of dimensionality arises
since the synthesis of optimal feedback laws by dynamic programming techniques
demands the solution of a Hamilton-Jacobi-Bellman (HJB) fully nonlinear Partial
Differential Equation (PDE) cast over the state space of the dynamics. This intrin-
sic relation between the dimensions of the state space of the control system and the
domain of the HJB PDE generates computational challenges of formidable complex-
ity even for relatively simple dynamical systems1. Much of the research in control
revolves around circumventing this barrier through different trade-offs between di-
mensionality, performance, and optimality of the control design. Prominent examples
of the research landscape shaped by the curse of dimensionality include model or-
der reduction, model predictive control, suboptimal feedback design, reinforcement
learning and distributed control. However, the effective computational solution of
dynamic programming equations of arbitrarily high dimensions through determinis-
tic methods remains an open quest with fundamental implications in optimal control
design. In this paper, we present a computational approach based on tensor decom-
position techniques for the solution of high-dimensional HJB PDEs arising in optimal
feedback control of systems governed by partial differential equations. We show that
for evolution equations arising from the semi-discretization of PDEs, our technique
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1As an illustration, consider the simplest double integrator dynamics ẍ = u, whose optimal
feedback synthesis already requires the solution of a two-dimensional PDE. For a quadrocopter model
where the dynamics are described by a 12-dimensional nonlinear dynamical system, the associated
HJB PDE has to be solved in R12. Bear in mind that much of the research in computational PDEs
is devoted to the solution of problems in physical space, that is R3+1, at most.
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scales at a rate which is at most polynomially with the dimension. This scaling al-
lows the computation of accurate feedback laws for nonlinear dynamics with over 100
dimensions. We assess our design over a class of challenging problems, including the
optimal feedback stabilization of nonlinear parabolic PDEs such as the Allen-Cahn
and Fokker-Planck equations in one and two-spatial dimensions, and in the presence
of control constraints.

1.1. The Numerical Approximation of HJB PDEs. Since the seminal work
by Crandall and Lions [18], the approximation of HJB equations through computa-
tional PDE methods has been addressed by a range of discretization strategies, most
notably finite differences, level-set methods and semi-Lagrangian schemes [25]. The
aforementioned techniques have proven to overcome the difficulties associated to the
fully nonlinear character of the HJB PDEs [48]. However, they are inherently grid-
based schemes suffering from the curse of dimensionality. That is, for a multidimen-
sional ansatz defined from a tensor product of 1d objects, the scaling of the total
number of degrees of freedom of the discretization grows exponentially with respect
to the dimension of the HJB PDE. In practice, this makes the problem computation-
ally intractable for dimensions larger than 4. This is a fundamental limitation in the
context of nonlinear optimal feedback control, where the dimension of the associated
HJB PDE is determined by the dimension of the state space of the control system. A
partial remedy to this difficulty is the coupling of grid-based discretizations for low-
dimensional HJB PDEs with model reduction techniques to lower the dimension of the
control system [43, 3]. This approach has been successfully applied to dynamics with
strong dissipative properties, but its overall performance relies on a good state space
sampling and deteriorates for dynamics including transport, delays, or highly nonlin-
ear phenomena [36]. While the rigorous design of numerical methods for the solution
of very high-dimensional HJB PDEs remains largely an open problem, encouraging
results have been obtained over the last years. A non-exhaustive list includes the use
of machine learning techniques [57, 23, 31, 35], approximate dynamic programming
in the context of reinforcement learning [11, 54], causality-free methods and convex
optimization [39, 17], max-plus algebra methods [46, 6], polynomial approximation
[37, 38], tree structure algorithms [4], and sparse grids [16, 26]. A very recent stream
of works [23, 57, 35, 53] has explored the use of machine learning techniques to ap-
proximate high-dimensional nonlinear PDEs. The work [57] proposes the so-called
Deep Galerkin Method, combining a deep neural network ansatz for the solution to-
gether with a PDE residual minimization. In [23, 31, 35], the authors focus on the
class of time-dependent HJB equations arising in stochastic control where a pointwise
evaluation of the solution can be realized through a representation formula involving
the solution of a backward stochastic differential equation. These latter approaches
can be linked to causality-free methods, with deterministic counterparts explored in
[39, 47, 17, 63].

1.2. A tensor calculus framework for nonlinear HJB. In this work we
propose a numerical method for the solution of HJB equations based on tensor de-
composition techniques [9, 42, 41], which have proven to be successful in tackling
the curse of dimensionality in the context of numerical analysis of PDEs [40, 20].
The use of low-rank structures such as the tensor-train (TT) format [50] to represent
high-dimensional objects allows the solution of linear high-dimensional problems by
generalizing standard numerical linear algebra techniques to multi-index arrays of co-
efficients (tensors) and the multivariate functions they approximate. This approach
has been recently explored in [34] for solving a class of finite-horizon stochastic control
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problems where the associated time-dependent HJB PDE can be transformed into a
linear equation [59]. A fixed-point iteration algorithm using tensor approximations
with a Markov chain discretization was proposed in [28, 5]. A model-free learning of a
TT representation of the value function from Monte Carlo realisations was proposed
in [64]. Here, we extend the tensor calculus framework to approximate the solution of
fully nonlinear, first-order, stationary HJB PDEs arising from deterministic infinite
horizon control, using a fast Newton-type policy iteration and a spectral discretiza-
tion. Furthermore, through the selection of suitable control penalties [44], our method
allows the inclusion of control constraints in the design.

1.3. Contributions of this work. We develop a computational approach based
on tensor decompositions for the solution of Hamilton-Jacobi-Bellman PDEs arising
in the computation of optimal actions in feedback form. Our method scales at most
polynomially with the state space dimension for a wide class of systems governed
by high-dimensional nonlinear evolution equations, including dynamics originating
from the Allen-Cahn and Fokker-Planck equations. The mitigation of the curse of
dimensionality allows the accurate synthesis of optimal feedback maps for nonlinear
dynamics with over 100 dimensions at a moderate computational cost. The method
can effectively incorporate control constraints in the design.

The rest of the paper is structured as follows. In Section 2, we formulate the
design problem of computing optimal feedback controllers for nonlinear dynamics via
the HJB equation, together with an abstract iterative method for its approximation.
In Section 3 we develop all the building blocks underpinning a tensor decomposition
framework for the solution of high-dimensional HJB equations. Finally, in Section 4
we apply the proposed methodology to the computation of optimal feedback laws for
the Allen-Cahn and Fokker-Planck equations.

2. The HJB PDE in optimal feedback control. We study the following
infinite horizon optimal control problem:

min
u(·)∈U

J (u(·),x) :=

∞∫
0

`(y(t)) + γ|u(t)|2 dt , (2.1)

subject to the nonlinear dynamical constraint

ẏ(t) = f(y(t)) + g(y)u(t) , y(0) = x, (2.2)

where the state y(t) = (y1(t), . . . , yd(t))
> ∈ Rd, the control u ∈ U ≡ L∞([0; +∞[;U),

with U a compact set of R, the running cost `(y) : Rd → R+
0 , and the control

penalization γ > 0. We assume the state cost `(y) and the system dynamics f(y) :
Rd → Rd and g(y) : Rd → Rd to be C1(Rd). Without loss of generality, the origin
y = 0 is an equilibrium of the uncontrolled dynamics and g(0) = `(0) = 0. The
control problem (2.1) corresponds to the design of a globally asymptotically stabilizing
control signal u(t), which can be solved by dynamic programming techniques. Defining
the value function

V (x) := inf
u(·)∈U

J(u(·),x) , (2.3)

we characterize the solution of the infinite horizon control problem as the unique
viscosity solution of the HJB PDE

min
u∈U
{(f(x) + g(x)u)>DV (x) + `(x) + γ|u|2} = 0 , (2.4)
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where DV (x) = (∂x1
V, . . . , ∂xd

V )>. In the unconstrained case U ≡ R, the minimizer
u∗ is expressed in a feedback form

u∗(x) = − 1

2γ
g(x)>DV (x) , (2.5)

which after inserting in (2.4) leads to the HJB equation

DV (x)>f(x)− 1

4γ
DV (x)>g(x)g(x)>DV (x) + `(x) = 0 . (2.6)

This derivation can be extended to controls in Rm with m > 1. Moreover, it can be
modified to enforce box constraints in the control action [44], by replacing the control
penalty γ|u|2 by

W (u) = 2γ

u∫
0

P−1(µ)dµ , (2.7)

where P : R→ R is an odd, bounded, integrable, bijective C1 function. The optimal
feedback is given by

u∗(x) = −P
(

1

2γ
g(x)>DV (x)

)
, (2.8)

where we can impose lower and upper bound constraints by choosing penalties of the
type P(x) = umax · tanh(x/umax).

2.1. An iterative approach for solving nonlinear HJB PDEs. The con-
struction of a numerical scheme for (2.4) begins by dealing with the quadratic non-
linearity in the gradient. We apply the Continuous Policy Iteration developed in
[7], a variant of the well-known policy iteration algorithm in dynamic programming
[8, 52, 2]. Conceptually speaking, given an initial guess u0(x) for the optimal feedback
control, we insert it into (2.4) which then becomes a linear PDE for V (x), whose so-
lution dictates the update of the feedback control via (2.5). Algorithm 1 summarizes
the main steps of the procedure. The algorithm is equivalent to the application of
a Newton-type method for V (x) directly over (2.6). To guarantee the convergence
of the policy iteration when solving (2.4) over a subdomain Ω ⊂ Rd, we require an
initial feedback map u0(x) such that J (u0(x),x) <∞ over Ω.

Algorithm 1 Continuous Policy Iteration Algorithm

Require: Admissible feedback u0(x), stopping tolerance δ > 0
1: while error > δ do
2: Solve the linearized HJB: (f(x) + g(x)us)

TDVs(x) + `(x) + γ|us|2 = 0 .

3: Feedback update: us+1(x) = −P
(

1
2γg
>DVs(x)

)
.

4: Set error = ‖Vs − Vs−1‖, s := s+ 1.
5: end while
6: return (Vs, us) ≈ (V ∗, u∗)

3. A tensor decomposition framework for high-dimensional HJB equa-
tions. We employ the Galerkin spectral element approximation similarly to [37] ex-
cept that we construct the basis functions from the Legendre polynomials of bounded
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maximal individual degree n− 1,

Φi(x) := φi1(x1) · · ·φid(xd), ik = 0, . . . , n− 1, (3.1)

where φik(xk) are the univariate Legendre polynomials of degree ik ≤ n− 1, and the
multi-index i = (i1, . . . , id). In the sth step of Alg. 1, we seek the value function in
the form

Vs(x1, . . . , xd) ≈
n−1∑

j1,...,jd=0

v(j1, . . . , jd)Φj1,...,jd(x), (3.2)

by making the Galerkin residual of the linearized HJB orthogonal to {Φi}. This
requires solving a system of nd Galerkin equations in nd unknowns of v,∑

j

〈
Φi, (f + gus)

>DΦj

〉︸ ︷︷ ︸
A(i,j)

v(j) = −
〈
Φi, `+ γu2

s

〉︸ ︷︷ ︸
b(i)

, (3.3)

where 〈·, ·〉 is an inner product in L2
(
[−a, a]d

)
with an appropriately chosen domain

size a > 0. Given the tensor product structure of (3.2), its accuracy can be analyzed
with univariate polynomial approximation theory [60], with an exponential error decay
rate O(n−p) for V (x) ∈ Cp(Ω).

3.1. Compressed Tensor Train representation. The coefficients in (3.2) are
enumerated by d independent indices, so v can be treated as a d-dimensional tensor.
Throughout the paper, we approximate such tensors by the so-called Tensor Train
(TT) decomposition [50],

ṽ(i) :=

r0,...,rd∑
α0,...,αd=1

v(1)
α0,α1

(i1)v(2)
α1,α2

(i2) · · ·v(d)
αd−1,αd

(id). (3.4)

The smaller (3-dimensional) tensors v(k) on the right hand side are called TT blocks,
and the new summation ranges r0, . . . , rd are called TT ranks. For convenience we
can introduce the maximal TT rank r := maxk=0,...,d rk. Counting the number of
unknowns in the TT blocks in (3.4), one can conclude that the TT decomposition
needs at most dnr2 unknowns. For numerical efficiency, we assume that r can be taken
much smaller than the original cardinality nd for a desired approximation accuracy.

For theoretical analysis, it is convenient to combine (3.4) with (3.2) and to con-
sider the functional TT format [49],

V (x) ≈ Ṽ (x) :=

r0,...,rd∑
α0,...,αd=1

v(1)
α0,α1

(x1) · · · v(d)
αd−1,αd

(xd),

to work directly over the TT ranks of a function. Sharp rank bounds are usually hard
to derive though: the SVD might reveal an optimal decomposition that is difficult
to express analytically. It was proven in special cases [61, 56, 29] and extensively
tested numerically that smooth (e.g. analytic) functions exhibit a logarithmic growth
of TT ranks, r ∼ logp ε, to achieve an error ε. As a rationale for using the TT format
for the HJB equations, here we show that linear-quadratic value functions admit TT
approximations with the similar convergence rate.

Theorem 3.1. Assume that `(y) = 1
2y

TQy, where Q is a symmetric positive
definite matrix with the Cholesky decomposition Q = D>D, and that the linear system
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ẏ(t) = Ay(t) + Bu is stabilisable. There exists a solution Π ∈ Rd×d of the Riccati
equation

A>Π + ΠA− 1

γ
ΠBB>Π +Q = 0,

such that the eigenvalues of Aπ = AD−1− 1
γBB

>ΠD−1 satisfy λ(Aπ) ∈ [λmin, λmax]⊕
i[−µ, µ], λmax < 0. Assume that the ranks of the off-diagonal blocks of AD = AD−1

are bounded by a constant, rank AD(k+ 1 : d, 1 : k) ≤M for all k = 1, . . . , d−1, and
that rank(B) ≤ rb. Then for any ε ∈ (0, 1) the value function V (x) = x>Πx admits

a TT approximation Ṽ (x) with the TT ranks

rk ≤ min

(
(M + rb)

(
log

1

ε
+ C

)7/2

, min(k, d− k)

)
+ 2,

and the error maxx∈[−a,a]d |V (x)− Ṽ (x)| ≤ ε for some offset

C = C0 + C1
µ

|λmax|
+ C2 log

[
λmin

λmax

‖Aπ‖‖D−>ΠB‖
γ

]
> 0 ,

where C0, C1, C2 are independent of d, ε,M, rb, γ, µ, λmin, λmax. If the second bound
rk = min(k, d− k) + 2 is attained for all k, the TT decomposition Ṽ is exact.

Proof. For the upper bound we employ [21, Thm 4.2]: for the second order
polynomial V (x) = x>Πx with a symmetric matrix Π there exists an exact TT
decomposition with the TT ranks governed by the ranks of the off-diagonal blocks of
Π,

rk ≤ rank (Π(k + 1 : d, 1 : k)) + 2. (3.5)

This gives an obvious bound min(k, d− k) + 2.
However, there might exist an approximate TT decomposition of lower ranks.

First, we notice that the Riccati equation can be rewritten as a Lyapunov equation.
In fact, using a stabilised matrix [14] A − 1

γBB
>Π, and also the Cholesky factor of

Q, we obtain

A>π Π + ΠAπ = − 1

γ
D−>ΠBB>ΠD−1 − I, (3.6)

where I is a d× d identity matrix. The left hand side is constructed from the stable
matrix Aπ. Using the Kronecker product, we can write the Lyapunov equation as a
large linear system,

(Aπ ⊗ I + I ⊗Aπ)︸ ︷︷ ︸
A

vec(Π) = − 1

γ

rank(B)∑
i=1

(D−1ΠBi)⊗ (D−1ΠBi)− vec(I),

where vec(·) stacks all columns of a matrix into a vector. Now we can use [29, Thm.

9]: there exists an approximate inverse Ã−1 of the Kronecker product form

Ã−1 =

R∑
j=−R

2wj
λmax

exp

(
− 2tj
λmax

Aπ

)
⊗ exp

(
− 2tj
λmax

Aπ

)
6



with the approximation error

‖A−1 − Ã−1‖ ≤ C̃‖A‖
√
λ2

min + µ2

|λmax|
exp

(
2

π

µ

|λmax|
− π
√

2R

)
. (3.7)

Multiplying the approximation Ã−1 with the low-rank first term in the right hand

side of (3.6), we obtain an incomplete solution of the form vec(Π̂) =
∑(2R+1)rb
i=1 pi⊗qi,

and hence the rank of Π̂ is bounded by (2R + 1)rb. The negative identity matrix in
(3.6) yields the second term

vec(Π̌) = Ã−1vec(−I), Π̌ =

R∑
j=−R

− 2wj
λmax

exp

(
− 2tj
λmax

(Aπ +A>π )

)
(3.8)

in the ultimate approximate solution Π̃ = Π̂ + Π̌.
Since the first term Π̂ is a low-rank matrix, all its off-diagonal blocks (3.5) have

low ranks of at most (2R+ 1)rb too. However, Π̌ is a full-rank matrix and we need to
investigate its off-diagonal, also called quasi-separable [24], ranks directly. First, we
recall [29, Lemma 16] that each matrix exponential in (3.8) can be approximated by
a sum of 2ke + 1 resolvents with an error∥∥∥∥∥exp

(
− 2tj
λmax

(Aπ +A>π )

)
−

ke∑
`=−ke

κ`

(
z`I +

2tj
λmax

(Aπ +A>π )

)−1
∥∥∥∥∥

≤ C̄ exp

(
4

(
4tjµ

|λmax|
+ 1

)2

−
(

4tjµ

|λmax|
+ 1

)2/3

k2/3
e

)
.

(3.9)

Since the quasi-separable rank of Az` := z`I +
2tj
λmax

(Aπ + A>π ) coincides with that
of Aπ, which is M + rb, and on the other hand it coincides with the quasi-separable
rank of the inverse matrix A−1

z`
[24, 30], we can conclude that the approximate quasi-

separable rank of exp
(
− 2tj
λmax

(Aπ +A>π )
)

is bounded by (2ke + 1)(M + rb), and the

quasi-separable rank of Π̌ (3.8) is bounded by (2R+ 1)(2ke + 1)(M + rb).

The approximate value function is constructed as Ṽ (x) = x>Π̃x, and by (3.5) we
can estimate its TT rank as

rk(Ṽ ) ≤ (2R+ 1)(rb + (2ke + 1)(M + rb)) + 2. (3.10)

For the error estimate, we have

ε = max
x∈[−a,a]d

|V (x)− Ṽ (x)| ≤ a2‖Π− Π̃‖ ≤ a2‖A−1 − Ã−1‖
(
‖D−>ΠB‖2

γ
+ 1

)
.

From (3.7) we obtain

R ≤ 1

2π2

(
2

π

µ

|λmax|
+ log ‖A‖+ log

√
λ2

min + µ2

|λmax|
+ Ĉ +

∣∣∣log ‖A−1 − Ã−1‖
∣∣∣)2

,

≤

(
log

1

ε
+

µ

|λmax|
+ log

(
a2‖D−>ΠB‖2‖Aπ‖

√
λ2

min + µ2

γ|λmax|

)
+ Ĉ

)2
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for some constant Ĉ > 0, while (3.9) together with [29, Lemma 5] gives

ke ≤
(∣∣∣log ‖A−1 − Ã−1‖

∣∣∣+ logR+ Č
)3/2

for Č > 0 being some other constant. Plugging these bounds into (3.10), we obtain
the first estimate of the TT rank.

Remark 1. In many cases one can take Q, and hence D, to be diagonal matrices,
for example, if the 2-norm of the state vector (corresponding to the L2-norm of the
state function) is used in the cost functional. In this case the ranks of the off-diagonal
blocks of AD coincide with those of A.

Remark 2. Although Thm. 3.1 is formulated only for linear systems, the remark-
able proportionality between the TT ranks of the value function and the off-diagonal
ranks of the linearised system matrix seems to hold more generally in practice. In par-
ticular, we observe from Fig. 4.1 that the TT ranks of the value function for discretised
one-dimensional PDEs grow very mildly with the number of variables, which can be
also attributed to the growth of the ratios λmin/λmax, µ/λmax. However, when the
system is produced from a two-dimensional PDE, the TT ranks grow proportionally
to the number of degrees of freedom introduced in each spatial direction (see Fig. 4.6).
Thus, the ranks of the actuator matrix and of the off-diagonal blocks of the Jacobian
matrix can give a useful hint whether the TT approach might be efficient for the HJB
equation of a particular dynamical system of interest.

Remark 3. Alternatively, fast convergence of the TT approximation can be re-
lated to the smoothness of the original function [61, 56]. For example, it was veri-
fied [12] that the cost functional for the bilinear optimal control problem for the Fokker-
Planck equation we present in our numerical results belongs to C∞(Rd).

3.2. TT decomposition of the system functions and HJB equation. To
take advantage of the TT decomposition of the value function, it is necessary to find
also compatible representations of the stiffness matrix and right hand side of the
Galerkin HJB equations (3.3). For example, matrices of size nd × nd, such as that
in the left hand side of (3.3), can be represented in a slightly different matrix TT
format, where we separate pairs of row and column indices,

A(i, j) =

R0,...,Rd∑
β0,...,βd=1

A
(1)
β0,β1

(i1, j1) · · ·A(d)
βd−1,βd

(id, jd). (3.11)

For complexity estimates we define also the upper bound R ≥ Rk, k = 0, . . . , d. In
particular, we need to construct linear parts of the stiffness matrix,

Afp(i, j) := 〈Φi, fp∂xpΦj〉 =

∫
[−a,a]d

Φi(x)fp(x)∂xpΦj(x)dx, (3.12)

where fp(x) is the p-th component of the drift f(x) = (f1(x), . . . , fd(x)), p = 1, . . . , d.
The integral in (3.12) can be approximated by a tensorised Gauss-Legendre quadra-
ture, e.g.

Afp(i, j) ≈
m∑

k1,...,kd=1

wk1 · · ·wkdfp(xk1 , . . . , xkd)Φi(xk1 , . . . , xkd)∂xpΦj(xk1 , . . . , xkd),
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where xk, wk, k = 1, . . . ,m, are quadrature nodes on (−a, a) and weights, respectively.
Suppose that a TT decomposition of fp(xk1 , . . . , xkd) is given,

fp(k1, . . . , kd) := fp(xk1 , . . . , xkd) ≈
R0,...,Rd∑
β0,...,βd=1

f
(1)
p,β0,β1

(k1) · · · f (d)
p,βd−1,βd

(kd). (3.13)

Plugging (3.13) into (3.12) and distributing the summations, we can compute directly
the TT blocks of a TT decomposition of the stiffness matrix part,

Afp(i, j) =

R0,...,Rd∑
β0,...,βd=1

A
(1)
p,β0,β1

(i1, j1) · · ·A(d)
p,βd−1,βd

(id, jd),

where

A
(p)
p,βp−1,βp

(ip, jp) =

 m∑
kp=1

wkpφip(xkp)f
(p)
p,βp−1,βp

(kp)
dφjp(xkp)

dx

 , (3.14)

and

A
(q)
p,βq−1,βq

(iq, jq) =

 m∑
kq=1

wkqφiq (xkq )f
(q)
p,βq−1,βq

(kq)φjq (xkq )

 (3.15)

for q 6= p. Summing all different components Afp , one obtains the complete linear
part 〈Φi, f

>DΦj〉L2(Ω). This summation can be performed in the TT format directly,
followed by a rank truncation [50], or using the iterative Alternating Linear Scheme
approximation (see Sec. 3.3 and [33]). In our numerical calculations we use the lat-
ter approach which requires O(d2n2R2r2) floating point operations. Similarly we
can compute the right hand side entries b(i) = 〈−Φi(x), `(x) + γus(x)2〉L2(Ω), as
well as nonlinear parts of the stiffness matrix, provided that tensors of nodal values
g(xk1 , . . . , xkd) and us(xk1 , . . . , xkd) are approximated by TT decompositions, simi-
larly to (3.13).

The system functions are approximated in the TT format (3.13) using another
iterative procedure, the so-called TT-Cross algorithm [51]. Any exact TT decom-
position, e.g. (3.13), can be recovered from samples of the original tensor by an
interpolation formula [55]

fp(i) =

Rk∑
βk,β

′
k=1

k=1,...,d−1

fp(i1, I>1
β′1

)
(
fp(I≤1, I>1)

)−1

β′1,β1
fp(I≤1

β1
, i2, I>2

β′2
) · · · fp(I≤d−1

βd−1
, id),

(3.16)

where I≤k = {iβk

1 , . . . , iβk

k }
Rk

βk=1 and I>k = {iβk

k+1, . . . , i
βk

d }
Rk

βk=1 are left, respectively,

right index sets chosen such that the intersection matrices fp(I≤k, I>k) are invertible.
For uniformity of notation, we let I≤0 = I>d = ∅. Note that the inverse intersection
matrices can be multiplied with the adjacent three-dimensional factors to obtain the
TT blocks of (3.13), e.g.

f
(k)
p,βk−1,βk

(ik) =
∑
β′k

fp(I≤k−1
βk−1

, ik, I>kβ′k )
(
fp(I≤k, I>k)

)−1

β′k,βk
.
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For numerical stability, the inversion is computed via the QR decomposition [51] or
the incremental LU decomposition [55].

In practice, one seeks an approximate decomposition of the form (3.16). In this
case it becomes important to find indices that not only give invertible intersection ma-
trices, but deliver a small approximation error. The TT-Cross algorithm optimises the
index positions iteratively. In the first step, assume that the right sets I>k are given
(for example at random). One can compute the first factor F {1}(i1, β1) = fp(i1, I>1

β1
),

which can be seen as an m×R1 matrix. The smallest approximation error among sam-
pling rank-R1 approximations is given by such i1 ∈ I≤1 ⊂ {1, . . . ,m} that select the
submatrix of maximum volume, i.e. |detF {1}(I≤1, :)| = max#I=R1

|detF {1}(I, :)|.
This set can be found by the maxvol algorithm [27] in O(mR2

1) operations, similarly
to the LU decomposition with pivoting.

Assume now that we have the left index set I≤k−1 and the right set I>k. We
can compute Rk−1mRk elements of the tensor and arrange them as a Rk−1m × Rk
matrix with elements F {k}(βk−1ik, βk) = fp(I≤k−1

βk−1
, ik, I>kβk

). Now we can apply

the maxvol algorithm to F {k} to derive the next index set I≤k as a subset of the
union of I≤k−1 and ik. This recursive procedure continues until the last TT block
fp(I≤d−1, id) is computed. Moreover, we can reverse it in a similar fashion and carry
out several TT-Cross iterations, as shown in Algorithm 2. This allows to optimise
all index sets and, consequently, the approximations (3.16), (3.13) even if the initial
guess was inaccurate.

Algorithm 2 TT-Cross iteration for the TT approximation (3.13)

Require: Initial sets I>k ∈ Nrk×d−k, k = 1, . . . , d− 1.
1: for k = 1, 2, . . . , d do

2: Evaluate rk−1mrk elements F {k}(βk−1ik; βk) := fp

(
I≤k−1
βk−1

, ik, I>kβk

)
.

3: Apply maxvol algorithm to F {k} to obtain I≤k ⊂ I≤k−1 ∪ {ik}.
4: end for
5: for k = d, d− 1, . . . , 2 do

6: Evaluate rk−1mrk elements F {k}(βk−1; ikβk) := fp

(
I≤k−1
βk−1

, ik, I>kβk

)
.

7: Apply maxvol algorithm to (F {k})> to obtain I>k−1 ⊂ {ik} ∪ I>k.
8: end for
9: Assemble TT blocks f

(k)
p,βk−1,βk

(ik) =
∑
β′k

fp(I≤k−1
βk−1

, ik, I>kβ′k )
(
fp(I≤k, I>k)

)−1

β′k,βk
.

Remark 4. The result of TT-Cross might still depend on the heuristically chosen
initial indices. Therefore, we distinguish the stopping threshold (called δ from now on)
and the actual approximation error ε in the rest of the paper.

Having computed TT approximations to all components fp, we construct the ma-
trix TT blocks (3.14)–(3.15). Similarly, we apply the TT-Cross algorithm to construct
all components of gus, assemble the corresponding parts of the stiffness matrix (3.3)
in the TT format, and sum them together.

We can also precompute a TT matrix of the form (3.11) which maps the value
function coefficients into the tensor of us+1(x) values on the quadrature grid. In the
unconstrained control case, we have that us+1 = − 1

2γg
>DVs, which maps the coeffi-

cients of the previous iterate of the value function v into a tensor of the corresponding
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control values u(j) := us+1(xj1 , . . . , xjd), and hence we assemble

B̂(j, i) =

d∑
p=1

∑
β0,...,βd

− 1

2γ

(
g

(1)
p,β0,β1

(j1)φ
δ(p,1)
i1

(xj1)
)
· · ·
(
g

(d)
p,βd−1,βd

(jd)φ
δ(p,d)
id

(xjd)
)
,

(3.17)
using the TT approximations of gp(x), where

φ
δ(p,q)
i =

{
dφi/dx, p = q,
φi, otherwise.

Now the control signal u ≈ B̂v can be constructed simply as a sum of products of
a TT matrix (3.11) and a TT tensor (3.4), again with O(d2n2R2r2) complexity [50].
In the constrained control case, the first step is the same, followed by approximating
the pointwise constraint function

u(j1, . . . , jd) = ũmax tanh
(

(B̂v)(j1, . . . , jd)/ũmax

)
(3.18)

in the TT format using again the TT-Cross method. Since the TT approximation
may over- or undershoot the exact limits by the relative approximation error ε ≤ δ,
we seek a slightly tighter bound ũmax = (1− δ)umax.

3.3. Iterative tensor algorithm for solving (3.3). The policy update solves
(3.3) at every iteration by taking the previous iterate of the value tensor v̌, construct-
ing the control signal, the stiffness matrix and the right hand side, and finally by
solving the linear system on the new value tensor approximation. The latter step im-
plies using only iterative methods that can preserve the TT structure of all data. One
of the most robust techniques used nowadays is the Alternating Linear Scheme (ALS)
[33] and its enhanced version, the Alternating Minimal Energy (AMEn) algorithm
[22].

The ALS is a linear projection method similarly to the Krylov techniques, but in
contrast to the latter it projects the equations onto bases constructed from the TT
decomposition of the solution itself. Notice that the TT decomposition (3.4) is linear
with respect the the elements of each particular TT block, e.g. v(k). Given (3.4), let
us define a partial TT decomposition where v(k) is replaced by the identity matrix,

V6=k(i1, . . . , id; αk−1, jk, αk) =
∑

α0,...,αk−2,
αk+1,...,αd

v(1)
α0,α1

(i1) · · ·v(k−1)
αk−2,αk−1

(ik−1)

· δ(ik, jk)

· v(k+1)
αk,αk+1

(ik+1) · · ·v(d)
αd−1,αd

(id).

(3.19)

Clearly, the original TT decomposition (3.4) can be produced from V 6=k by just mul-
tiplying it with the k-th TT block. Specifically, we introduce the vector form

v̄(k)(αk−1, ik, αk) = v(k)
αk−1,αk

(ik), v̄(k) ∈ Rrk−1nkrk , (3.20)

and treat V 6=k as a nd × (rk−1nkrk) matrix. One can check that

ṽ = V 6=kv̄
(k)

holds for any k = 1, . . . , d.
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Now, assuming that the entire stiffness matrix and the right hand side in (3.3) are
assembled in TT formats (3.11) and (3.4), the ALS method iterates over k = 1, . . . , d
(hence the name alternating), seeking for one TT block at a time by making the
residual orthogonal to V6=k, (

V >6=kAV 6=k
)
v̄(k) =

(
V >6=kb

)
. (3.21)

Notice that the reduced system (3.21) is of size rk−1nrk, i.e. much smaller than the
original system (3.3). Once we solve (3.21), we populate the TT block v(k) with the
elements of v̄(k) through (3.20), and use the updated v(k) to construct (3.19) in the
next step k → k + 1 or k → k − 1. Efficient practical implementation employs the
fact that (3.19) mimics the original TT decomposition (3.4) in the sense that same
original indices i1, . . . , id are separated. Therefore, given (3.11), the reduced matrix
V >6=kAV 6=k can be computed block by block in a total of O(dn2r4) operations [33]. Here
we assume also that R = O(r), which is the case for the quadratic HJB equation.
Since the reduced matrix in (3.21) inherits the low-rank structure of the matrix TT
decomposition (3.11), we can solve (3.21) iteratively using a fast matrix-vector product
with the same cost of O(dn2r4).

In the AMEn method [22], the TT blocks are also enriched with auxiliary vectors,
such as approximate residuals, which gives a mechanism for increasing TT ranks and
adapting them to the desired accuracy. Consider an auxiliary TT decomposition
approximating the residual, projected onto the first k − 1 TT blocks of the solution,

(b−Av)(i1, . . . , id) ≈
r0,...,ρd∑

α0,...,βd=1

v
(1)
β0,β1

(i1) · · ·v(k−1)
αk−2,αk−1

(ik−1)

· z(k)
αk−1,βk

(ik) · z(k+1)
βk,βk+1

(ik+1) · · · z(d)
βd−1,βd

(id).

After solving (3.21) and updating (3.20), we expand v(k) and v(k+1) increasing their
ranks by ρk,

v(k)(ik) :=
[
v(k)(ik) z(k)(ik)

]
, v(k+1)(ik+1) :=

[
v(k+1)(ik+1)

0

]
. (3.22)

Note that this step does not perturb the whole solution tensor ṽ due to the zero block
in v(k+1), but the subspace of columns of V 6=k+1 in the next step is enriched due to
the residual block z(k). To reduce the TT rank, we can truncate v(k) using the SVD.

Finally, we can orthogonalise TT blocks using QR decompositions [50] such that∑
αk−1ik

v(k)
αk−1,αk

(ik)v
(k)
αk−1,βk

(ik) = δ(αk, βk) (3.23)

or ∑
ikαk

v(k)
αk−1,αk

(ik)v
(k)
βk−1,αk

(ik) = δ(αk−1, βk−1). (3.24)

This makes the projection matrix V6=k orthogonal as well, which improves numerical
stability of the algorithm.

If the matrix A was symmetric positive definite then the projected system (3.21)
could be rigorously related to the energy optimization problem and the nonlinear

12



block Gauss–Seidel method. In our problem (3.3) this is not the case: A is non-
symmetric and degenerate due to the gradient operator D, which annihilates any
constant component in the solution. In this case, the degenerate reduced matrix in
(3.21) can prevent convergence.

However, A is compatible with the right hand side under the condition `(0) =
ǔ(0) = 0. Moreover, the eigenvalues of A are located in the right half of the complex
plane for a suitable choice of the domain size a and polynomial order n. In this case
we can resolve both issues by solving shifted systems, mimicking the implicit Euler
time propagation. We introduce a shift µ > 0, and solve

(A+ µI)v = b + µv̌, (3.25)

where v̌ is the previous iterate of v. In practice, we can even combine this shifted
AMEn solver and the policy updates into a single iteration as shown in Alg. 3.

Algorithm 3 Policy update with shifted AMEn linear solver

1: Choose initial value tensor v, shift µ > 0, stopping threshold δ > 0, previous
iterate v̌ = 0, shift reduction factor 0 < q < 1.

2: while ‖v − v̌‖2 > δ‖v‖2 do . Policy iteration
3: Set v̌ = v and (optionally) µ := µq.
4: Compute the control u using (3.17) and (optionally) (3.18).
5: Construct A[u] and b[u] for (3.3) using Alg. 2 and (3.11)–(3.15).
6: Orthogonalise TT blocks of v s.t. (3.24) holds.
7: for k = 1, . . . , d do . AMEn algorithm

8: Assemble and solve
(
V >6=kAV 6=k + µI

)
v̄(k) = V >6=kb + µV >6=kv̌ using (3.19).

9: Update v(k) via (3.20) and truncate rk using SVD up to accuracy δ.
10: Enrich v(k),v(k+1) using (3.22) and orthogonalise s.t. (3.23) holds.
11: end for
12: end while

If Re λ(A) ≥ 0, then the spectral radius of the transition matrix µ(A+ µI)−1 is
less than 1 for any µ > 0. On the other hand, if µ > −v>Av for any v : ‖v‖2 = 1,
then the reduced matrix V >6=kAV6=k + µI (remember that V >6=kV6=k = I) is invertible.
This gives a freedom to choose µ such that the method remains stable and converges
fast enough. In practice we need to ensure µ > −v>Av only for those v that belong to
span V 6=k. It turns out that as the solution converges, we can decrease µ geometrically
(in particular, we multiply it by a factor q = 0.98 in each iteration), which ensures
faster convergence near the end of the process.

4. Optimal feedback control of nonlinear PDEs. High-dimensional non-
linear control systems naturally arise when the dynamics of the system are governed
by partial differential equations. From a dynamical perspective, PDEs correspond to
abstract, infinite-dimensional systems and therefore the HJB synthesis is understood
over an infinite-dimensional state space. Computationally, the treatment is based
on the so-called method of lines [62]. Given an evolutionary PDE, we discretize the
space dependence either by finite differences/elements or spectral methods, leading to
a large-scale dynamical system with as many state variables as the space discretization
dictates. We perform the HJB synthesis over this finite but high-dimensional system.
The accuracy of such a representation and its implications over the control design
vary depending on the class of PDEs under consideration. Strongly dissipative PDEs
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can be accurately represented with few degrees of freedom in space, while convection-
dominated PDEs might require a much more complex state space representation.
Therefore, the performance study of our framework with respect to the dimension pa-
rameter is central to our analysis. It benefits from the fact that, unlike the nonlinear
ODE world, the taxonomy of physically meaningful nonlinearities in time-dependent
PDEs is well-delimited. We focus on nonlinear reaction PDEs where we take the
Allen-Cahn equation as a reference model due to its rich equilibrium structure, and
to nonlinear convection in the Fokker-Planck equation, where the control action enters
as a bilinear term. The semi-discretization in space of these nonlinearities leads to
well-structured finite-dimensional realizations [37] which allow a systematic analysis
of the scaling of our methodology with respect to the dimension. For implementation
of the TT algorithms we used the TT-Toolbox2 of Feb 9, 2019. All tests were carried
out in Matlab 2017b on one core of an Intel Xeon E5-2640 v4 CPU at 2.4 GHz.

4.1. The Allen-Cahn equation. We consider the following nonlinear diffusion-
reaction equation [37]:

∂tx(ξ, t) = σ∂ξξx+ x(1− x2) + χω(ξ)u(t) , (4.1)

in [−1, 1] × R+ with Neumann boundary conditions. We set σ = 0.2, and the scalar
control signal u(t) acts through the indicator χω of the subdomain ω = [−0.5, 0.2].
This equation has x = 0 as unstable equilibrium and x = ±1 as stable equilibria. The
cost is given by

J (u, x) =

∫ ∞
0

‖x(ξ, t)‖2L2(−1,1) + γu(t)2dt . (4.2)

where for concreteness we take γ = 0.1. Thus, the control objective consists in
stabilizing the unstable equilibrium. (4.1) is discretized by Chebyshev pseudospectral
collocation method [60] using d points ξk = − cos(πk/(d+ 1)), k = 1, . . . , d. The
discrete state is collected into a vector of nodal values X(t) = (X1(t), . . . , Xd(t))
where Xk(t) ≈ x(ξk, t), leading to a d-dimensional nonlinear ODE

dX

dt
= AX +X � (1−X �X) +Bu(t), (4.3)

where “�” is the coordinatewise Hadamard product, A is the pseudospectral differen-
tiation matrix corresponding to the Laplace operator, and B is a vector corresponding
to the pseudospectral discretisation of the indicator function χω(ξ). The HJB equa-
tion solver is applied directly to (4.3), restricting the domain of the value function
to (−3, 3)d, sufficient to accommodate typical initial states. We compare our design
against the linear-quadratic regulator LQR feedback law [58, Chapter 8] computed
for the dynamics in (4.3) linearised around the origin, AL = A+ I.

Algorithmic performance for the one-dimensional Allen-Cahn equa-
tion. We first investigate the performance of Algorithm 3 with respect to the dimen-
sion of the dynamical system. We fix n = 5, δ = 10−3, and the initial shift in Alg. 3
µ = 50. In Fig. 4.1 we can observe that the maximal TT rank grows linearly with the
dimension. The O(dn2r4) complexity of the ALS method leads to a total cost bound
in order of d5. However, the effective cost is closer to O(d4) (Fig. 4.1, right), which

2Available at https://github.com/oseledets/TT-Toolbox
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can be attributed to a non-uniform distribution of TT ranks along the decomposition.
This is a significant reduction compared to the exponential cost of the full Cartesian
ansatz nd. However, the method can become slow in very high dimensions, mainly
due to the increase in the number of policy iterations as shown in Fig. 4.1, resulting
from a larger condition number of the linearised system.

Fig. 4.1. Allen-Cahn problem (4.1). Left: numbers of policy iterations and maximal TT ranks.
Right: differences in total running cost and CPU times for different spatial dimensions d. Numbers
above points in the right plot denote d. Other settings n = 5 and δ = 10−3.
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Fig. 4.2. Allen-Cahn problem (4.1) with d = 40, n = 5 and δ = 10−3. Left: time evolution of
running costs. Right: control signals. The uncontrolled state converges to X = 1 with an infinite
cost.
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A possible remedy is to construct the value function for a lower-dimensional dis-
cretisation of the PDE, and interpolate the state of a system with finer discretisa-
tion onto this lower-dimensional spatial grid. The resulting error, proportional to
the discretisation error of the lower-dimensional grid, might be still much smaller
than the error resulting from e.g. the linearisation of the system. Figure 4.2 (left)
shows the running costs J =‖x(ξ, t)‖2 + γu(t)2 for the HJB control with system di-
mension 40 with n = 5 and δ = 10−3 (HJB40), an interpolated HJB control from
dimension 14 and the same n = 5, δ = 10−3 (HJB14), an LQR feedback, and finally
the cost of the UNControlled system (both with d = 40), with the initial condition
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x(ξ, 0) = 2 + cos(2πξ) cos(πξ). Fig. 4.2 (right) shows the corresponding control sig-
nals. Since the linearized system is unstable, the LQR acts very aggressively during
the transient phase. The HJB synthesis is able to detect the stabilizing effect of the
nonlinearity and produce a control at much lower cost. We observe differences in the
control signals and total costs for the HJB laws depending on the dimension of the
dynamical system, justifying the need for accurate high-dimensional HJB solvers.

Fig. 4.3. Allen-Cahn problem (4.1) with δ = 10−3 and d = 14. Left: numbers of policy
iterations and maximal TT ranks. Right: differences in total running cost and CPU times for
different univariate polynomial degrees n. Numbers above points in the right plot denote n.
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Fig. 4.4. Allen-Cahn problem (4.1) with n = 5 and d = 14. Left: numbers of policy iterations
and maximal TT ranks. Right: differences in total running cost and CPU times for different TT
approximation thresholds δ. Numbers above points in the right plot denote δ.
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Now we analyse the performance of the TT-HJB scheme depending on the number
of Legendre polynomials n in each variable (Fig. 4.3) and the stopping threshold δ in
Alg. 3 (Fig. 4.4). Due to the nonlinearity in (4.3), the value function is significantly
far from a quadratic polynomial, which is reflected in Fig. 4.3 by the linear growth of
TT ranks with n, and a relatively slow algebraic decay of the error. Nevertheless, even
an order-4 approximation can give a substantially better control signal than the LQR
approximation, see Fig. 4.2. From Fig. 4.4 we see that the number of iterations and
the TT ranks depend logarithmically on the TT approximation error, which is a more
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optimistic result than that predicted by Thm. 3.1, although the problem is nonlinear.
The errors in the total cost start higher than the threshold δ, but eventually the two
error indicators are of the same order.

Allen-Cahn problem with control constraints. As discussed in Section 2,
the proposed framework allows to enforce control constraints through a suitable choice
of the control penalties in (2.8). Figure 4.5 (left) shows the total CPU times and
TT ranks of the constrained feedback law. Figure 4.5 (right) presents the control
signals for three bound parameters. As P(x) becomes steeper for more severe control
constraints, the TT ranks increase leading to longer computing times. Nevertheless,
Alg. 3 remains effective for a wide range of constraints, adjusting the value function
accordingly.

Fig. 4.5. Allen-Cahn problem with control constraints. Left: CPU times and TT ranks. Right:
control signals for different control constraints −umax ≤ u ≤ umax. We set d = 20, δ = 10−3 and
n = 5.
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Allen-Cahn problem with 2-dimensional space. We study the extension of
the problem (4.1) to two spatial dimensions with the state depending on two space
coordinates, x(ξ, t) = x(ξ1, ξ2, t). We replace the second derivative with the Laplace
operator, and the control is applied on the domain ω = [−0.5, 0.2]2. We use the
Cartesian product of the same Chebyshev grids in each direction, and similar homo-
geneous Neumann conditions on the boundary of Ω = [−1, 1]2. The CPU times and
TT ranks are shown in Fig. 4.6 (left). Although Theorem 3.1 is not immediately
applicable to a nonlinear system, we still observe a linear growth of the TT ranks
with the number of Chebyshev points in each direction. The values of the ranks
are larger than those in the one-dimensional case, leading to increased computing
times. However, the performance of the high-dimensional HJB controller is satisfac-
tory. Figures 4.6 (right) and 4.7 show the response of the system with an initial state
x(ξ, 0) = 2 + cos(2πξ1) cos(πξ2). We can see again that the HJB-controlled state is
stabilized while the LQR synthesis fails.

4.2. The Fokker-Planck equation. We compute optimal feedback regulators
for the stabilised bilinearly controlled Fokker-Planck equation

∂tx(ξ, t) = ν∂ξξx+ ∂ξ(x∂ξG) + u∂ξ(x∂ξH), ξ ∈ Ω,

0 = [∂ξx+ x∂ξ(G+ uH)] |ξ∈∂Ω,
(4.4)
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Fig. 4.6. Two-dimensional Allen-Cahn control problem. Left: CPU times and TT ranks. Right:
HJB control signals.
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Fig. 4.7. Two-dimensional Allen-Cahn control problem with d = 121. Left: state snapshots at
t = 0.6 for HJB and LQR control laws. Right: total running costs.
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where the computational domain will be set Ω = (−6, 6). This equation models the
density of particles, controlled with laser-induced electric force with potential G(x) +
u(t)H(x) [32], with G the ground and H the control potential. This system has 0
as an eigenvalue with associated eigenstate x∞ = exp(−(log ν + G

ν )), see eg. [13].
Henceforth the eigenstates are considered as normalized in L2(Ω). It is known that
x∞ is stable, but the convergence to this steady state, which is given by the second
eigenvalue and depends on ν and G, can be extremely slow, see for instance [45, pg
251]. Thus, to speed up convergence in the transient phase, control is of importance.
To obtain a suitable stabilization problem we introduce the shifted state y = x− x∞.
It satisfies

∂ty(ξ, t) = ν∂ξξy + ∂ξ(y∂ξG) + u∂ξ(y∂ξH) + u∂ξ(x∞∂ξH), ξ ∈ Ω,

0 = [∂ξy + y∂ξG+ u(y + x∞)∂ξH] |ξ∈∂Ω.
(4.5)

The control objective consists now in driving y to zero. To compute the controller
we further introduce a positive, i.e. destabilising, shift by adding σy to the right
hand side of (4.5). If this controller is applied to the unshifted equation it accelerates
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convergence of y to 0 and hence the convergence of x to x∞.

Considering the variational form of (4.5) one observes that the control will not
have an effect on a subspace of co-dimension one. For this reason we introduce
YP = {v ∈ L2(Ω) :

∫
Ω
v dξ = 0}, and denote by P ∈ L(L2(Ω), YP) the projection onto

YP along x∞, which is given by Py = y − (
∫

Ω
y dξ)x∞. Subsequently we apply P to

(4.5) with initial datum given by Px(0). For the details we refer to [12].

The Fokker-Planck equation (4.5) is discretized using a finite difference scheme
with D intervals. To allow for possible further reduction of the dimension a balanced
truncation based model reduction, adapted to bilinear systems [10], is used, to reduce
the system to dimension d.

For the numerical results we fix γ = 10−2, ν = 1, σ = 0.2, and the potentials G(ξ)
and H(ξ) are chosen to reproduce the setting in [13], as shown in Fig. 4.8. That is,
the ground potential is set to be

G(ξ) =

(
(0.5ξ2 − 15)ξ2 + 119

)
ξ2 + 28ξ + 50

200
, (4.6)

whereas H(ξ) is given by

H(ξ) =


−1/2 if − 6.0 ≤ ξ ≤ −5.9

ξ/12 if − 5.8 ≤ ξ ≤ 5.8

1/2 if 5.9 ≤ ξ ≤ 6.0

(4.7)

with the disjoint intervals united with an Hermite interpolant.

Since both the original system size D, and the reduced dimension d, are approx-
imation parameters, we need to set them to appropriate values that deliver a desired
accuracy in the model outcomes, such as the total cost. Note also that in contrast to
the linear case, the generalized balanced truncation method for bilinear systems does
not exhibit an a priori error bound [10].

Fig. 4.8. Ground and control potentials in the Fokker-Planck control system.
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In Fig. 4.9 (left) we study the total cost in the LQR stabilised system. Here we
initialise the Fokker-Planck system with the density function of the uniform distri-
bution on [−6, 6]. We can deduce that an absolute error of about 10−3 (a relative
error of 1%) is achieved for 1023 points in the initial finite difference discretization.
Setting D = 1023 and varying the basis size in the balanced truncation, we compare
the Hankel singular values and the differences in the total cost in the HJB stabilised
system in Fig. 4.9 (right). We observe that d = 10 dimensions in the reduced model
are sufficient to drop the absolute error below the same level of 10−3.

Fig. 4.9. Errors in the total cost in the Fokker-Planck model with the uniform initial state
x(ξ, 0) = 1

12
for different numbers of discretisation points (left) and different dimensions of the

reduced model (right).

63 127 255 511 1024
10−3

10−2

10−1

D

|J2047 − JD|
1/D

2 4 6 8 10 12 14 16

10−5

10−4

10−3

10−2

10−1

d

Hankel Singular values

|Jd − J15|

In Fig. 4.10 (left) we vary the dimension d of the reduced state and investigate
CPU times and TT ranks of the value function. The TT approximation threshold
δ = 10−4, the initial shift in Alg. 3 µ = 5, and the polynomial degree n− 1 = 4. We
see that the TT ranks stabilize as the dimension increases, and hence the CPU time
grows linearly.

Fig. 4.10. Left: CPU times and TT ranks for different dimensions d for the Fokker-Planck
problem with the right-sided initial state x(ξ, 0) = 1

Z
exp(−2(ξ−3.8)2). Right: initial and equilibrium

states.

4 6 8 10 12 14 16 18 20

10

20

30

40

d

CPU time, min.
max. TT rank

O(d)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

ξ

x(ξ, 0)

x∞(ξ)

Moreover, we change the initial distribution to the right-sided state x(ξ, 0) =
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1
Z exp(−2(ξ−3.8)2), where Z =

∫ 6

−6
exp(−2(ξ−3.8)2)dξ is the normalisation constant

(Fig 4.10, right). It was observed [13] that the free system exhibits a very slow
convergence to equilibrium when started from a right-sided distribution, since the
particles must flow through a region of low probability. In Fig. 4.11 we show the
components of the running cost for the original unshifted system, both UNControlled
and controlled with HJB and LQR signals, obtained for the shifted system. We see
that the free system converges at a slow rate ‖x‖2 ∼ exp(−0.29t), while the controller
computed for the de-stabilised system can accelerate this rate by almost a factor of
2. Note that when the HJB controller is computed for the original system (σ = 0),
it accelerates the convergence only a little, so the shift is important to achieve the
speedup. However, larger shifts make the HJB equation more difficult to solve. In
particular, for larger shifts σ and larger state domain sizes a the stiffness matrix in
(3.3) might become indefinite, and the policy iteration fails to converge. The domain
size should be large enough to fit the trajectory, e.g. for the right-sided initial state
the domain size of a = 20 is necessary to avoid excessive extrapolation of Legendre
polynomials. This poses certain limitations on the range of possible applications of
the TT-HJB approach. Nevertheless, when the policy iteration converges the HJB
regulator can deliver a lower cost than LQR.

Fig. 4.11. Running costs (left) and control signals (right) for the reduced Fokker-Planck problem
with d = 10 with the right-sided initial state x(ξ, 0) = 1

Z
exp(−2(ξ − 3.8)2).
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Conclusion. We have presented a numerical method for the solution of high-
dimensional HJB PDEs arising in optimal feedback control for nonlinear dynamical
systems. Our algorithm combines a continuous policy iteration together with a a
tensor-train ansatz for the value function. An important matter of investigation is
the identification of a class of optimal control problems where the value function
can be accurately represented with a low-rank tensor train structure. For the class of
optimal control problems we have explored in this work consisting of systems governed
by nonlinear parabolic PDEs, we have consistently shown that the maximum TT
rank in the value function approximation scales linearly with the dimension. This
allows us to circumvent the curse of dimensionality up to a great extent, solving HJB
PDEs with more than 100 dimensions. Control constraints are effectively enforced
through penalties, despite the deterioration of the low-rank rank structure of the value
function. The applications of the proposed methodology are extensive. In this work
we have explored the synthesis of feedback control laws for high-dimensional dynamics
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arising from the semi-discretisation of nonlinear PDEs. However, high-dimensional
dynamics also play a crucial role in aerospace engineering [15], networks and agent-
based models [1]. Finally, our methodology based on spectral approximation and
tensor calculus, opens possibilities for a rigorous error analysis.
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[26] J. Garcke and A. Kröner. Suboptimal feedback control of PDEs by solving HJB equations on
adaptive sparse grids, J. Sci. Comput., doi:10.1007/s10915-016-0240-7 (2016).

[27] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin,
How to find a good submatrix, in Matrix Methods: Theory, Algorithms, Applications,
V. Olshevsky and E. Tyrtyshnikov, eds., World Scientific, Hackensack, NY (2010):247–
256.

[28] A. Gorodetsky, S. Karaman and Y. Marzouk , High-dimensional stochastic optimal control
using continuous tensor decompositions , The International Journal of Robotics Research,
37 (2018): 340–377.

[29] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large sys-
tems in tensor product structure, Computing, 72 (2004):247–265.

[30] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices, Computing, 62 (1999):89–108.

[31] J. Han, A. Jentzen and W. E. Solving high-dimensional partial differential equations using deep
learning, Proc. Natl. Acad. Sci. 115(34)(2018):8505–8510.
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