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Abstract. This is the continuation of our work on infinite horizon optimal control problems
with a discount factor on the state variable and nonlinear partial differential equations as constraints.
Existence of a solution is proven, and first as well as second order optimality conditions are derived.
They are used to analyze the approximation of the infinite horizon problem by finite horizon problems.
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1. Introduction. In this second part of our work on optimal control problems
with discount factor on the state in the cost functional we focus on optimization
theoretic aspects. In the first part [5] we analyzed the well-posedness of the controlled
equation and differentiability properties of the control-to-state mapping. Concretely
we investigate the problem

(P) min
u∈Uad

J(u) =
1

2

∫ ∞

0

e−σt∥yu−yd∥2L2(Ω) dt+
ν

2

∫ ∞

0

∥u∥2L2(ω) dt+γ

∫ ∞

0

∥u∥L2(ω) dt,

where

Uad = {u ∈ L2(0,∞;L2(ω)) : ua ≤ u(x, t) ≤ ub for a.a. (x, t) ∈ ω × (0,∞)},

−∞ ≤ ua ≤ 0 ≤ ub ≤ +∞ with ua < ub, σ > 0, ν > 0, and γ ≥ 0. Here yu denotes
the solution of the following parabolic equation:{

∂y

∂t
−∆y + ay + f(y) = g + uχω in Q = Ω× (0,∞),

∂ny = 0 on Σ = Γ× (0,∞), y(0) = y0 in Ω,
(1.1)

where Ω is a bounded domain in Rn, 1 ≤ n ≤ 3, with a Lipschitz boundary Γ
g ∈ L∞(0,∞;L2(Ω)), ω is a subdomain of Ω, χω denotes the characteristic function
of ω, a ∈ L∞(Ω), 0 ≤ a ̸≡ 0, and y0 ∈ H1(Ω). The symbol uχω is defined as follows:

(uχω)(x, t) =

{
u(x, t) if (x, t) ∈ Qω = ω × (0,∞),

0 otherwise.

The target yd is assumed to belong to L∞(0,∞;L2(Ω)). The exponent σ > 0 is known
as the discount factor. The last term of the cost functional is included to promote
sparsity in time of the optimal controls.

Remark 1.1. The choice ua ≤ 0 ≤ ub is needed because if ua > 0 or ub < 0, then
Uad = ∅.
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As pointed out in [5] there are only very few papers in which infinite horizon
optimal control problems are investigated systematically. This is particularly true
for problems involving partial differential equations. For references concerned with
ordinary differential equations we refer to our references in [5]. Our own investigations
started with [3], where infinite horizon problems with L1 sparsity enhancing terms
are investigated for stabilization problems, i.e. yd = 0. The nonlinearities considered
in that paper are of polynomial type and it is verified that for sufficiently large t,
once the trajectory reaches a sufficiently small neighborhood of a stable equilibrium,
the associated optimal control switches off, as expected due to the sparsifying term in
the cost-functional. In [4] infinite horizon problems of tracking type are considered,
under quite general assumptions on the nonlinearity f . The optimization problem is
investigated under the assumption of existence of at least one optimal control, which is
guaranteed, for instance, for sufficiently small initial conditions. Optimality conditions
are derived without recourse to the regularity of the control to state mapping. The
optimal states themselves are at least in L2(0,∞;L2(Ω)). In the present paper, on the
contrary, due to the discounted term, the optimal states are allowed to be much more
general, they need not lie in L2(0,∞;L2(Ω)). The nonlinearities are of polynomial
nature or are globally Lipschitz continuous. The control to state mapping is well-
defined and C2 regular on all of the control space.

In [4] the nucleus of the proof technique, for the optimality conditions for instance,
rested on the approximation of the infinite horizon by finite horizon problems. In the
present paper we need not rely on this rather technical approach, rather the first
and second order optimality conditions can be proved directly for the infinite horizon
problem. However, we still address the approximation of (P) by means of finite
horizon problems, and even derive a convergence rate estimate with respect to the time
horizon, by exploiting sufficient second order optimality conditions. The importance of
such an estimate, besides intrinsic interest, lies in the fact that numerical approaches
many times rely on computations carried out for ’sufficiently’ large time horizons.
This suggests to investigate the error which is made by cutting off the time interval.

The paper is structured as follows. In Section 2 selected results from [5] are re-
called and existence of a solution to (P) is verified. Differentiability properties of the
cost functional on the basis of an appropriately defined adjoint equation are investi-
gated in Section 3. In our work the transversality condition, known from Pontryagin’s
maximum principle, corresponds to the behavior of the adjoint state at ∞ here. For
ordinary differential equations it has been analyzed in detail in [1]. Necessary and
sufficient optimality conditions are contained in Section 4. The last section is devoted
to the approximation of (P) by means of finite horizon problems.

Assumptions on f and notation.

For the nonlinear term in state equation f : R −→ R we assume that f = f1 + f2
such that f1 is a polynomial of odd degree 2m+ 1 with a positive leading coefficient,
0 ≤ m ≤ 1 if n = 3, and m ≥ 0 arbitrary integer if n = 2, and f2 : R −→ R is a C2

function satisfying

f1(0) = f2(0) = 0 and ∃Lf > 0 : |f ′
2(s)|+ |f ′′

2 (s)| ≤ Lf ∀s ∈ R. (1.2)

As established in [5], the assumptions on f imply that

∃Λf ≥ 0 such that f ′(s) ≥ −Λf ∀s ∈ R, (1.3)

∃Mf such that f ′(s) > 0 and f(s)s ≥ 0 ∀|s| ≥ Mf . (1.4)



Infinite Horizon Optimal Control Problems 3

Given a real number α ∈ R and p ∈ [1,∞], Lp
α(Q) denotes the space of measurable

functions ϕ : Q −→ R satisfying

∥ϕ∥Lp
α(Q) =

(∫ ∞

0

e−αt∥ϕ(t)∥pLp(Ω) dt
) 1

p

< ∞ if p < ∞,

∥ϕ∥L∞
α (Q) = ess sup e−

α
2 t|ϕ(x, t)| < ∞.

(x,t)∈Q

With L2
α(0,∞;H1(Ω)) and Cα([0,∞);H1(Ω)) we denote the Hilbert and Banach

spaces of measurable, respectively continuous, functions y : [0,∞) −→ H1(Ω) en-
dowed with the norms

∥y∥L2
α(0,∞;H1(Ω)) =

(∫ ∞

0

e−αt∥y(t)∥2H1(Ω) dt
) 1

2

,

∥y∥Cα([0,∞);H1(Ω)) = sup
t∈[0,∞)

e−
α
2 t∥y(t)∥H1(Ω)).

We also define H1
α(Q) as the space of functions y ∈ L2

α(0,∞;H1(Ω)) such that ∂y
∂t ∈

L2
α(Q). This is a Hilbert space for the norm

∥y∥H1
α(Q) =

(
∥y∥2L2

α(0,∞;H1(Ω)) +
∥∥∥∂y
∂t

∥∥∥2
L2

α(Q)

) 1
2

.

Finally, we set Yα = H1
α(Q)∩Cα([0,∞);H1(Ω)). The next estimate was proved in [5]

∥y∥L4m+2
α (Q) ≤

 Cm∥y∥Y α
4m

if α ≥ 0,

Cm∥y∥Yα
2

if α < 0,
(1.5)

for a constant Cm. The following well known inequality will be useful all along this
paper

Ca∥z∥H1(Ω) ≤
(∫

Ω

(|∇z|2 + az2) dx

) 1
2

∀z ∈ H1(Ω). (1.6)

2. Existence of a Solution for (P). In this section, we will prove the existence
of at least one solution to problem (P). Before we summarize some results concerning
the state equation. Following [5, Definition 2.1], a function y is called a solution of
(1.1) if it belongs to L2

loc(0,∞;H1(Ω))∩Cloc([0,∞);L2(Ω)), f(y) ∈ L2
loc(0,∞;L2(Ω)),

and it satisfies{
∂y

∂t
−∆y + ay + f(y) = g + uχω in QT = Ω× (0, T ),

∂ny = 0 on ΣT = Γ× (0, T ), y(0) = y0 in Ω,
(2.1)

for every 0 < T < ∞.
Theorem 2.1. For every u ∈ L2(Qω) equation (1.1) has a unique solution

yu ∈ Yα for every α > 0. Moreover, the following properties hold

lim
T→∞

e−αT ∥yu(T )∥H1(Ω) = 0, (2.2)

∥f(yu)∥L2
α(Q) + ∥yu2m+1∥L2

α(Q) + ∥yu∥Yα

≤ C
(
∥g∥L∞(0,∞;L2(Ω)) + ∥u∥L2(Qω) + ∥y0∥m+1

H1(Ω) + 1
)
, (2.3)
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where C is independent of g, u, and y0.
The reader is referred to [5, Theorem 2.4] for the proof of this theorem. The

continuous dependence of the state with respect to the control is established in the
next lemma.

Lemma 2.2. Let {uk}∞k=1 be a sequence in L2(Qω) with associated states {yk}∞k=1.
If uk ⇀ u in L2(Qω), then for every α > 0 the convergences yk ⇀ yu in H1

α(Q) and
f(yk) ⇀ f(y) in L2

α(Q) hold.
Proof. From the boundedness of {uk}∞k=1 and (2.3) we deduce the existence of

a subsequence, denoted in the same way, such that yk ⇀ y in Yα and f(yk) ⇀ ϕ
in L2

α(Q) for every α > 0. Let T > 0 be arbitrary. From the compactness of the
embedding H1(QT ) ⊂ L2(QT ) we infer the existence of a further subsequence such
that

yk → y in L2(QT ) and yk(x, t) → y(x, t) a.e. in QT .

Using the above pointwise convergence we deduce that ϕ = f(y) and, hence, f(yk) ⇀
f(y) in L2

α(Q). Now, we prove that y = yu. It is easy to pass to the limit weakly
in the state equation (2.1) satisfied by (yk, uk) and to deduce that (y, u) satisfies the
equation in the variational sense in QT for every T > 0. Moreover, from the continuity
of the embedding Yα ⊂ Cα([0,∞);H1(Ω)) we have that y0 = yk(0) → y(0) in L2(Ω),
hence y = yu. From the uniqueness of the solution of (1.1) we deduce that the whole
sequence {yk}∞k=1 converges to yu.

Theorem 2.3. Problem (P) admits at least one solution.
Proof. Let {uk}∞k=1 be a minimizing sequence for (P). Since J(uk) ≤ J(0) for

every k large enough (unless u ≡ 0 is already an optimal control), the boundedness of
{uk}∞k=1 in L2(Qω) follows. Hence, there exists a subsequence, denoted in the same
way, such that uk ⇀ ū in L2(Qω). Let us denote by {yk}∞k=1 the states associated
with {uk}∞k=1. Lemma 2.2 implies that yk ⇀ ȳ in L2

σ(Q), where ȳ is the solution
of (1.1) corresponding to ū. To prove that ū is a solution to (P), we consider the
following inequality for arbitrary T > 0:

1

2

∫
Q

e−σt(ȳ − yd)
2 dx dt+

ν

2

∫ ∞

0

∫
ω

ū2 dx dt+ γ

∫ T

0

(∫
ω

ū2 dx
)1/2

dt

≤ lim inf
k→∞

J(uk) = inf (P),

which follows from the convexity of the objective functional with respect to pair (y, u)
and the continuity of the embedding L2(0, T ;L2(ω)) ⊂ L1(0, T ;L2(ω)). Now we have

J(ū) = sup
T>0

{1

2

∫
Q

e−σt(ȳ − yd)
2 dx dt+

ν

2

∫ ∞

0

∥ū(t)∥2L2(ω) dt+ γ

∫ T

0

∥ū(t)∥L2(ω) dt
}

≤ inf (P),

which concludes the proof.

3. Differentiability of the Cost Functional. The cost functional J is decom-
posed in two parts: J(u) = F (u) + γj(u) with

F (u) =
1

2

∫
Q

e−σt(yu − yd)
2 dx dt+

ν

2

∫
Qω

u2 dx dt, (3.1)

j(u) =

∫ ∞

0

∥u(t)∥L2(ω) dt. (3.2)
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Regarding the functional j we have the following properties, which can be obtained
from [2] by reversing the role of the variables x and t.

Lemma 3.1. The functional j : L1(0,∞;L2(ω)) −→ R is Lipschitz and convex
and the following relations hold
(1) The subdifferential ∂j(u) is the set of functions λ ∈ L∞(0,∞;L2(ω)) satisfying

∥λ(t)∥L2(Ω) ≤ 1 for a.a. t ∈ I0u,

λ(x, t) =
u(x, t)

∥u(t)∥L2(ω)
for a.a. t ∈ Iu and x ∈ ω,

(3.3)

where Iu = {t ∈ (0,∞) : ∥u(t)∥L2(ω) ̸= 0} and I0u = (0,∞) \ Iu.
(2) For every u, v ∈ L1(0,∞;L2(ω)) the directional derivative is given by

j′(u; v) =

∫
I0
u

∥v(t)∥L2(ω) dt+

∫
Iu

1

∥u(t)∥L2(ω)

∫
ω

u(x, t)v(x, t) dx dt. (3.4)

As we will see later, F is differentiable. As usual, to represent its derivative we
introduce the adjoint state. The next theorem establishes the existence and uniqueness
of an adjoint state as well as its continuous dependence with respect to u.

Theorem 3.2. Let us assume that σ > Λf , h ∈ L2
β(0,∞;L2(Ω)), and y ∈ Yβ for

every β > 0. Then the problem{
−∂φ

∂t
−∆φ+ aφ+ f ′(y)φ = e−σth in Q,

∂nφ = 0 on Σ, limt→∞ eΛf t∥φ(t)∥L2(Ω) = 0
(3.5)

has a unique solution φ ∈ L2(0,∞;H1(Ω))∩C([0,∞);L2(Ω)). Moreover, the regular-
ity φ ∈ Y−α holds for every α < 2σ. Further, if {(yk, hk)}∞k=1 ⊂ Yβ ×L2

β(0,∞;L2(Ω))

and (yk, hk) → (y, h) in Yβ × L2
β(0,∞;L2(Ω)) for every β > 0, then

lim
k→∞

∥φk − φ∥Y−α = 0 ∀α < 2σ, (3.6)

where φk is the solution of (3.5) with (y, h) replaced by (yk, hk).
Proof. The proof is split in several steps.
Step 1 - Uniqueness of a solution. Since (3.5) is linear it is enough to prove

that the only solution with a zero right hand side is φ ≡ 0. Multiplying (3.5) by φ,
integrating by parts in Ω × (t, T ) for 0 < t < T < ∞ with T arbitrarily large, and
using that f ′(s) ≥ −Λf , we get

1

2

∥∥∥φ(t)∥∥∥2
L2(Ω)

≤ 1

2

∥∥∥φ(t)∥∥∥2
L2(Ω)

+

∫ T

t

∫
Ω

[|∇φ|2 + aφ2] dx ds

≤ −
∫ T

t

∫
Ω

f ′(y)φ2 dx ds+
1

2

∥∥∥φ(T )∥∥∥2
L2(Ω)

≤ Λf

∫ T

t

∥φ(s)∥2L2(Ω) ds+
1

2

∥∥∥φ(T )∥∥∥2
L2(Ω)

.

The inequality in the above expression holds because f ′(s) ≥ −Λf . By Gronwall’s
inequality we infer

∥φ(t)∥2L2(Ω) ≤ e2Λf (T−t)∥φ(T )∥2L2(Ω) ≤ [eΛfT ∥φ(T )∥L2(Ω)]
2 T→∞−→ 0,

which proves that φ = 0.
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Step 2 - Existence of a solution. Let {Tk}∞k=1 be an increasing sequence converging
to ∞. For every k we consider the equations{

−∂φTk

∂t
−∆φTk

+ aφTk
+ f ′(y)φTk

= e−σth in QTk
,

∂nφTk
= 0 on ΣTk

, φTk
(Tk) = 0.

(3.7)

Since e−σth ∈ L2(QTk
), the existence and uniqueness of a solution φTk

∈ H1(QTk
) ∩

C([0, Tk];H
1(Ω)) is well known. We prove the convergence of {φTk

}∞k=1 to the solution
of (3.5). For this purpose we test the equation (3.7) with eαtφTk

for α ≥ 2Λf and use
that φTk

(Tk) = 0 we get for t ∈ (0, Tk)

eαt

2

∥∥∥φTk
(t)

∥∥∥2
L2(Ω)

+
α

2

∫ Tk

t

eαs∥φTk
∥2L2(Ω) ds+

∫ Tk

t

eαs
∫
Ω

[|∇φTk
|2 + aφ2

Tk
] dx ds

+

∫ Tk

t

eαs
∫
Ω

f ′(y)φ2
Tk

dx ds =

∫ Tk

t

e(α−σ)s

∫
Ω

hφTk
dx ds.

Denoting by φ̂Tk
the extension of φTk

by zero for t > Tk we deduce from the above
equality with (1.3) and Young’s inequality

eαt

2
∥φ̂Tk

(t)∥2L2(Ω) + C2
a

∫ ∞

t

eαs∥φ̂Tk
(s)∥2H1(Ω) ds

≤
∫ ∞

t

e(α−σ)s∥h∥L2(Ω)∥φ̂Tk
(s)∥L2(Ω) ds

≤ 1

2C2
a

∫ ∞

t

e(α−2σ)s∥h∥2L2(Ω) ds+
C2

a

2

∫ ∞

t

eαs∥φ̂Tk
(s)∥2H1(Ω) ds.

This yields for some constant C1 independent of α ∈ [2Λf , 2σ) and k

ess sup
t>0

e
α
2 t∥φ̂Tk

(t)∥L2(Ω) +
(∫ ∞

0

eαs∥φ̂Tk
∥2H1(Ω) ds

) 1
2

≤ C1∥h∥L2
2σ−α(Q) = Kα < ∞. (3.8)

Therefore, taking a subsequence, denoted in the same way, we have e
α
2 tφ̂Tk

⇀ e
α
2 tφ

in L2(0,∞;H1(Ω)) and e
α
2 tφ̂Tk

∗
⇀ e

α
2 tφ in L∞(0,∞;L2(Ω)) for some function φ ∈

L2(0,∞;H1(Ω))∩L∞(0,∞;L2(Ω)). The first convergence implies that φ satisfies the
partial differential equation part of (3.5) and the second convergence yields

∥eαtφ(t)∥L2(Ω) ≤ Kα for a.a. t ≥ 0 and α < 2σ. (3.9)

Let us prove that f ′(y)φ ∈ L2(Q). From our assumptions on f we deduce the existence
of a constant C2 such that |f ′(s)| ≤ C2(s

2m + 1) for all s ∈ R. Then, using Hölder’s
inequality with 2m+1

2m and 2m+ 1 we obtain∫
Q

f ′(y)2φ2 dx dt ≤ C ′
2

∫ ∞

0

(
∥y∥4mL4m+2(Ω) + 1

)
∥φ∥2L4m+2(Ω) dt

≤ C ′′
2

∫ ∞

0

(
[e−

α
4m t∥y∥H1(Ω)]

4m + 1
)
eαt∥φ∥2H1(Ω) dt

≤ C ′′
2

(
∥y∥4mC α

2m
(0,∞;H1(Ω)) + 1

)
∥φ∥2L2

−α(0,∞;H1(Ω)) < ∞.
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Hence we have φ ∈ W (0, T ) = H1(0, T ;H1(Ω)∗) ∩ L2(0, T ;H1(Ω)) ⊂ C([0, T ];L2(Ω))
for every T < ∞ and, consequently, φ ∈ C([0,∞);L2(Ω)). Furthermore, (3.9) implies
that limt→∞ eΛf t∥φ(t)∥L2(Ω) = 0. Hence, we have that φ is a solution of (3.5).
Further, due to the uniqueness of a solution we deduce that the whole sequence
{φTk

}∞k=1 converges to φ in the sense specified above.

Step 3 - φ ∈ Y−α. We test equation (3.7) with −eαs
∂φTk

(x,s)

∂s , α ∈ [2Λf , 2σ), and
get for every t ∈ (0, Tk)∫ Tk

t

eαs
∥∥∥∂φTk

∂s

∥∥∥2
L2(Ω)

ds+
eαt

2

∫
Ω

[|∇φTk
(t)|2 + aφ2

Tk
(t)] dx

+
α

2

∫ Tk

t

eαs
∫
Ω

[|∇φTk
|2 + aφ2

Tk
] dx ds−

∫ Tk

t

eαs
∫
Ω

f ′(y)φTk

∂φTk

∂s
dx ds

= −
∫ Tk

t

e(α−σ)s

∫
Ω

h
∂φTk

∂s
dx ds.

Take ε > 0 such that α + ε < 2σ. Using (1.5), |f ′(s)| ≤ C2(s
2m + 1), Hölder’s

inequality with 4m+2
2m , 4m+2 and 2 for m > 0 or Schwarz’s inequality for m = 0, the

fact that y ∈ C ε
2m

([0,∞);H1(Ω)), and Young’s inequality we infer from the above
equality∫ Tk

t

eαs
∥∥∥∂φTk

∂s

∥∥∥2
L2(Ω)

ds+
C2

ae
αt

2
∥φTk

(t)∥2H1(Ω)

≤ C3

∫ Tk

t

eαs
(
∥y∥2mL4m+2(Ω) + 1

)
∥φTk

∥L4m+2(Ω)

∥∥∥∂φTk

∂s

∥∥∥
L2(Ω)

ds

+

∫ Tk

t

e(α−σ)s∥h∥L2(Ω)

∥∥∥∂φTk

∂s

∥∥∥
L2(Ω)

ds

≤ C4

∫ Tk

t

e(α+
ε
2 )s

(
[e−

ε
4m s∥y∥H1(Ω)]

2m + 1
)
∥φTk

∥L4m+2(Ω)

∥∥∥∂φTk

∂s

∥∥∥
L2(Ω)

ds

+

∫ Tk

t

e(α−σ)s∥h∥L2(Ω)

∥∥∥∂φTk

∂s

∥∥∥
L2(Ω)

ds ≤ C5,ε

∫ Tk

t

e(α+ε)s∥φTk
∥2H1(Ω) ds

+

∫ Tk

t

e(α−2σ)s∥h∥2L2(Ω) ds+
1

2

∫ Tk

t

eαs
∥∥∥∂φTk

∂s

∥∥∥2
L2(Ω)

ds.

Taking into account the definition of φ̂Tk
, the above inequality leads to∫ ∞

t

eαs
∥∥∥∂φ̂Tk

∂s

∥∥∥2
L2(Ω)

ds+ C2
ae

αt∥φ̂Tk
(t)∥2H1(Ω)

≤ 2C5,ε

∫ ∞

t

e(α+ε)s∥φ̂Tk
∥2H1(Ω) ds+ 2

∫ ∞

t

e(α−2σ)s∥h∥2L2(Ω) ds.

Since α+ ε < 2σ, we deduce from the above inequality and (3.8)

ess sup
t>0

e
α
2 t∥φ̂Tk

(t)∥H1(Ω) +
(∫ ∞

0

eαs
∥∥∥∂φ̂Tk

∂s

∥∥∥2
L2(Ω)

ds
) 1

2 ≤ C6,ε∥h∥L2
2σ−(α+ε)

(Q)

for all k ≥ 1. As a consequence we get e
α
2 tφ̂Tk

∗
⇀ e

α
2 tφ in L∞(0,∞;H1(Ω)) and

e
α
2 t ∂φ̂Tk

∂t ⇀ e
α
2 t ∂φ

∂t in L2(Q). Then, the above inequality implies

ess sup
t>0

e
α
2 t∥φ(t)∥H1(Ω) +

(∫ ∞

0

eαs
∥∥∥∂φ
∂s

∥∥∥2
L2(Ω)

ds
) 1

2 ≤ C6,ε∥h∥L2
2σ−(α+ε)

(Q).
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Hence we have that φ ∈ H1
−α(Q). Moreover, since φ(T ) ∈ H1(Ω) for almost every

T > 0 and ∂φ
∂t +∆φ ∈ L2(Q), we infer that φ ∈ C([0, T ];H1(Ω)); see [7, Proposition

III-2.5]. Combining this with the fact that φ ∈ L∞
−α(0,∞;H1(Ω)) we conclude that

φ ∈ C−α([0,∞);H1(Ω)). All together we obtain that φ ∈ Y−α and

∥φ∥Y−α
≤ Mε∥h∥L2

2σ−(α+ε)
(Q) ∀α ∈ [2Λf , 2σ − ε). (3.10)

Step 4 - Proof of (3.6). Take α < 2σ and ε ∈ (0, 2σ − α). We set ϕk = φ − φk.
Then, we have{

−∂ϕk

∂t
−∆ϕk + aϕk + f ′(y)ϕk = e−σt[(h− hk) + eσt(f ′(yk)− f ′(y))φk] in Q,

∂nϕk = 0 on Σ, limt→∞ ∥ϕk(t)∥L2(Ω) = 0.

Analogously to (3.10) we have

∥ϕk∥Y−α
≤ Mε∥(h− hk) + eσt(f ′(yk)− f ′(y))φk∥L2

2σ−(α+ε)
(Q) ∀α ∈ [2Λf , 2σ − ε).

(3.11)
Observe that h− hk → 0 in L2

2σ−(α+ε)(Q) due to hk → h in Yβ for all β > 0. Let

us prove that eσt[f ′(yk)− f ′(y)]φk → 0 in L2
2σ−α(Q) as k → ∞ for α < 2σ arbitrary.

We make the proof for m ≥ 1, being simpler for m = 0. Using Hölder’s inequality
with 1 + 1

2m and 2m+ 1 and taking ε ∈ (0, σ) we get

∥eσt[f ′(yk)− f ′(y)]φk∥2L2
2σ−α(Q)

≤
∫ ∞

0

e(α−σ)t∥f ′(yk)− f ′(y)∥2
L2+ 1

m (Ω)
∥φk∥2L4m+2(Ω) dt

≤ C

∫ ∞

0

e(α+ε−3σ)t∥f ′(yk)− f ′(y)∥2
L2+ 1

m (Ω)

[
e(σ−

ε
2 )t∥φk∥H1(Ω)]

2 dt

≤ C∥φk∥2Cε−2σ([0,∞);H1(Ω))∥f
′(yk)− f ′(y)∥L2

3σ−(α+ε)
(Q)

From (3.10) the boundedness of {φk}∞k=1 in Yε−2σ follows. This combined with the
above estimate and the fact that ∥f ′(yk) − f ′(y)∥

L
2+ 1

m
3σ−(α+ε)

(Q)
→ 0 as k → ∞ [5,

Theorem 2.7] leads to

lim
k→∞

∥(h− hk) + eσt(f ′(yk)− f ′(y))φk∥L2
2σ−α(Q) = 0 ∀α < 2σ.

Hence, (3.11) yields limk→∞ ∥ϕk∥Y−α = 0 for all α ∈ [2Λf , 2σ). Since the norm ∥·∥Y−α

is monotonically increasing with respect to α, equality (3.6) holds.

Remark 3.3. We observe that Λf = 0 if f is a nondecreasing monotone function.
Hence, existence and uniqueness of a solution for equation (3.5) holds for all σ > 0.

The next theorem establishes the differentiability of the functional F .
Theorem 3.4. Assume that σ > 8Λf . Then, the functional F : L2(Qω) −→ R

is of class C1 and the following expression for its derivative holds

F ′(u)v =

∫
Qω

(φu + νu)v dx dt, (3.12)

where φu is the solution of the adjoint equation (3.5) with y = yu and h = yu − yd.
If in addition σ > 4Λf , then F is of class C2 and

F ′′(u)(v1, v2) =

∫
Q

[e−σt − φuf
′′(yu)]zv1zv2 dx dt+ ν

∫
Qω

v1v2 dx dt. (3.13)
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Proof. Choose α ∈ (2Λf , σ), and define by F0 : L2
σ(Q) −→ R the quadratic form

F0(y) =
1
2∥y−yd∥2L2

σ(Q). Let Gα : L2(Qω) −→ Yα with Gα(u) = yu denote the control

to state mapping. From Theorem [5, Theorem 3.3] and the fact that α > 4Λf we get
that Gα is of class C1. Moreover, zv = G′(u)v is the solution of the equation

{
∂z

∂t
−∆z + az + f ′(yu)z = vχω in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.
(3.14)

Further, since α < σ, Yα is continuously embedded in L2
σ(Q). Therefore, the mapping

F = F0 ◦Gα + ν
2∥ · ∥

2
L2(Qω) is of class C

1 and

F ′(u)v =

∫
Q

e−σt(Gα(u)− yd)G
′
α(u)v dx dt+ ν

∫
Qω

uv dx dt

=

∫
Q

e−σt(yu − yd)zv dx dt+ ν

∫
Qω

uv dx dt.

Testing (3.14) with φu and integrating by parts, (3.12) follows from the above identity.
To justify this testing the integrability in Q of every term of equation (3.14) multiplied
by φu needs to be verified. Let us consider the integrability of the first term. Given
β ∈ (2Λf , 2σ) we get∫

Q

∣∣∣∂zv
∂t

∣∣∣|φu| dx dt =
∫
Q

e−
β
2 t
∣∣∣∂zv
∂t

∣∣∣e β
2 t|φu| dx dt ≤

∥∥∥∂zv
∂t

∥∥∥
L2

β(Q)
∥φu∥L2

−β(Q) < ∞

due to the fact that zv ∈ Yβ for every β > 2Λf and φu ∈ Y−β for every β < 2σ; see
[5, Lemma 3.1] and Theorem 3.2. The other terms can be analyzed in a similar way
except the one containing f ′(yu). To deal with this term we consider the case m ≥ 1,
for m = 0 the proof is easier. We select β3 ∈ (2Λf ,

σ
1+ 1

2m

). This is possible because

σ > 4Λf . Now we take β1 ∈ (0, β3

2m+1 ) and β2 = β3−β1. We define β1m = (2+ 1
m )β1,

β2m = (2 + 2m
m+1 )β2, and β3m = (2 + 2m

m+1 )β3. Then, applying Hölder’s inequality

with 2 + 1
m , 2 + 2m

m+1 , and 2 + 2m
m+1 , and using that H1(Ω) ⊂ L2+ 2m

m+1 (Ω) we obtain

∫
Q

|f ′(yu)zvφu| dx dt =
∫
Q

e−β1t|f ′(yu)|e−β2t|zv|eβ3t|φu| dx dt

≤ ∥f ′(yu)∥
L

2+ 1
m

β1m
(Q)

∥zv∥
L

2+ 2m
m+1

β2m
(Q)

∥φu∥
L

2+ 2m
m+1

−β3m
(Q)

≤ c∥y2mu + 1∥
L

2+ 1
m

β1m
(Q)

∥zv∥
L

2+ 2m
m+1

β2m
(0,∞;H1(Ω))

∥φu∥
L

2+ 2m
m+1

−β3m
(0,∞;H1(Ω))

≤ c′(∥yu∥L4m+2
β1m

(Q) + 1)∥zv∥
m

2m+1

C β2m(m+1)
2m

(0,∞;H1(Ω))∥zv∥
m+1
2m+1

L2
β2m

2

(0,∞;H1(Ω))

× ∥φu∥
m

2m+1

C
− β3m(m+1)

2m

(0,∞;H1(Ω))∥φu∥
m+1
2m+1

L2

− β3m
2

(0,∞;H1(Ω))
< ∞.

For the last inequality we have used that β1m > 0 and (2.3), and the fact that
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zv ∈ Y β2m
2

and φu ∈ Y− β3m(m+1)
2m

due to the following properties:

β2m(m+ 1)

2m
=

2m+ 1

m
(β3 − β1) >

2m+ 1

m

(
1− 1

2m+ 1

)
β3 = 2β3 > 4Λf ,

β3m

2
≤ 2m+ 1

m+ 1
β3 <

2m+ 1

m+ 1

σ

1 + 1
2m

< 2σ.

Now we turn to the second derivative and assume that σ > 8Λf . We select
α ∈ (8Λf , σ). Then, Theorem [5, Theorem 3.3] implies that Gα is of class C2 and
zv1,v2

= G′′
α(u)(v1, v2) is the solution of the equation{

∂z

∂t
−∆z + az + f ′(yu)z + f ′′(yu)zv1zv2 = 0 in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(3.15)

where zvi = G′
α(u)vi, i = 1, 2. Hence, by the chain rule we get that the function

F = F0 ◦Gα + ν
2∥ · ∥

2
L2(Qω) is of class C

2 and

F ′′(u)(v1, v2)

=

∫
Q

e−σt {(Gα(u)− yd)G
′′
α(u)(v1, v2) +G′

α(u)v1G
′
α(u)v2} dx dt+ ν

∫
Qω

v1v2 dx dt

=

∫
Q

e−σt {(yu − yd)zv1v2 + zv1zv2} dx dt+ ν

∫
Qω

v1v2 dx dt,

where zvi = G′
α(u)v1 and zv1v2 = G′′

α(u)(v1, v2). Now, testing equation (3.15) with φu

and integrating by parts we obtain (3.13). To check that the testing and integration
by parts are justified, the most delicate issue is the one involving f ′′(yu)zv1zv2φu.
To prove its integrability we proceed as follows. As above we are going to consider
the case m ≥ 1, the case m = 0 being easier. First, we select β ∈ (2Λf ,

2m+1
4m σ),

β3 ∈ ( 4m
2m+1β, σ), β2 = 2m

2m+1β, and β1 = β3 − 2β2. Let us denote β1m = 4m+2
2m−1β1 and

β2m = (4m + 2)β2. Then we apply Hölder’s inequality with 4m+2
2m−1 , 4m + 2, 4m + 2,

and 2 to derive∫
Q

|f ′′(yu)zv1zv2φu| dx dt =
∫
Q

e−β1t|f ′′(yu)|e−β2t|zv1 |e−β2t|zv2 |eβ3t|φu| dx dt

≤ ∥f ′′(yu)∥
L

2+ 4
2m−1

β1m
(Q)

∥zv1∥L4m+2
β2m

(Q)∥zv2∥L4m+2
β2m

(Q)∥φu∥L2
−2β3

(Q)

≤ c(∥yu∥L4m+2
β1m

(Q) + 1)∥zv1∥Y β2m
4m

∥zv2∥Y β2m
4m

∥φu∥Y−2β3
< ∞.

In the last inequality we used that |f ′′(s)| ≤ C(|s|2m−1 + 1) and (2.3), β1m > 0,
β2m

4m = β > 2Λf , and β3 < σ along with [5, Lemma 3.1] and Theorem 3.2.

4. First and second order optimality conditions. The aim of this section is
to establish the necessary and sufficient conditions for local optimality. Since problem
(P) is not convex we will consider local minimizers in this section. We say that ū is
a local minimizer of (P) if ū ∈ Uad and there exists a ball Bε(ū) ⊂ L2(Qω) such that
J(ū) ≤ J(u) for every u ∈ Bε(ū) ∩ Uad. If the inequality is strict for every u ̸= ū,
we call ū a strict local minimizer. This definition implies that a local minimizer
ū satisfies J(ū) < ∞ and, consequently, it belongs to L1(0,∞;L2(ω)) if γ > 0.
Indeed, given ε > 0 there exists Tε > 0 such that for uε(x, t) = ū(x, t)χ[0,Tε](t) the
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inequality ∥ū − ūε∥L2(Qω) < ε holds. Moreover, we have that uε ∈ Uad and then
J(ū) ≤ J(uε) < ∞.

Following the approach of [2] and using Theorem 3.4 the optimality conditions
are deduced next.

Theorem 4.1. Let us assume that σ > 4Λf . If ū is a local minimizer of (P),
then there exists ȳ ∈ Yα for every α > 0, φ̄ ∈ Y−β for every β < 2σ, and λ̄ ∈ ∂j(ū) if
γ > 0, such that{

∂ȳ

∂t
−∆ȳ + aȳ + f(ȳ) = g + ūχω in Q,

∂nȳ = 0 on Σ, ȳ(0) = y0 in Ω,
(4.1) −∂φ̄

∂t
−∆φ̄+ aφ̄+ f ′(ȳ)φ̄ = e−σt(ȳ − yd) in Q,

∂nφ̄ = 0 on Σ, lim
t→∞

eΛf t∥φ̄(t)∥L2(Ω) = 0,
(4.2)

∫
Qω

[φ̄|Qω
+ νū+ γλ̄](u− ū) ≥ 0 ∀u ∈ Uad. (4.3)

Proposition 4.2. Let (ū, φ̄, λ̄) satisfy the optimality conditions (4.1)–(4.3) with
ū ∈ Uad and also ū ∈ L1(0,∞;L2(ω)) if γ > 0. Then ū ∈ L∞(0,∞;L2(ω)) and the
following identity holds for almost all (x, t) ∈ Qω

ū(x, t) = Proj[ua,ub]

(
− 1

ν
[φ̄(x, t) + γ λ̄(x, t)]

)
. (4.4)

In addition, if γ > 0 and ua < 0 < ub, then we have for almost all (x, t) ∈ Qω
∥ū(t)∥L2(ω) = 0 ⇔ ∥φ̄(t)∥L2(ω) ≤ γ,

λ̄(x, t) =


− 1

γ
φ̄(x, t) if t ∈ I0ū,

ū(x, t)

∥ū(t)∥L2(ω)
if t ∈ Iū,

(4.5)

where Iū = {t ∈ (0,∞) : ∥ū(t)∥L2(ω) ̸= 0} and I0ū = (0,∞)\Iū. Moreover, there exists
T ∗ < ∞ such that ∥ū(t)∥L2(ω) = 0 for all t ≥ T ∗.

Identity (4.4) is standard and the regularity ū ∈ L∞(0,∞;L2(ω)) is a conse-
quence of it. The reader is referred to [2, Corollary 3.9] for the proof of (4.5) just
by reversing the roles of x and t. The existence of T ∗ follows from the property
limt→∞ ∥φ̄(t)∥L2(Ω) = 0 and (4.5).

Now, we formulate the necessary second order optimality conditions for (P). Once
again, following [2] we introduce the cone of critical directions associated with a control
ū ∈ Uad satisfying the first order optimality conditions (4.1)–(4.3) as follows

Cū = {v ∈ U : v satisfies (4.6) below and F ′(ū)v + γj′(ū; v) = 0},

where U = L2(Qω) ∩ L1(0,∞;L2(ω)) if γ > 0 and U = L2(Qω) if γ = 0, and

v(x, t)

{
≥ 0 if ū(x, t) = ua,
≤ 0 if ū(x, t) = ub,

a.e. in Qω. (4.6)

We also define j′′(u) : L2(Qω) −→ [0,∞] by

j′′(u; v2) =


∫
Iu

1

∥u(t)∥L2(ω)

[ ∫
ω

v2(x, t) dx−
(∫

ω

u(x, t)v(x, t)

∥u(t)∥L2(ω)
dx

)2]
dt if u ̸≡ 0,

0 if u ≡ 0.
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The expression for j′′(u; v2) is just a definition, it does not represent the second di-
rectional derivative, except for special cases. Actually, the expression j′′(u; v2) can
be ∞ for some functions u and v. Nevertheless, the integral is always well defined be-
cause the integrand is non negative. The following necessary second order optimality
conditions can be established as in [2] with the help of Theorem 3.4.

Theorem 4.3. Assume that σ > 8Λf and ua < 0 < ub if γ > 0. Let ū be a local
minimizer of (P). Then, we have that F ′′(ū)v2 + γj′′(ū; v2) ≥ 0 for every v ∈ Cū.

Proof. If γ = 0, the proof is well known. Assume that γ > 0 and j′′(ū; v2) < ∞,
otherwise the inequality is obvious. Given v ∈ Cū and T > 0, we define vT (x, t) =
v(x, t) if t ≤ T and zero otherwise. Following the steps of [2, Proof of Theorem 4.3,
Case III], once again reversing the roles of x and t, and using that φ̄ ∈ L∞(QT ) due
to ȳ, yd ∈ L∞(0, T ;L2(Ω)), we obtain that F ′′(ū)v2T + γj′′(ū; v2T ) ≥ 0. We can pass to
the limit in this inequality to conclude that F ′′(ū)v2 + γj′′(ū; v2) ≥ 0. Indeed, using
that |vT (x, t)| ≤ |v(x, t)| and vT (x, t) → v(x, t) when T → ∞, Lebesgue’s dominated
convergence theorem implies that

lim
T→∞

gT (t) := lim
T→∞

[ ∫
ω

v2T (x, t) dx−
(∫

ω

u(x, t)vT (x, t)

∥u(t)∥L2(ω)
dx

)2]
= g(t) :=

[ ∫
ω

v2(x, t) dx−
(∫

ω

u(x, t)v(x, t)

∥u(t)∥L2(ω)
dx

)2]
.

Moreover, we have that 0 ≤ g(t) for every t, gT (t) = g(t) if t ≤ T , and gT (t) = 0 if
t > T . Hence, the monotone convergence theorem implies that

lim
T→∞

∫
Iū

1

∥ū(t)∥L2(ω)
gT (t) dt =

∫
Iū

1

∥ū(t)∥L2(ω)
g(t) dt.

This implies that limT→∞ j′′(ū; v2T ) = j′′(ū; v2). Finally, as a consequence of the
convergence vT → v in L2(Qω) and Theorem 3.4 we infer that F ′′(ū)v2T → F ′′(ū)v2.

In the next theorem the sufficient second order conditions for local optimality are
established.

Theorem 4.4. Assume that ua < 0 < ub if γ > 0 and σ > 8Λf . Let ū ∈ U ∩Uad

satisfy the first order optimality conditions given by Theorem 4.1 and the second order
condition F ′′(ū)v2 + γj′′(ū; v2) > 0 ∀v ∈ Cū \ {0}. Then, there exist ε > 0 and δ > 0
such that

J(ū) +
δ

2
∥u− ū∥2L2(Qω) ≤ J(u) ∀u ∈ Uad ∩ B̄ε(ū), (4.7)

where B̄ε(ū) = {u ∈ L2(Qω) : ∥u− ū∥L2(Qω) ≤ ε}.
Lemma 4.5. Under the assumptions of Theorem 4.4, if there are no δ > 0 and

ε > 0 such that (4.7) holds for every u ∈ Uad ∩ B̄ε(ū) ∩ L∞(0,∞;L2(ω)), then there
exists a sequence {uk}∞k=1 ⊂ Uad ∩ L∞(0,∞;L2(ω)) such that for every k ≥ 1

∥uk − ū∥L2(Qω) <
1

k
, (4.8)

J(uk) < J(ū) +
1

2k
∥uk − ū∥2L2(Qω). (4.9)

Furthermore, if γ > 0 and T ∗ is as introduced in Proposition 4.2, then there exists a
sequence of measurable sets Ik ⊂ (0, T ∗) with T ∗−|Ik| < 1

k such that {uk}∞k=1 satisfies
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additionally

∥uk − ū∥L∞(Ik;L2(ω)) <
1

k
. (4.10)

Proof. If (4.7) does not hold, then for any integer k ≥ 1 there exists an element
wk ∈ Uad ∩ L∞(0,∞;L2(ω)) such that

∥wk − ū∥L2(Qω) <
1

k
and J(wk) < J(ū) +

1

2k
∥wk − ū∥2L2(Qω). (4.11)

If γ = 0, then we take uk = wk. Otherwise, we proceed as follows. From the conver-
gence ∥wk(t)− ū(t)∥L2(ω) → 0 in L2(0,∞), we deduce the existence of a subsequence,
denoted in the same way, such that ∥wk(t)− ū(t)∥L2(ω) → 0 for almost all t ∈ (0,∞).
Then, from Egorov’s theorem we deduce the existence of a subsequence {wjk}∞k=1 and
a sequence {Ik}∞k=1 of measurable subsets of (0, T ∗) such that T ∗−|Ik| < 1

k holds and

∥wjk − ū∥L∞(Ik;L2(ω)) = ess sup
t∈Ik

∥wjk(t)− ū(t)∥L2(ω) <
1

2k
.

Moreover, jk can be chosen so that jk > 2k. Then setting uk = wjk we get with (4.11)

∥uk − ū∥L∞(Ik;L2(ω)) + ∥uk − ū∥L2(Qω)

= ∥wjk − ū∥L∞(Ik;L2(ω)) + ∥wjk − ū∥L2(Qω) <
1

2k
+

1

jk
<

1

k

and

J(uk) = J(wjk) < J(ū) +
1

jk
∥wjk − ū∥2L2(Qω) < J(ū) +

1

2k
∥uk − ū∥2L2(Qω),

which proves (4.8)–(4.10).

Proof of Theorem 4.4. First we prove that (4.7) holds for every u ∈ Uad∩ B̄ε(ū)∩
L∞(0,∞;L2(ω)). We argue by contradiction. Let us consider the case γ > 0. If
γ = 0, the proof follows the same steps with the obvious simplifications. If (4.7)
does not hold in Uad ∩ B̄ε(ū) ∩ L∞(0,∞;L2(ω)), then we get from Lemma 4.5 a
sequence {uk}∞k=1 ⊂ Uad ∩ L∞(0,∞;L2(ω)) satisfying (4.8)-(4.10). Let us define
ρk = ∥uk − ū∥L2(Qω) < 1/k and vk = (uk − ū)/ρk. Since, ∥vk∥L2(Q) = 1 for every k,
we can extract a subsequence denoted in the same way so that vk ⇀ v in L2(Qω).
The proof is split into four steps.

Step I. v ∈ Cū. For all T < ∞ we define the functional jT : L1(0, T ;L2(ω)) −→ R
by

jT (u) =

∫ T

0

∥u(t)∥L2(ω) dt.

Then, we have

j′T (u; v) =

∫
(0,T )∩I0

u

∥v(t)∥L2(ω) dt+

∫
(0,T )∩Iu

∫
ω

u(t)v(t)

∥u(t)∥L2(ω)
dx dt.
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For every T ≥ T ∗ the following identity holds

j′T (ū; v) = j′T∗(ū; v) +

∫ T

T∗
∥v(t)∥L2(ω) dt.

The convergence vk ⇀ v in L2(Qω) implies that vk ⇀ v in L1(0, T ;L2(ω)). Then,
using that v → j′T (ū; v) is convex and continuous, we have for every T ≥ T ∗

j′T∗(ū; v) +

∫ T

T∗
∥v(t)∥L2(ω) dt = j′T (ū; v) ≤ lim inf

k→∞
j′T (ū; vk)

≤ lim inf
k→∞

jT (ū+ ρkvk)− jT (ū)

ρk
= lim inf

k→∞

jT (uk)− jT (ū)

ρk
≤ lim inf

k→∞

j(uk)− j(ū)

ρk
.

Taking the supremum with respect to T we infer

j′(ū; v) = j′T∗(ū; v) +

∫ ∞

T∗
∥v(t)∥L2(ω) dt ≤ lim inf

k→∞

j(uk)− j(ū)

ρk
.

From this inequality and (4.8)–(4.9) we get

F ′(ū) v + γ j′(ū; v)

≤ lim inf
k→∞

1

ρk
{[F (ū+ ρkvk)− F (ū)] + γ[j(ū+ ρkvk)− j(ū)]}

= lim inf
k→∞

1

ρk
[J(uk)− J(ū)] ≤ lim inf

k→∞

1

2kρk
∥uk − ū∥2L2(Qω) = lim inf

k→∞

ρk
2k

= 0.

To prove the converse inequality we use that

max
λ∈∂j(ū)

∫
Qω

λv dx dt = j′(ū; v).

Then, with inequality (4.3) we get

F ′(ū)v + γj′(ū; v) ≥ F ′(ū)v + γ

∫
Qω

λ̄v dx dt

= lim
k→∞

1

ρk

∫
Qω

(φ̄+ νū+ γλ̄)(uk − ū) dx dt ≥ 0. (4.12)

The last two inequalities imply that F ′(ū) v + γ j′(ū; v) = 0. Moreover, from this
identity we infer ∫ ∞

T∗
∥v(t)∥L2(ω) dt =

1

γ
F ′(ū)v − j′T∗(ū; v) < ∞.

Consequently, v ∈ U holds. In addition, since vk satisfies the sign conditions (4.6) for
every k and the set of elements of L2(Qω) satisfying (4.6) is convex and closed, we
deduce that v satisfies (4.6) as well. Hence, we have that v ∈ Cū.

Step II. v = 0. For β > 0 small we define

Iβ = {t ∈ (0,∞) : ∥ū(t)∥L2(ω) ≥ β} and jβ(u) =

∫
Iβ

∥u(t)∥L2(ω) dt,
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and with Lemma 4.5

Iβ,k = Iβ ∩ Ik and jβ,k(u) =

∫
Iβ,k

∥u(t)∥L2(ω) dt.

Since ∥ū(t)∥L2(ω) ≥ β > 0 for every t ∈ Iβ,k, jβ,k : L∞(0,∞;L2(ω)) −→ R is infinitely

differentiable in the L∞(0,∞;L2(ω)) open ball B β
2
(ū). Hence, if k > 2

β , (4.10) implies

that ū+ ρkvk = uk ∈ B β
2
(ū). Then, by a Taylor expansion we get

jβ,k(ū+ ρk vk)− jβ,k(ū) = ρkj
′
β,k(ū; vk) +

ρ2k
2
j′′β,k(ū; v

2
k) +

ρ3k
6
j′′′β,k(uϑk

; v3k)

= ρk

∫
Iβ,k

1

∥ū(t)∥L2(ω)

∫
ω

ū(x, t) vk(x, t) dx dt

+
ρ2k
2

∫
Iβ,k

1

∥ū(t)∥L2(ω)

{∫
ω

v2k(x, t) dx−
(∫

ω

ū(x, t)

∥ū(t)∥L2(ω)
vk(x, t) dx

)2
}

dt

+
ρ3k
6

∫
Iβ,k

3

∥uϑk
(t)∥3L2(ω)

{
1

∥uϑk
(t)∥2L2(ω)

(∫
ω

uϑk
(x, t) vk(x, t) dx

)3

−
(∫

ω

vk(x, t)
2 dx

)(∫
ω

uϑk
(x, t) vk(x, t) dx

)}
dt,

where uϑk
= ū + ϑkρk vk ∈ B β

2
(ū) with 0 ≤ ϑk(t) ≤ 1. Now, using the convexity of

the mapping w → ∥w∥L2(ω), we get for every t

∥(ū+ ρk vk)(t)∥L2(ω) − ∥ū(t)∥L2(ω) ≥
ρk

∥ū(t)∥L2(ω)

∫
ω

ū(x, t)vk(x, t) dx.

Using this inequality we obtain

j(ū+ ρk vk)− j(ū) = ρk

∫
I0
ū

∥vk(t)∥L2(ω)

+

∫
Iū\Iβ,k

{
∥(ū+ ρk vk)(t)∥L2(ω) − ∥ū(t)∥L2(ω)

}
dt+ [jβ,k(ū+ ρk vk)− jβ,k(ū)]

≥ ρk j
′(ū; vk) +

ρ2k
2
j′′β,k(ū; v

2
k) +

ρ3k
6
j′′′β,k(uϑk

; v3k).

From (4.9), the above inequality, and the fact that F ′(ū) vk + γ j′(ū; vk) ≥ 0, see
(4.12), we get

ρ2k
2k

> J(ū+ ρk vk)− J(ū) ≥ ρk{F ′(ū) vk + γ j′(ū; vk)}

+
ρ2k
2
{F ′′(ū) v2k + γ j′′β,k(ū; v

2
k)}+

ρ2k
2
[F ′′(uθk)− F ′′(ū)]v2k + γ

ρ3k
6
j′′′β,k(uϑk

; v3k),

where uθk = ū+ θkρk(uk − ū) with 0 ≤ θk ≤ 1. We deduce from (4.3)

ρ2k
2k

>
ρ2k
2
{F ′′(ū) v2k + γj′′β,k(ū; v

2
k)}+

ρ2k
2
[F ′′(uθk)− F ′′(ū)]v2k + γ

ρ3k
6
j′′′β,k(uϑk

; v3k).
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Dividing this expression by ρ2k/2 we obtain

F ′′(ū) v2k + γ j′′β,k(ū; v
2
k) < |[F ′′(uθk)− F ′′(ū)]v2k|+ γ

ρk
3
|j′′′β,k(uϑk

; v3k)|+
1

k
. (4.13)

Since F : L2(Qω) −→ R is of class C2, uθk → ū in L2(Qω), and ∥vk∥L2(Qω) = 1 we
have

lim
k→∞

|[F ′′(uθk)− F ′′(ū)]v2k| ≤ lim
k→∞

∥F ′′(uθk)− F ′′(ū)∥ = 0, (4.14)

where ∥ · ∥ denotes the norm in the space of bilinear forms on L2(Qω)
2. Let us

estimate the second term of (4.13). Observe that every element u ∈ B β
2
(ū) satis-

fies ∥u(t)∥L2(ω) ≥ β
2 . Using that uϑk

∈ B β
2
(ū) for k > 2

β , Hölder’s inequality, the

expression of j′′′β,k(uϑk
; v3k), (4.10), and ∥vk∥L2(Qω) = 1, we obtain

|j′′′β,k(uϑk
; v3k)| ≤ 6

∫
Iβ,k

∥vk(t)∥3L2(ω)

∥uϑk
(t)∥2L2(ω)

dt ≤ 24

β2

∫
Iβ,k

∥vk(t)∥3L2(ω)dt

≤ 24

β2
∥vk∥L∞(Iβ,k;L2(ω))

∫
Iβ,k

∥vk(x)∥2L2(ω)dt ≤
24

β2ρkk
.

So we get

γ
ρk
3
|j′′′β,k(uϑk

; v3k)| ≤
8γ

kβ2
→ 0 as k → ∞. (4.15)

Since Iβ ⊂ (0, T ∗), we have that |Iβ \ Iβ,k| → 0 as k → ∞. Hence, the convergence
χIkvk ⇀ v in L2(Iβ , L

2(ω)) holds. Using this fact and the convexity and continuity
of the quadratic form j′′β(ū) : L2(Qω) → R, (4.13), (4.14), and (4.15) we infer the
following inequality

F ′′(ū) v2 + γ j′′β(ū; v
2) ≤ lim inf

k→∞
{F ′′(ū) v2k + γ j′′β,k(ū; v

2
k)} ≤ 0 ∀β > 0. (4.16)

Now, taking the limit as β → 0 we conclude that J ′′(ū; v2) = F ′′(ū)v2+γ j′′(ū; v2) ≤ 0.
According to the assumption of the theorem, this is possible only if v = 0.

Step III. limk→∞ F ′′(ū)v2k = ν. Since ∥vk∥L2(Qω) = 1, from the expression (3.13)
we deduce

F ′′(ū)v2k =

∫
Q

[e−σt − φ̄f ′′(ȳ)]z2vk dx dt+ ν.

Therefore, it is enough to prove that the integral converges to 0 as k → ∞. Let us
select α and β satisfying 2Λf < α < β < σ. Since vk ⇀ v = 0 in L2(Q) we get from
[5, Lemma 3.1] that zvk ⇀ 0 in H1

α(Q) and there exists a constant C1 such that

∥zvk∥Cα([0,∞);H1(Ω)) ≤ C1 ∀k ≥ 1. (4.17)

From the compactness of the embedding H1(QT ) ⊂ Lr(QT ) for every T > 0 and
r < 4, we infer that zvk → 0 as k → ∞ in Lr(QT ) for every r < 4 and T < ∞.
We also know that |f ′′(s)| ≤ C2(|s|2m−1 + 1) for every s ∈ R and some constant C2.
Moreover, since yd ∈ L∞(0,∞;L2(Ω)) and ȳ ∈ C([0, T ];H1(Ω)), see Theorem 2.1, we
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get that φ̄ ∈ C(Q̄T ) for every T > 0; see [6, Chapter 3]. All these facts imply with
Hölder’s inequality for 4m+2

2m−1 and 4m+2
2m+3∫

QT

|e−σt − φ̄f ′′(ȳ)|z2vk dx dt ≤
∫
QT

(
1 + ∥φ̄∥C(Q̄T )C2[|ȳ|2m−1 + 1]

)
z2vk dx dt

≤ ∥zvk∥2L2(QT ) + ∥φ̄∥C(Q̄T )C3

(
∥ȳ∥2m−1

L4m+2(QT ) + 1
)
∥zvk∥2

L
8m+4
2m+3 (QT )

→ 0 (4.18)

as k → ∞. Above we have used that 8m+4
2m+3 < 4. Next we prove estimates in the

intervals (T,∞). From (4.17) and Hölder’s inequality with 2, 4m+2
2m−1 , and 2m+ 1, we

obtain∫ ∞

T

∫
Ω

|e−σt − φ̄f ′′(ȳ)|z2vk dx dt =
∫ ∞

T

∫
Ω

|e(α−σ)t − eβtφ̄e(α−β)tf ′′(ȳ)|e−αtz2vk dx dt

≤ ∥zvk∥2Cα(0,∞;L2(Ω))

∫ ∞

T

e(α−σ)t dt

+ C4

∫ ∞

T

eβt∥φ̄∥L2(Ω)e
(α−β)t

(
∥ȳ∥2m−1

L4m+2(Ω) + 1
)
e−αt∥zvk

∥2L4m+2(Ω) dt

≤ C2
1

σ − α
e(α−σ)T + C5

(
∥ȳ∥2m−1

C 2(β−α)
2m−1

(0,∞;H1(Ω)) + 1
)
C2

1

∫ ∞

T

eβt∥φ∥L2(Ω) dt (4.19)

Using that φ ∈ L2
α(Q) for every α < 2σ we get for ρ ∈ (0, σ − β)∫ ∞

T

eβt∥φ∥L2(Ω) dt

≤
(∫ ∞

T

e−2ρt dt
) 1

2
(∫ ∞

T

e2(β+ρ)t∥φ∥L2(Ω) dt
) 1

2

=
1√
2ρ

e−ρT ∥φ∥L2
2(β+ρ)

(Q).

From this inequality and (4.19) we infer that for every ε > 0 there exits Tε < ∞ such
that ∫ ∞

Tε

∫
Ω

|e−σt − φ̄f ′′(ȳ)|z2vk dx dt <
ε

2
.

Moreover, from (4.18) we obtain the existence of kε such that∫ Tε

0

∫
Ω

|e−σt − φ̄f ′′(ȳ)|z2vk dx dt <
ε

2
∀k ≥ kε.

The last two inequalities proves the convergence to zero of the integral.
Step IV. Contradiction. Using that j′′β,k(ū; v

2
k) ≥ 0, and (4.16), we deduce that

ν ≤ lim infk→∞{F ′′(ū) v2k + γ j′′β,k(ū; v
2
k)} ≤ 0, which contradicts the assumption

ν > 0.
Step V. Removing the assumption u ∈ L∞(0,∞;L2(ω)). Given u ∈ Uad ∩ B̄ε(ū),

we set v = u− ū, vk(x, t) = Proj[−k,+k](v(x, t)), and uk = ū+ vk. From Proposition

4.2 we get that ū ∈ L∞(0,∞;L2(ω)). Then, it is obvious that ∥uk − ū∥L2(Qω) ≤
∥u− ū∥L2(Qω) ≤ ε and uk ∈ Uad ∩ L∞(0,∞;L2(ω)). Hence, (4.7) implies

J(ū) +
δ

2
∥uk − ū∥2L2(Qω) ≤ J(uk) ∀k ≥ 1.
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Of course, we assume that u ∈ L1(0,∞;L2(ω)), otherwise the inequality (4.7) is
obvious. By Lebesgue’s dominated convergence theorem we obtain that uk → u in
L2(Qω)∩L1(0,∞;L2(ω)) and, consequently, yuk

→ yu in L2
σ(Q); see [5, Theorem 2.7].

Then, we can pass to the limit in the above inequality and deduce that u satisfies
(4.7).

5. Approximation of (P). The aim of this section is to approximate the control
problem (P) by a sequence of finite horizon optimal control problems and to obtain
estimates on the error of these approximations. For every 0 < T < ∞ we consider
the control problem

(PT ) min
u∈UT,ad

JT (u) = FT (u) + γjT (u),

where

UT,ad = {u ∈ L2(QT,ω) : ua ≤ u(x, t) ≤ ub for a.a. (x, t) ∈ QT,ω},

FT (u) = 1
2∥yT,u − yd∥2L2

σ(QT ) +
ν
2∥u∥

2
L2(QT,ω), jT (u) = ∥u∥L1(0,T ;L2(ω)), yT,u is the

solution of (2.1) corresponding to u, and QT,ω = ω × (0, T ).
Given a solution (or a local minimizer) uT of (PT ), we denote by yT its associ-

ated state. For every control u ∈ L2(QT,ω) with associated state yT,u we consider
extensions to Qω and Q, denoted by ûT and ŷT,u, by setting ûT (x, t) = 0 if t > T
and ŷT,u the corresponding solution of (1.1) associated with the extension û. Let us
observe that if u ∈ UT,ad, then û ∈ Uad due to our assumptions on ua and ub. Using
this notation, we prove the following theorem.

Theorem 5.1. For every T > 0 the control problem (PT ) has at least one solution
uT . The extensions {ûT }T>0 of any family of solutions are bounded in L2(Qω). Every
weak limit ū in L2(Qω) of a sequence {ûTk

}∞k=1 with Tk → ∞ as k → ∞ is a solution
of (P). Moreover, the strong convergence ûTk

→ ū in L2(Qω) holds.
Proof. The existence proof of a solution is analogous to the one for (P). Let us

denote by y0 the solution of (1.1) corresponding to the control u ≡ 0. From Theorem
2.1 we know that y0 ∈ L2

σ(Q). Then, using the optimality of uT we get

ν

2
∥ûT ∥2L2(Qω) + γ∥ûT ∥L1(0,∞;L2(ω)) ≤ JT (uT ) ≤ J(0).

This implies the boundedness of {ûT }T>0 in U . Therefore, there exists a sequence
{Tk}∞k=1 converging to ∞ such that ûTk

⇀ ū in L2(Qω). Then, using Lemma 2.2 we
get that ŷTk

⇀ ȳ in H1
σ(Q). These facts yield{
∥ū∥L2(Qω) ≤ lim inf

k→∞
∥ûTk

∥L2(Qω),

∥ȳ − yd∥L2
σ(Q) ≤ lim inf

k→∞
∥ŷTk

− yd∥L2
σ(Q).

(5.1)

Moreover, the continuous inclusion L2(0, T ;L2(ω)) ⊂ L1(0, T ;L2(ω)) for all T > 0
implies for γ > 0

∥ū∥L1(0,T ;L2(ω)) ≤ lim inf
k→∞

∥ûTk
∥L1(0,T ;L2(ω)) ≤ lim inf

k→∞
∥ûTk

∥L1(0,∞;L2(ω)) ≤
1

γ
J(0).

From here we get

∥ū∥L1(0,∞;L2(ω)) = sup
T>0

∥ū∥L1(0,T ;L2(ω)) ≤ lim inf
k→∞

∥ûTk
∥L1(0,∞;L2(ω)) < ∞. (5.2)
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From (5.1), (5.2), and the optimality of uT we infer for every u ∈ Uad

J(ū) ≤ lim inf
k→∞

J(ûTk
) ≤ lim inf

k→∞
JTk

(uTk
) + lim sup

k→∞

1

2

∫ ∞

Tk

e−σt∥ŷTk
(t)− yd(t)∥2L2(Ω) dt

≤ lim inf
k→∞

JTk
(u) = J(u).

Above we have used the inequality

∥yu∥C([0,T ];L2(Ω)) ≤ Kf

(
∥y0∥L2(Ω) +

[
∥g∥L∞(0,∞;L2(Ω)) + 1

]√
T + ∥u∥L2(Qω)

)
, (5.3)

see [5, Theorem 2.2], and the fact that yd ∈ L∞(0,∞;L2(Ω)) to deduce

lim sup
k→∞

1

2

∫ ∞

Tk

e−σt∥ŷTk
(t)− yd(t)∥2L2(Ω) dt ≤ 2 lim sup

k→∞

∫ ∞

Tk

e−σt∥ŷTk
(t)∥2L2(Ω) dt

+ 2 lim sup
k→∞

∫ ∞

Tk

e−σt∥yd(t)∥2L2(Ω) dt ≤ C lim sup
k→∞

∫ ∞

Tk

(t+ 1)e−σt dt = 0.

This proves that ū is a solution of (P). Let us prove that the convergence of {ûTk
}∞k=1

to ū is strong. First we observe that the above convergence to zero and the optimality
of uTk

imply

J(ū) ≤ lim inf
k→∞

J(ûTk
) ≤ lim sup

k→∞
J(ûTk

) = lim sup
k→∞

JTk
(uTk

) ≤ lim sup
k→∞

JTk
(ū) = J(ū),

which implies that J(ū) = limk→∞ J(ûTk
). This identity along with (5.1) and (5.2),

and Lemma 5.2 below lead to limk→∞ ∥ûTk
∥L2(Qω) = ∥ū∥L2(Qω). Thus, ûTk

→ ū in
L2(Qω) holds.

Lemma 5.2. For every j = 1, . . . , k with k ≥ 2, let {αj,T }T>0 be a family of real
numbers satisfying

αj ≤ lim inf
T→∞

αj,T for 1 ≤ j ≤ k and lim
T→∞

k∑
j=1

αj,T =

k∑
j=1

αj ,

where {αj}kj=1 ⊂ R. Then, the equalities limT→∞ αj,T = αj hold for every j =
1, . . . , k.

Proof. We proceed by induction on k. First, we assume that k = 2. The conver-
gence α1,T → α1 is obtained as follows

α1 ≤ lim inf
T→∞

α1,T ≤ lim sup
T→∞

α1,T

≤ lim sup
T→∞

(α1,T + α2,T )− lim inf
T→∞

α2,T ≤ (α1 + α2)− α2 = α1.

Now the convergence limT→∞ α2,T = α2 is immediate. Let us take k > 2 and assume
that the statement is valid for k − 1. Proceeding as above we get

α1 ≤ lim inf
T→∞

α1,T ≤ lim sup
T→∞

α1,T

≤ lim sup
T→∞

k∑
j=1

αj,k − lim inf
T→∞

k∑
j=2

αj,k ≤
k∑

j=1

αj −
k∑

j=2

αj = α1
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Then, we have from the above inequalities and the assumption of the lemma

lim
T→∞

α1,T = α1 and lim
T→∞

k∑
j=2

αj,T =

k∑
j=2

αj .

Now, the statement follows by the induction hypothesis.
Theorem 5.3. Let ū be a strict local minimizer of (P). Then, there exist T0 > 0

and a family {uT }T>T0
of local minimizers to (PT ) such that ûT → ū in L2(Qω) as

T → ∞.
Proof. Since ū is a strict local minimizer of (P), there exists ρ > 0 such that

J(ū) < J(u) for every u ∈ Uad ∩ Bρ(ū) with u ̸= ū, where Bρ(ū) is the closed ball in
L2(Qω) centered at ū and radius ρ > 0. We consider the control problems

(Pρ) min
u∈Bρ(ū)∩Uad

J(u) and (PT,ρ) min
u∈BT,ρ(ū)∩UT,ad

JT (u),

where BT,ρ(ū) = {u ∈ L2(QT,ω) : ∥u − ū∥L2(QT,ω) ≤ ρ}. Obviously ū is the unique
solution of (Pρ). Existence of a solution uT of (PT,ρ) is straightforward. Then, arguing
as in the proof of Theorem 5.1 and using the uniqueness of the solution of (Pρ), we
deduce the convergence ûT → ū in L2(Qω). This implies the existence of T0 > 0 such
that ∥uT − ū∥L2(QT,ω)

≤ ∥ûT − ū∥L2(Qω) < ρ for all T > T0. Hence, uT is also a local
minimizer of (PT ) for T > T0.

Theorem 5.4. Assume that σ > 8Λf , ua < 0 < ub if γ > 0, and let ū be
a local minimizer of (P) satisfying the sufficient second order optimality condition
F ′′(ū)v2 + γj′′(ū; v2) > 0 for all v ∈ Cū \ {0}. Let {uT }T>T0

be a family of local
minimizers of (PT ) as selected in Theorem 5.3. Then, there exists a constant C
independent of T such that

∥ûT − ū∥L2(Qω) ≤
C

σ − Λf

(
T + 1

)
e−σT ∀T > T0. (5.4)

In addition, for every α > 4Λf there exists a constant Cα such that

∥ŷT − ȳ∥Yα
≤ Cα

σ − Λf

(
T + 1

)
e−σT ∀T > T0. (5.5)

Proof. Under our hypotheses, Theorem 4.4 is applicable. Accordingly let ε > 0
and δ > 0 be such that (4.7) holds. Following the proof of Theorem 5.3 with ρ = ε,
we have that uT is a solution of (PT,ρ). Using (4.7), the optimality of uT and the fact
that û(x, t) = 0 for t > T we get

δ

2
∥ûT − ū∥2L2(Qω) ≤ J(ûT )− J(ū) ≤ JT (uT )− JT (ū)

+
1

2

∫ ∞

T

e−σt∥ŷT − yd∥2L2(Ω) dt−
1

2

∫ ∞

T

e−σt∥ȳ − yd∥2L2(Ω) dt (5.6)

≤ 1

2

∫ ∞

0

e−σtχ(T,∞)(t)∥ŷT − yd∥2L2(Ω) dt−
1

2

∫ ∞

0

e−σtχ(T,∞)(t)∥ȳ − yd∥2L2(Ω) dt,

where χ(T,∞) denotes the characteristic function of the interval (T,∞).
Let F : L2(Qω) −→ R be the function defined by

F(u) =
1

2

∫ ∞

0

e−σtχ(T,∞)(t)∥yu − yd∥2L2(Ω) dt.
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By [5, Theorem 3.3] and the chain rule we infer that F is of class C2. Arguing as in
the proof of Theorem 3.4 we get

F ′(u)v =

∫
Qω

φuv dx dt,

where φu is the solution of the adjoint state equation{
−∂φ

∂t
−∆φ+ aφ+ f ′(yu)φ = e−σtχ(T,∞)(yu − yd) in Q,

∂nφ = 0 on Σ, limt→∞ eΛf t∥φ(t)∥L2(Ω) = 0.
(5.7)

Applying the mean value theorem in the right hand side of (5.6) we infer

δ

2
∥ûT − ū∥2L2(Qω) ≤

∫
Qω

φθT (ûT − ū) dx dt ≤ ∥φθT ∥L2(Qω)∥ûT − ū∥L2(Qω),

which implies

∥ûT − ū∥L2(Qω) ≤
2

δ
∥φθT ∥L2(Qω), (5.8)

where φθT is the solution of (5.7) with yu replaced by yθT , the state associated with
uθT = ū + θT (ûT − ū), θT ∈ (0, 1). We use that {uθT }T>T0 is bounded in L2(Q),
yd ∈ L∞(0,∞;L2(Ω)) to estimate φθT . First, we test the equation satisfied by φθT

with e2ΛfsφθT and integrate in (t, T̂ ) for T̂ ≥ T and t ∈ (0, T̂ )

e2Λf t

2

∥∥∥φθT (t)
∥∥∥2
L2(Ω)

+ Λf

∫ T̂

t

e2Λfs∥φθT (s)∥2L2(Ω) ds

+ Λf

∫ T̂

t

e2Λfs

∫
Ω

[|∇φθT |2 + aφ2
θT + f ′(y)φ2

θT ] dx ds

=

∫ T̂

T

e(2Λf−σ)s

∫
Ω

(yθT − yd)φθT dx ds+
e2Λf T̂

2

∥∥∥φθT (T̂ )
∥∥∥2
L2(Ω)

.

Arguing as in the proof of (3.8), using that limt→∞ eΛf t∥φθT (t)∥L2(Ω) = 0 and taking

the limit as T̂ → ∞, we infer

ess sup
t>0

eΛf t∥φθT (t)∥L2(Ω)+∥φθT ∥L2
−2Λf

(0,∞;H1(Ω)) ≤ C1∥χ[T,∞)(yθT −yd)∥L2
2(σ−Λf )

(Q).

Additionally, taking T̂ = T in the above inequalities we get ess sup
t∈[0,T ]

∥φθT (t)∥L2(Ω) ≤

∥φθT (T )∥L2(Ω). Then, we have

∥φθT ∥L2(QT ) ≤
√
T ess sup

t∈[0,T ]

∥φθT (t)∥L2(Ω) ≤
√
T∥φθT (T )∥L2(Ω)

≤ e−ΛfT
√
T eΛfT ∥φθT (T )∥L2(Ω) ≤ C1e

−ΛfT
√
T∥χ[T,∞)(yθT − yd)∥L2

2(σ−Λf )
(Q).
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Finally, we get

∥φθT ∥L2(Q) ≤ ∥φθT ∥L2(QT ) +
(∫ ∞

T

∥φθT (t)∥2L2(Ω) dt
) 1

2 ≤ ∥φθT ∥L2(QT )

+ e−ΛfT ∥φθT ∥L2
−2Λf

(Q) ≤ C1e
−ΛfT (

√
T + 1)∥χ[T,∞)(yθT − yd)∥L2

2(σ−Λf )
(Q)

= C1e
−ΛfT (

√
T + 1)

(∫ ∞

T

e2(Λf−σ)t∥yθT (t)− yd(t)∥2L2(Ω) dt

) 1
2

≤ C2e
−ΛfT (

√
T + 1)

(∫ ∞

T

e2(Λf−σ)t(t+ 1) dt

) 1
2

≤ C3

σ − Λf

(
T + 1

)
e−σT .

This estimate along with (5.8) leads to (5.4).
The estimate (5.5) follows from (5.4) and the generalized mean value theorem

∥ŷT − ȳ∥Yα ≤ sup
θ∈[0,1]

∥G′
α(ū+ θ(ûT − ū)∥∥ûT − ū∥L2(Qω),

where ∥G′
α(ū+ θ(ûT − ū))∥ denotes the norm in L(L2(Qω), Yα).

Remark 5.5. In the formulation of the control problem (P), the discount factor
could be introduced after some period of time. This means that the weight e−σt could
be replaced by weights of type

w(t) =

{
1 if t ≤ T̄ ,

e−σ(t−T̄ ) if t > T̄ .

The results proved in this paper can be easily modified to include this type of weights.
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