INFINITE HORIZON OPTIMAL CONTROL PROBLEMS WITH
DISCOUNT FACTOR ON THE STATE. PART II: ANALYSIS OF THE
CONTROL PROBLEM *
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Abstract. This is the continuation of our work on infinite horizon optimal control problems
with a discount factor on the state variable and nonlinear partial differential equations as constraints.
Existence of a solution is proven, and first as well as second order optimality conditions are derived.
They are used to analyze the approximation of the infinite horizon problem by finite horizon problems.
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1. Introduction. In this second part of our work on optimal control problems
with discount factor on the state in the cost functional we focus on optimization
theoretic aspects. In the first part [5] we analyzed the well-posedness of the controlled
equation and differentiability properties of the control-to-state mapping. Concretely
we investigate the problem

) 1 ) . v ) )
®) min T =5 [ eyl iy [l e [l
where

Uzg = {u € L?(0,00; L*(W)) : uq < u(z,t) < up for aa. (z,t) € w x (0,00)},

—00 < Uy <0< up < 400 with ug < up, 0 >0, v > 0, and v > 0. Here y, denotes
the solution of the following parabolic equation:

0
%—Ay—}—ay—i—f(y):g—&—uxw in @ =Q x(0,00), (1.1)
Ony=0 on X =T x (0,00), y(0) =yo in Q,

where (2 is a bounded domain in R”, 1 < n < 3, with a Lipschitz boundary T’
g € L>(0,00; L?(f2)), w is a subdomain of Q, x,, denotes the characteristic function
of w,a € L®(N),0<a#0, and yo € H'(Q). The symbol ux,, is defined as follows:

[ ulmt) i (1) € Qu = w x (0,00)
(uxw) (@, t) = { 0 otherwise.

The target yq is assumed to belong to L>(0, co; L?(12)). The exponent o > 0 is known
as the discount factor. The last term of the cost functional is included to promote
sparsity in time of the optimal controls.

Remark 1.1. The choice u, < 0 < uy is needed because if ug, > 0 or up < 0, then
Z/lad = @

*The first author was supported by MCIN/ AEI/10.13039/501100011033/ under research project
PID2020-114837GB-100.

fDepartamento de Matemética Aplicada y Ciencias de la Computacién, E.T.S.1. Industriales y de
Telecomunicacién, Universidad de Cantabria, 39005 Santander, Spain (eduardo.casas@unican.es).

Hnstitute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, A-
8010 Graz, Austria (karl.kunisch@uni-graz.at).



2 E. CASAS AND K. KUNISCH

As pointed out in [5] there are only very few papers in which infinite horizon
optimal control problems are investigated systematically. This is particularly true
for problems involving partial differential equations. For references concerned with
ordinary differential equations we refer to our references in [5]. Our own investigations
started with [3], where infinite horizon problems with L' sparsity enhancing terms
are investigated for stabilization problems, i.e. y4 = 0. The nonlinearities considered
in that paper are of polynomial type and it is verified that for sufficiently large t,
once the trajectory reaches a sufficiently small neighborhood of a stable equilibrium,
the associated optimal control switches off, as expected due to the sparsifying term in
the cost-functional. In [4] infinite horizon problems of tracking type are considered,
under quite general assumptions on the nonlinearity f. The optimization problem is
investigated under the assumption of existence of at least one optimal control, which is
guaranteed, for instance, for sufficiently small initial conditions. Optimality conditions
are derived without recourse to the regularity of the control to state mapping. The
optimal states themselves are at least in L?(0, 00; L(£2)). In the present paper, on the
contrary, due to the discounted term, the optimal states are allowed to be much more
general, they need not lie in L?(0,00; L?(Q)). The nonlinearities are of polynomial
nature or are globally Lipschitz continuous. The control to state mapping is well-
defined and C? regular on all of the control space.

In [4] the nucleus of the proof technique, for the optimality conditions for instance,
rested on the approximation of the infinite horizon by finite horizon problems. In the
present paper we need not rely on this rather technical approach, rather the first
and second order optimality conditions can be proved directly for the infinite horizon
problem. However, we still address the approximation of (P) by means of finite
horizon problems, and even derive a convergence rate estimate with respect to the time
horizon, by exploiting sufficient second order optimality conditions. The importance of
such an estimate, besides intrinsic interest, lies in the fact that numerical approaches
many times rely on computations carried out for ’sufficiently’ large time horizons.
This suggests to investigate the error which is made by cutting off the time interval.

The paper is structured as follows. In Section 2 selected results from [5] are re-
called and existence of a solution to (P) is verified. Differentiability properties of the
cost functional on the basis of an appropriately defined adjoint equation are investi-
gated in Section 3. In our work the transversality condition, known from Pontryagin’s
maximum principle, corresponds to the behavior of the adjoint state at co here. For
ordinary differential equations it has been analyzed in detail in [1]. Necessary and
sufficient optimality conditions are contained in Section 4. The last section is devoted
to the approximation of (P) by means of finite horizon problems.

Assumptions on f and notation.

For the nonlinear term in state equation f : R — R we assume that f = f; + fo
such that f; is a polynomial of odd degree 2m + 1 with a positive leading coefficient,
0<m <1ifn=3,and m > 0 arbitrary integer if n = 2, and f» : R — R is a C?
function satisfying

f1(0) = f2(0) =0 and 3Ly >0:[fa(s)| +[f7(s)| < Ly Vs €R. (1.2)
As established in [5], the assumptions on f imply that

JAs > 0 such that f'(s) > —Af Vs €R, (1.3)
IMy such that f'(s) > 0 and f(s)s >0 V|s| > M. (1.4)
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Given a real number o € R and p € [1, 0], LP (Q)) denotes the space of measurable
functions ¢ : ) — R satisfying

o 1
lollziar = ([ e 1000l dt) " < o0 ifp < .

16| Lee (@) = esssup  e” 2p(x,t)] < oc.
(z,t)€Q

With L2(0,00; HY(Q)) and C,/([0,00); H1(2)) we denote the Hilbert and Banach
spaces of measurable, respectively continuous, functions y : [0,00) — H(Q) en-
dowed with the norms

o 1
—o 2
e § A Tl

Yl e (j0,00): 1 () = S[up efgtHy(t)HHl(Q))-
t

0,00
We also define H}(Q) as the space of functions y € L2 (0, 00; H!(Q)) such that % €
L2(Q). This is a Hilbert space for the norm

Y ||2 )f
2@/

L@ = (||y||2L§(0,oo;H1(Q)) + Ha

Finally, we set Y, = H1(Q)NCxa([0,0); H'(2)). The next estimate was proved in [5]

Cullylly. ifa>0,

Y|| 7 am+2 < ” 1.5

W@ < § e ita<o (15)

for a constant C,,. The following well known inequality will be useful all along this
paper

1
2

Caollzllar (@) < </ (V2> + az?) dx> Vz e HY(Q). (1.6)
Q

2. Existence of a Solution for (P). In this section, we will prove the existence
of at least one solution to problem (P). Before we summarize some results concerning
the state equation. Following [5, Definition 2.1], a function y is called a solution of
(1.1) if it belongs to L (0, 00; H(2))NCioc([0, 00); L*(2)), f(y) € L}, (0, 00; L3()),
and it satisfies

0
%—Ay—kay—kf(y):g—kuxw in Qr =9 x (0,7), (2.1)
Opy=0 on X7 =T x (0,7), y(0)=yo in Q,

for every 0 < T < o0.
THEOREM 2.1. For every u € L?(Q.) equation (1.1) has a unique solution
Yu € Yy, for every a > 0. Moreover, the following properties hold

lim ey, (T)l| 10 = O, (2.2)
T—o0

1 (we)llzz @) + v Iz @) + l1yally.
< C(lgllim@osz@y + ez + ol 3y +1),  (23)
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where C' is independent of g, u, and yg.

The reader is referred to [5, Theorem 2.4] for the proof of this theorem. The
continuous dependence of the state with respect to the control is established in the
next lemma.

LEMMA 2.2. Let {u}32, be a sequence in L?(Q,,) with associated states {yx}3° ;.
If up, — w in L3(Qy), then for every a > 0 the convergences yr — vy in H:(Q) and
Flge) = F(y) in L2(Q) hold.

Proof. From the boundedness of {u;}72, and (2.3) we deduce the existence of
a subsequence, denoted in the same way, such that y, — y in Y, and f(yx) — ¢
in L2(Q) for every o > 0. Let T > 0 be arbitrary. From the compactness of the
embedding H*(Qr) C L?(Qr) we infer the existence of a further subsequence such
that

yr —y in L?(Qr) and yi(z,t) = y(z,t) ae. in Qr.

Using the above pointwise convergence we deduce that ¢ = f(y) and, hence, f(yx) —
f(y) in L2(Q). Now, we prove that y = y,. It is easy to pass to the limit weakly
in the state equation (2.1) satisfied by (yg,ur) and to deduce that (y,u) satisfies the
equation in the variational sense in Q7 for every T' > 0. Moreover, from the continuity
of the embedding Y, C C,([0,00); H'(R2)) we have that yo = y1(0) — y(0) in L?(Q),
hence y = y,,. From the uniqueness of the solution of (1.1) we deduce that the whole
sequence {yx}72, converges to y,. O

THEOREM 2.3. Problem (P) admits at least one solution.

Proof. Let {ux}?°, be a minimizing sequence for (P). Since J(ux) < J(0) for
every k large enough (unless u = 0 is already an optimal control), the boundedness of
{ug}se, in L?(Q,,) follows. Hence, there exists a subsequence, denoted in the same
way, such that up, — @ in L?*(Q.). Let us denote by {yx}72, the states associated
with {uz}3°,. Lemma 2.2 implies that y, — ¥ in L2(Q), where § is the solution
of (1.1) corresponding to @. To prove that @ is a solution to (P), we consider the
following inequality for arbitrary T > 0:

1 ot 9 v [ [ 4 T Ly 1/2
,/eo(y_yd) dxdt—&-f/ /u dxdt—kv/ (/u dx) dt
2 Q 2 0 w 0 w

< liminf J(uy) = inf (P),
k—oo

which follows from the convexity of the objective functional with respect to pair (y, )
and the continuity of the embedding L?(0,T; L?(w)) C L'(0,T; L?(w)). Now we have

~ 1 ot v o] ~ T ~
1@ =sp {5 [ - dedr+ [Tl oy [ a0l )
T>0 Q 0 0

< inf (P),
which concludes the proof. O

3. Differentiability of the Cost Functional. The cost functional J is decom-
posed in two parts: J(u) = F(u) + vj(u) with

1
F(u) = 7/ e Ny, —yq)? dadt + g/ u? dx dt, (3.1)
Q

w

jlu) = / ) o) . (3.2)
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Regarding the functional j we have the following properties, which can be obtained
from [2] by reversing the role of the variables x and ¢.

LEMMA 3.1. The functional j : L*(0,00; L?(w)) — R is Lipschitz and convex
and the following relations hold
(1) The subdifferential 0j(u) is the set of functions A € L>=(0, 00; L?(w)) satisfying

A2y <1 for a.a. t € IY,

Ma,t) = p f(tt()ﬂi tz) for aa. teT, andz € w, (3.3)

where I, = {t € (0,00) : [|u(t)]|L2(w) # 0} and I) = (0,00) \ 1.
(2) For every u,v € L*(0,00; L?(w)) the directional derivative is given by

i (u;v) = v 2 L u(z, t)v(z,t) dz
Fuso = [ Ol i+ [ o [t gaa @

lL2(w)

As we will see later, F is differentiable. As usual, to represent its derivative we
introduce the adjoint state. The next theorem establishes the existence and uniqueness
of an adjoint state as well as its continuous dependence with respect to u.

THEOREM 3.2. Let us assume that o > Ay, h € L%(0,00; L*()), and y € Yy for
every B > 0. Then the problem ‘

D oty
~5r —Aptap+ flyp=e"hinQ, (3.5)
O =0 on X, limoe ™ (t)]|2(0) = 0

has a unique solution ¢ € L*(0,00; HY(Q))NC([0,00); L?(Q2)). Moreover, the regular-
ity ¢ € Y_o holds for every a < 20. Further, if {(yx, h)}32, C Y3 x L3(0, 00; L*(2))
and (Y, hi) = (y,h) in Yz x L%(O, o0; L2(Q)) for every 8> 0, then

lim [jor — ¢y, =0 Va < 20, (3.6)
k—o0

where @y, is the solution of (3.5) with (y,h) replaced by (yi, hi).

Proof. The proof is split in several steps.

Step 1 - Uniqueness of a solution. Since (3.5) is linear it is enough to prove
that the only solution with a zero right hand side is ¢ = 0. Multiplying (3.5) by ¢,
integrating by parts in Q x (¢,T) for 0 < t < T < oo with T arbitrarily large, and
using that f'(s) > —Ay, we get

1
<= 2 drd
o) 2Hw( / /va\ +ap?]dz ds

2 H ‘ L2(Q)

/ /f Y)p dubdb+2H99

The inequality in the above expression holds because f/(s) > —Ay. By Gronwall’s
inequality we infer

<A v d H
o f/|WUh ] .

2 T—o0

le@)lIF2 (@) < VT No(T)IIF2 () < [T lo(@)ll2@)]® =30,

which proves that ¢ = 0.
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Step 2 - Existence of a solution. Let {T};}7° | be an increasing sequence converging
to co. For every k we consider the equations

a‘PT —0o :
{ - atk - A(lDTk + apT, + fl(y>90Tk =e “'hin QTk’ (37)
an%oTk =0on ETkv P (Tk) =0.

Since e~ 7h € L*(Qr,), the existence and uniqueness of a solution p7, € HY(Qr,) N
C([0,Tx); H*()) is well known. We prove the convergence of {7, }2° ; to the solution
of (3.5). For this purpose we test the equation (3.7) with e**¢r, for o > 2A ¢ and use
that o1, (Tx) = 0 we get for t € (0,T})

2 a Tk Ty
L2(Q)+§/ aSHSDTk”Lz ) d8+/ / |V<ka| +a4ka]dxd3

T} T
/ /f Lka dxds-/ ela=7) /hgoTk dz ds.

Denoting by ¢, the extension of @7, by zero for ¢t > T}, we deduce from the above
equality with (1.3) and Young’s inequality

eat

@Tk()’

ot

€ ~ > as||
7||<PTk(t)||2L2(Q)+Cc2L o @7 (8) 1371 ds

(o)
< / %Al 2oy b1, (8) | p2 () ds
t

1 > a—20)s Cg > asll A
N Ye? / ele727) Hh||2L2(Q) ds + 7/ e*’|| o, (S)H%{l(g) ds.
20(1 t 2 t

This yields for some constant C; independent of a € [2Af,20) and k

1

e ~ > as ||, 2
ess sup 3, (1) 2oy + ( / Il 0 ds)
t>0 0

Therefore, taking a subsequence, denoted in the same way, we have e%tcﬁTk — ety
in L2(0,00; H'()) and e3'pr, — e3tp in L=(0,00; L?(Q)) for some function ¢ €
L?(0,00; HY(£2)) N L>°(0, 00; L2(£2)). The first convergence implies that ¢ satisfies the
partial differential equation part of (3.5) and the second convergence yields

e (t)||L2(q) < Ko for a.a. t >0 and o < 20. (3.9

Let us prove that f'(y)p € L?(Q). From our assumptions on f we deduce the existence
of a constant Cy such that |f/(s)| < C2(s*™ + 1) for all s € R. Then, using Hélder’s
inequality with % and 2m + 1 we obtain

/Qf’(y)2<p2dxdt§0§/0 (||Z/||L4m+2(9 + D) [l Fam2 (o dt

o0

< Cé’/ (O
0

<

Cé’(||y||gz%n (0,00, HL(Q)) T 1) ||<P\|%3a(0,oc;H1(Q)) < 0.

Yl @)™ + 1) e loll7n o dt
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Hence we have ¢ € W(0,T) = H'(0,T; H*(Q)*) N L*(0,T; H' () € C([0,T); L*(£2))
for every T' < oo and, consequently, ¢ € C ([0, 00); L?(€2)). Furthermore, (3.9) implies
that lim o e*'|l¢(t)||z2(q) = 0. Hence, we have that ¢ is a solution of (3.5).
Further, due to the uniqueness of a solution we deduce that the whole sequence
{o1,}72, converges to ¢ in the sense specified above.

Step 3 - p € Y_,. We test equation (3.7) with — ‘“W € [2A,20), and
get for every t € (0, Tk)
a@Tk

Ty
s d _ d
[P o s S [ IVen R + ach, (0] ds

T T (p
/ /|V<ka| + apy, dxds—/ /f Do dx ds
:7/ e(a a)s/ acka dx ds.
t o O0s

Take € > 0 such that o + ¢ < 20. Using (1.5), |f/(s)| < Ca(s*™ + 1), Hélder’s
inequality with 47”:1'2, 4m + 2 and 2 for m > 0 or Schwarz’s inequality for m = 0, the
fact that y € C- ([0,00); H'(2)), and Young’s inequality we infer from the above
equality

Ty
/ eas
t
Tk
<Ca [ e (Il + Dllorlmsaca
t
Ty 0
(a—0)s h H Ty
+/t e 1hllz2c0 || =5
Ty 0
at£)s([,— =5 m L
§C4/ S (O P +1)H‘PTk||L4”“<Q>H ajk’
t
Tk a
[l o | 25
t

T
(ate)s 2
Js L2(Q) ds S C5,5Z € c ||$0Tk HHl(Q) ds
e,

T am20)s )2 L
+/ e\ @798 h ds—I—f/ e*?
t Al ds 5 [ e 222

Taking into account the definition of @1, , the above inequality leads to

00
/ ets
t

<205 / (4| o, 1211 ) s + 2 / o2 B2, o ds.
t t

2. at

s + CZe
L2(Q)

890Tk
Js

lez, (OllFn @

6@Tk
0s

L2()

L2(Q)

L2(Q)

L2(9)

aQka

ds + C3e!|| ¢, (D)1 ()

L2(Q)

Since a + € < 20, we deduce from the above inequality and (3.8)

oo
esssupe%t||¢Tk(t)||H1(Q) + (/ 00S
0

t>0

a‘aka

2 3
. ds) < C6,e||h||L§ﬂ_(a+5)(Q)

for all k > 1. As a consequence we get ez'pr, — e3ty in L(0,00; H'(Q)) and
e%t&g% — e%t%—f in L?(Q). Then, the above inequality implies

dp||2 3
- dS) =~ , Q)
s |l L2 (Q) 20— (a+te)

esssup e[| o(t)|| g (o) + (/ e’
0

t>0
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Hence we have that ¢ € H _(Q). Moreover, since p(T) € H(Q) for almost every
T > 0 and 3“" + Ay € L*(Q), we infer that ¢ € C([0,T]; H'(£2)); see [7, Proposition
IT1-2.5]. Comblmng this with the fact that ¢ € L>,(0,00; H*(2)) we conclude that
0 € C_([0,00); HL(Q)). All together we obtain that ¢ € Y_,, and

lelly- < Mcllbllzz,_ . @ Vo€ l2As,20—¢). (3.10)

Step 4 - Proof of (3.6). Take v < 20 and € € (0,20 — o). We set ¢ = ¢ — k.
Then, we have

{ *% — Agr + ady + f(y)dr = e [(h — hi) + 7 (f (yr) — ' (9) o] in Q.
Ondr =0 on %, limy o0 (|61 ()| 22 () = 0-

Analogously to (3.10) we have

@klly_ < Mell(h = hi) +e7 (' (ur) = f'W)erllrz, @ Vo€ 2hf,20 —¢).
(3.11)
Observe that h — hy, — 0in L3 (ate) (Q) due to hy — hin Yp for all 8 > 0. Let
us prove that e [f'(yx) — f'(y)]ox — 0in L3, __(Q) as k — oo for a < 20 arbitrary.
We make the proof for m > 1, being simpler for m = 0. Using Holder’s inequality
with 14 5= and 2m + 1 and taking ¢ € (0,0) we get

ot g/ / 2
e [f" (yw) — f (y)]@kHLgPQ(Q)
< [ ) = PO, g 90 e

<C [ eI ) = IRy g P o
o Q)

< Cllerlle. . (0,000 @I (k) = 'y Mz, ()

From (3.10) the boundedness of {¢;}7°, in Y._5, follows. This combined with the

above estimate and the fact that ||f'(yx) — f/(¥)|| 242 — 0 as k — oo [5,

Lay "Ea+s>(Q)

Theorem 2.7] leads to
Tim [[(h = hi) + o (F ) — F))prlo, @ =0 Vo< 2.

Hence, (3.11) yields limy o |||y, = 0 for all & € [2Af,20). Since the norm ||-||y_,
is monotonically increasing with respect to «, equality (3.6) holds. O

Remark 3.3. We observe that Ay = 0 if f is a nondecreasing monotone function.
Hence, existence and uniqueness of a solution for equation (3.5) holds for all o > 0.

The next theorem establishes the differentiability of the functional F.

THEOREM 3.4. Assume that o > 8As. Then, the functional F : L*(Q,) — R
is of class C* and the following expression for its derivative holds

F'(u)v = / (pu + vu)vdex dt, (3.12)

w

where @, is the solution of the adjoint equation (3.5) with y = y,, and h = y, — y4.
If in addition o > 4\ ¢, then F is of class C? and

F"(u)(vy,v9) = / (677" — wuf" (Yu)) 20, 20, dx dt + 1// v1vg dx dt. (3.13)
Q

w
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Proof. Choose a € (2Af,0), and define by Fy : LZ(Q) — R the quadratic form
Fo(y) = %||y—de%g(Q). Let G, : L?(Q.) — Y, with G, (u) = y,, denote the control
to state mapping. From Theorem [5, Theorem 3.3] and the fact that o > 4A; we get
that G, is of class C''. Moreover, z, = G’(u)v is the solution of the equation

0z
5 Az +az+ f'(yu)z = vxw in Q, (3.14)
Opz=0o0n %, z(0) =0 in Q.

Further, since a < o, Y, is continuously embedded in L2(Q). Therefore, the mapping
F=FyoG,+ 3] - ”%Q(Qw) is of class C! and

F'(u)v = / e 7 (Go(u) — ya)Gh (u)v do dt + I// v dx dt
Q

w

:/ ef"t(yu—yd)zvd:vdtJrV/ uv dx dt.
Q

w

Testing (3.14) with ¢, and integrating by parts, (3.12) follows from the above identity.
To justify this testing the integrability in @Q of every term of equation (3.14) multiplied
by ¢, needs to be verified. Let us consider the integrability of the first term. Given
B € (2Af,20) we get

/‘azv |gpu|d$dt:/
Q

due to the fact that z, € Yy for every 8 > 2Af and ¢, € Y_g for every 5 < 20; see
[5, Lemma 3.1] and Theorem 3.2. The other terms can be analyzed in a similar way
except the one containing f’(y,). To deal with this term we consider the case m > 1,
for m = 0 the proof is easier. We select 83 € (2Ay, H_Ll) This is possible because

o > 4A ;. Now we take ) € (0, 522~ )andﬂg Bs — Br. We define B, = (2+ )54,

? 2m—+1
Bom = 2+ = +1)52, and B3, = (2 + m+1 ™-)B3. Then, applying Holder’s inequality

with 24+ L 2+ and 2 + and using that H(Q) C L2t (Q) we obtain

azv

ﬁ
CEM[ES

leullzz (@) < o0

LZ(Q)

m+1’ m+1’

/ 1 () 200l dar it = /Q P F () e 2 e 0| iz

<@l 2vn N2oll [l
U ij( 0) Zy 2+m+1( ) U Li;;n.;.l (Q)
<c +1 z
Hy | Zfl (Q)H v”LZ;rm“ (0,00; H(£2)) el 2,;;”“ (0,00;H1(R2))
_m__ m41
2m+1 |27n+1

/
< llvellzgrg T D10, @om @I 00

+
8 o Gy 120l

X llul g (OS5 (@) S O
2

For the last inequality we have used that Si,, > 0 and (2.3), and the fact that
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2y € Ypom and @, € Y s, (mi1y due to the following properties:
2 2m

Bom(m + 1 2m + 1 2m + 1

: (2m ) _ (B3 — p1) > (1- o +1)ﬂ3 2033 > 4Ay,
m _ 2m+1 2 1

ﬁg < m+ B, < m + 01 <%

2 m+1 m—+1 1+ 5~

Now we turn to the second derivative and assume that o > 8A;. We select
a € (8Af,0). Then, Theorem [5, Theorem 3.3] implies that G, is of class C? and
Zvy we = Gl (1) (v1, v2) is the solution of the equation

0z
E —Az+az+ f (yu)z + f (yu)zmzvz =0in Q, (315)
Onz=0o0n3, z(0)=01in Q,

where z,, = G, (u)v;, i = 1,2. Hence, by the chain rule we get that the function
F=TFoG,+ 5" ||2L2(Qw) is of class C? and

F"(u) (v, v2)

= / e 7 {(Gu(u) — ya)GL(uw)(v1,v2) + G (w)v1 G (u)ve } do dt + 1// v1ve dz dt
Q Qu

= / e 7" {(Yu — Yd)Zoyvy T 20y 20, } dx dt + 1// vyvg dz dt,
Q

w

where z,, = G, (u)v1 and zy,4, = G (u)(v1,v2). Now, testing equation (3.15) with ¢,
and integrating by parts we obtain (3.13). To check that the testing and integration
by parts are justified, the most delicate issue is the one involving f”(yu)zuv, Zvs Qu-
To prove its integrability we proceed as follows. As above we are going to consider
the case m > 1, the case m = 0 being easier. First, we select 8 € (2A, 224 g),
B3 € (Qm_l,_lB? ) BQ = 272,1_7_1 ﬁa and Bl 63 - 2[32 Let us denote 51m = 4m+2ﬂ and
Bam = (dm + 2)fB5. Then we apply Holder’s inequality with gmﬁ, d4m + 2, 4m + 2,
and 2 to derive

/ |f/,(yu)zm Zug ¢u| drdt = / 6751t|fﬂ(yu)‘eiﬁ2t|zvl |eiﬁ2t|zvz |eBSt|§0u| dx dt
Q

< 1"yl [T Q)Hzm”L‘é;";:z((g)”%z”Lg:?(Q)”‘PuHLEwS(Q)

Lg 1m

< clllyullpame2g) + Dllzullvs,,, 120 llvs,,, leully-os, < oo
1m dm am

In the last inequality we used that |f”(s)| < C(|s|*™~1 + 1) and (2.3), Bim > 0,
% = > 2Ay, and f3 < o along with [5, Lemma 3.1] and Theorem 3.2. O

4. First and second order optimality conditions. The aim of this section is
to establish the necessary and sufficient conditions for local optimality. Since problem
(P) is not convex we will consider local minimizers in this section. We say that @ is
a local minimizer of (P) if & € U,q and there exists a ball B.(u) C L?(Q,) such that
J(u) < J(u) for every u € B(u) NUgq. If the inequality is strict for every u # 4,
we call u a strict local minimizer. This definition implies that a local minimizer
@ satisfies J(%) < oo and, consequently, it belongs to L'(0,00; L?(w)) if v > 0.
Indeed, given € > 0 there exists T. > 0 such that for u.(x,t) = u(x,t)xo,r.)(t) the
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inequality [|@ — @cl[z2(q,) < € holds. Moreover, we have that u. € U,q and then
J(@) < J(ue) < oo.

Following the approach of [2] and using Theorem 3.4 the optimality conditions
are deduced next.

THEOREM 4.1. Let us assume that o > 4Ay. If @ is a local minimizer of (P),
then there exists ij € Yo, for every a >0, ¢ € Y_g for every B < 20, and X € 9j(u) if
v > 0, such that

Ay oy
g=0 onX, §(0)=yo inQ,

g _ — N~ —ot (= ;
—a—f—Aw+a<p+f’(y)s0:e (7 =ya) inQ, (4.2)
= : Aft = 2 — '

Ong =0 on Y, tligloe [6()lz2(0) =0,
/ [Pl +va+ 72w —10) 20 Vu € Uya. (43)

w

PROPOSITION 4.2. Let (@, @, \) satisfy the optimality conditions (4.1)—(4.3) with
U € Upq and also u € L1(0,00; L?(w)) if v > 0. Then @ € L>(0,00; L?(w)) and the
following identity holds for almost all (z,t) € Q,

i(a,1) = Projy, vy ( — 2 [6(,0) + 7 Az, 1)]). (14)

v
In addition, if v > 0 and u, < 0 < up, then we have for almost all (z,t) € Q,,
[a@®)]l2w) =0 |6l L2w) <7,
_795(‘%715) thejga
_ 0 (4.5)
)\(ZL‘, t) = —
u(x,t)
a()[| 22 (w)

where Iz = {t € (0,00) : [|a(t)| r2() # 0} and I = (0,00)\ Iz. Moreover, there exists
T < oo such that ||[u(t)| 2wy = 0 for all t > T*.

Identity (4.4) is standard and the regularity @ € L*°(0,00; L?(w)) is a conse-
quence of it. The reader is referred to [2, Corollary 3.9] for the proof of (4.5) just
by reversing the roles of z and ¢. The existence of T follows from the property
limy oo [5(8) 20y = 0 and (4.5).

Now, we formulate the necessary second order optimality conditions for (P). Once
again, following [2] we introduce the cone of critical directions associated with a control
U € Uyq satistying the first order optimality conditions (4.1)—(4.3) as follows

Cz = {v €U : v satisfies (4.6) below and F'(a)v + vj' (u;v) = 0},
where U = L*(Q,,) N L' (0, 00; L?(w)) if v > 0 and U = L*(Q,,) if v = 0, and

ifte I,

>0 if a(z,t) = uq, .
v(z,t) { <0 ifalz.t) = u, a.e. in Q. (4.6)

We also define j”(u) : L?(Q.) — [0,00] by

1 u(z, o(z,t)  \?], .
§" (us0?) = /IUWWW{A”2($’t)dx‘(LWde) Jatituzo,
0Oifu=0.
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The expression for j”(u;v?) is just a definition, it does not represent the second di-
rectional derivative, except for special cases. Actually, the expression j”(u;v?) can
be oo for some functions v and v. Nevertheless, the integral is always well defined be-
cause the integrand is non negative. The following necessary second order optimality
conditions can be established as in [2] with the help of Theorem 3.4.

THEOREM 4.3. Assume that 0 > 8Ay¢ and ug <0 < wuyp if v > 0. Let @ be a local
minimizer of (P). Then, we have that F"(i)v? 4+ v (i;v%) > 0 for every v € Cy.

Proof. If oy = 0, the proof is well known. Assume that v > 0 and j”(u;v?) < oo,
otherwise the inequality is obvious. Given v € Cz and T > 0, we define vr(x,t) =
v(z,t) if t < T and zero otherwise. Following the steps of [2, Proof of Theorem 4.3,
Case III], once again reversing the roles of x and ¢, and using that ¢ € L*(Qr) due
to ¥, ya € L>°(0,T; L?(2)), we obtain that F” (u)vZ +~j" (u;v%) > 0. We can pass to
the limit in this inequality to conclude that F"(#)v? + 5" (;v?) > 0. Indeed, using
that |op(z,t)| < |v(z,t)| and vr(x,t) = v(z,t) when T — oo, Lebesgue’s dominated
convergence theorem implies that

Tli_r}n()@gﬂt) = Th_r}nOC [/wv%(x?t) dx — (/w de)?

=g(t) == { /w v3(2,t) do — ( /w 1|L|(5(’:))””L(i;t)) dxﬂ.

Moreover, we have that 0 < g(t) for every ¢, gr(t) = g(t) if t < T, and gr(t) = 0 if
t > T. Hence, the monotone convergence theorem implies that

1 1
lim %QT(@ dt = / = 9
T—o0 Jr, [1u()] L2 (w) 1 1)) 22 w)
This implies that limz_,o j”(@;v2) = j”(u;v?). Finally, as a consequence of the
convergence vy — v in L?(Q,,) and Theorem 3.4 we infer that F”(a)v2 — F"(u)v?.

0

(t) dt.

In the next theorem the sufficient second order conditions for local optimality are
established.

THEOREM 4.4. Assume that ug <0 < wup if v >0 and 0 > 8Af. Let © € U NUqq
satisfy the first order optimality conditions given by Theorem 4.1 and the second order
condition F" (w)v? + vj" (4;0%) > 0 Vv € Cy \ {0}. Then, there exist ¢ >0 and § > 0
such that

0 _ B (7
J(@) + 5w =l g < (W) Vu € Uaa N Be(), (4.7)
where B.(u) = {u € L*(Qu) : |lu — tllr2(q.) <€}
LEMMA 4.5. Under the assumptions of Theorem 4.4, if there are no § > 0 and

e > 0 such that (4.7) holds for every u € Uyq N B.(@) N L>(0, 00; L?(w)), then there
exists a sequence {uy}32; C Uaga N L>®(0,00; L*(w)) such that for every k > 1

_ 1
s~ 200, < (45)
_ 1 _

Furthermore, if v > 0 and T* is as introduced in Proposition 4.2, then there exists a
sequence of measurable sets Iy, C (0,T*) with T* —|I)| < ¢ such that {uj,}32, satisfies
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additionally

_ 1
||uk — UHLoo(Ik;L2(w)) < E (4.10)

Proof. It (4.7) does not hold, then for any integer k > 1 there exists an element
wy € Uyg N L>(0, 00; L2(w)) such that

lwe — a2, < % and J(wg) < J(@) + i”wk — aHQLQ(Qw)' (4.11)
If v = 0, then we take up = wy. Otherwise, we proceed as follows. From the conver-
gence ||wy(t) —u(t)| 2wy — 0 in L?(0, 00), we deduce the existence of a subsequence,
denoted in the same way, such that ||wy(t) —@(t)| 12wy — 0 for almost all ¢ € (0, 00).
Then, from Egorov’s theorem we deduce the existence of a subsequence {w;, }2° ; and
a sequence {I;,}72, of measurable subsets of (0,7*) such that T* — |I| <  holds and

|wjy, — @l Loe (1;02(w)) = esssup [lwj, (¢) — @(t)|| 2wy < 57
tely 2k

Moreover, ji can be chosen so that ji > 2k. Then setting up = w;, we get with (4.11)

ue = @ll oo (1 02(0)) + lue — ll22(qu)

_ _ 1 1 1
= llwj = @llpeesz2 @y + llwje = allz2u) < 5 + P

and
_ 1 —112 = 1 7112
J(up) = J(wj,) < J(u) + j*k”wjk —Ull72q,,) < J(@) + %Huk = ull72q.,)

which proves (4.8)—(4.10). O

Proof of Theorem 4.4. First we prove that (4.7) holds for every u € Uyq N B (@) N
L*(0,00; L?(w)). We argue by contradiction. Let us consider the case v > 0. If
~v = 0, the proof follows the same steps with the obvious simplifications. If (4.7)
does not hold in U,q N B.(i) N L*°(0,00; L?(w)), then we get from Lemma 4.5 a
sequence {u}e, C Uaua N L=(0,00; L?(w)) satisfying (4.8)-(4.10). Let us define
pr = |lux — @ll2(.) < 1/k and vy, = (up — u)/pr. Since, ||vk|r2(qy = 1 for every k,
we can extract a subsequence denoted in the same way so that vy, — v in L?(Q,).
The proof is split into four steps.

Step I. v € Cy. For all T < co we define the functional jr : L'(0,T; L*(w)) — R
by
T
jrt) = [ Ol .

Then, we have

y u(t)v(t)
J (u;v)z/ [l L2 (w dt—|—/ /*dxdt.
T omnre O o man Ju Tu®)z2w)
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For every T' > T the following identity holds
T
Jr(w;v) = jh. (a;v) —I—/T lv(t)|| L2 () dt-

The convergence vy — v in L?(Q,,) implies that vy, — v in L*(0,T; L?(w)). Then,
using that v — j7.(@;v) is convex and continuous, we have for every T' > T*

T
Jie(s) + [ ol0)] ooy dt = S (n5v) < Tgnind (i)
T* oo

< liming 22 preow) —gr (@) g e drus) —ar(a) g e d () = 5()
k— oo Pk k— oo Pk k—o0 Pk
Taking the supremum with respect to 1" we infer
(uk) — j(u)

(5 0) = e (5 0) +/ [0(8) ]| 2y dt < limin 2
T* k—o00 pk

From this inequality and (4.8)—(4.9) we get
F'(u) v+~ (w0)

< liminf pik{[F(ﬂ + pror) = F(@)] + 0@ + prox) — G(@)]}

| _ - 1 _ .. . PE
= hkrr_kgéf p—k[J(uk) —J(w)] < llkrrigolf T lur — @ll72(q.) = hkrr_lgéf 2% = 0.

To prove the converse inequality we use that

max/ \vdz dt = j'(u;v).
AEDj (1) Qu

Then, with inequality (4.3) we get

F'(w)v +~j' (a;v) > F'(a)v + v v dz dt
Qu

= lim i/ (@ + v +y\) (ug — ) dzdt > 0. (4.12)

The last two inequalities imply that F'(@)v + vj'(@;v) = 0. Moreover, from this
identity we infer

e 1 g
/|WWWMﬁZ;F@WﬂhWW<W~
T*

Consequently, v € U holds. In addition, since vy, satisfies the sign conditions (4.6) for
every k and the set of elements of L?(Q,,) satisfying (4.6) is convex and closed, we
deduce that v satisfies (4.6) as well. Hence, we have that v € Cj.

Step II. v = 0. For 8 > 0 small we define

Ip = {t € (0,00) : [a(t)l|L2(w) = B} and jp(u) :/1 [w()]| 22w dt,
B
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and with Lemma 4.5
Ig,k = Iﬂ NI, and jg,k(u) = /] ||u(t)||L2(w) dt.
B,k
Since [|u(t)|| 2wy = B > 0 for every t € Ig g, jpi : L°°(0,00; L*(w)) — R is infinitely
differentiable in the L°°(0, 00; L?(w)) open ball By (u). Hence, if k > %7 (4.10) implies

that @ + prvr = ur € Bs(@). Then, by a Taylor expansion we get
2

. L o 03 03
Jk(t+ pr o) — jan(@) = prip (@ vr) + f]lg/ k(U5 07) + Gng'k(um,Uz)

1
:pk/ %/ﬂm,t vi(z,t) dx dt
o TaOloy J, 000
_ 2
+ p—k 7; /vk x,t)d (/ i vk (x, t) dx) dt
2 Jr, 1tz | Jo [[a(t)]l 22 () ||L2(w>
3 3
o o
+ == ug, (z,t) vg(x,t) do
6 Ig k Hu'&k( HL2(UJ {Iuﬁk(t)&?(w) w g

_ (/w vk(x,tmx) (/w wo (1) vi (1) dx)} dt,

where uy, = @+ Orpr vy € Bp () with 0 < 9, (¢) < 1. Now, using the convexity of
2

the mapping w — [[w||L2(.,), we get for every ¢

_ _ Pk _
(@ + prvi) Ol 2wy — )| r2(w) > ——— / a(x, t)og(z,t) do.
) = a0z Ju

Using this inequality we obtain
it pen) = i@ = e [ on@lzzc
I’ﬁ,

+/I\ (1@ + o o) Ol 2200y — 18Oz} dt + Liaw (@ + prow) — g (@)
8,k

2
o P} I
> pr g’ (@5 vr) + ?J@ p(w07) + Ekjlﬁﬁk( S0R)-

From (4.9), the above inequality, and the fact that F'(@) vy + vj'(@;vg) > 0, see
(4.12), we get

Pk

o > J(u+ prvk) — J(@) > pp{ F' (@) v + 75 (@5 v) }

P} o} oy
+3k{F"( ) o + 73 (@ 00)} + k[F”(Uek) F'(w)]v} +7§k33'k(um,vz§)
where wug, = @+ Opi(up — @) with 0 < 6, < 1. We deduce from (4.3)

Pk
2k

2 2
p Pi
> HE (@) vi + 755 (8 07)} + £k o [F (ua,) = F" (@i +7§’“J§’k(wk,vi)
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Dividing this expression by p? /2 we obtain

"

_ . _ 1
F'(w)v} + 'yj’ﬁ”k(u;v,%) <|[F"(ug,) — F"(w)]v?] +’Y*|Jg k(s v3)| + % (4.13)

Since F : L*(Q,) — R is of class C?, ug, — @ in L*(Q,,), and [|vg||r2(q.) = 1 we
have

lim |[F"(ug,) — F"(@)vg| < lim [|F"(ug,) — F"(a)] =0, (4.14)
k—o0 k—o0
where || - || denotes the norm in the space of bilinear forms on L?(Q.)% Let us

estimate the second term of (4.13). Observe that every element v € Bﬂ (u) satis-

fies [Ju(t)||r2w) = > 5. Using that uy, € Bﬁ( ) for k > %, Holder’s mequahty, the

2
expression of j5’ (ug,; v}), (4.10), and ||kaLz(Qw) =1, we obtain

[[v k(t)HLZ(w) g 24

ptunsod)l <6 . IOl

o w0, D172 =
24 24
< pplilistunn | @l < g
So we get
|]'ﬁ”k(u19k,vk)| < k—BQ —0 as k — oo. (4.15)

Since Ig C (0,7*), we have that |Ig \ Ig x| — 0 as k — oco. Hence, the convergence
X1, vk — v in L?(Ig, L?(w)) holds. Using this fact and the convexity and continuity
of the quadratic form jj(a) : L*(Qu) — R, (4.13), (4.14), and (4.15) we infer the
following inequality

F"(w)v® 47 jj (4 0%) < likminf{F"(ﬁ) v + 775 ,(Wvp)} <0 VB> 0. (4.16)
—00 ’
Now, taking the limit as 8 — 0 we conclude that J” (u;v?) = F” (a)v?+~ j" (i;v?) < 0.
According to the assumption of the theorem, this is possible only if v = 0.

Step III. limy o F"' (@)} = v. Since ||vgr2(q.) = 1, from the expression (3.13)
we deduce

F(apd = /Q et — " ()22, dodt + v,

Therefore, it is enough to prove that the integral converges to 0 as £ — oco. Let us
select v and S satisfying 2A; < a < 8 < 0. Since vy — v =0 in L*(Q) we get from
[5, Lemma 3.1] that z,, — 0 in H.(Q) and there exists a constant C; such that

| zoe | (0,000 () < C1 Yk > 1. (4.17)

From the compactness of the embedding H*(Qr) C L"(Qr) for every T > 0 and
r < 4, we infer that z,, — 0 as k — oo in L"(Qr) for every r < 4 and T < oo.
We also know that |f”(s)| < Ca(|s|*™~1 + 1) for every s € R and some constant Cs.
Moreover, since yg € L°°(0,00; L2(2)) and § € C([0,T]; H'(£2)), see Theorem 2.1, we



Infinite Horizon Optimal Control Problems 17

get that ¢ € C(Qr) for every T > 0; see [6, Chapter 3]. All these facts imply with

Hélder’s inequality for 3242 and 321%

/ o™ — @ f"(5)|23, drdt < /Q (1 + 112l Callgl™ ™" + 1)z, dudt

< lzw e + 18llc@n Co (171 an + 1)l P gsy =0 (418)

8m-+4
2m—+3
intervals (T, 00). From (4.17) and Hoélder’s inequality with 2

obtain

/ / le=" — @ f"( |ka dx dt = / / el@=a)t _ eﬁt@e(afﬁ)tf”(g)|e*°‘tzgk dz dt

<z l1Z. (0,002 (Q))/T el d

as k — o0o. Above we have used that < 4. Next we prove estimates in the
4m+2

7 2m—17

and 2m + 1, we

+Cy / 1l c2@e ™ (1170w o) + D)o lzullTam 2y dt

02 a—o m— o
< I G o +)CE [ Pl @19)
2m—1

Using that ¢ € L2(Q) for every a < 20 we get for p € (0,0 — 3)

[ el de
T

9] 1 o0 1
< —2pt )2 ( 5+P ) = — —oT
< (/T e 2Pt di . el 20 dt 25° lellzs,.,, @

From this inequality and (4.19) we infer that for every € > 0 there exits 7. < oo such

that
//|e B @G, dwdt < 5.

Moreover, from (4.18) we obtain the existence of k. such that

/ /\e TGP GG, dwdt < S E > ke

The last two inequalities proves the convergence to zero of the integral.

Step IV. Contradiction. Using that jg)k(ﬂ;vi) > 0, and (4.16), we deduce that
v < liminfg oo {F" (@) v + 7355, (@03)} < 0, which contradicts the assumption
v>0.

Step V. Removing the assumption u € L>(0,00; L*(w)). Given u € Uyq N B (1),
we set v = u — U, vg(x,t) = Proj_y 44 (v(z,t)), and uy = @ + vy. From Proposition
4.2 we get that u € L°°(0,00; L*(w)). Then, it is obvious that ||uy — @l/12(q,) <
lu—allr2(g.,) < € and uy € Upqg N L(0, 00; L?(w)). Hence, (4.7) implies

5 f
J@) + Sl —lla g < J(ur) VE =1,
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Of course, we assume that u € L'(0,00; L?(w)), otherwise the inequality (4.7) is
obvious. By Lebesgue’s dominated convergence theorem we obtain that uip — wu in
L?(Q.)NLY(0,00; L?(w)) and, consequently, 4., — v, in L2(Q); see [5, Theorem 2.7].
Then, we can pass to the limit in the above inequality and deduce that u satisfies
(4.7). 0

5. Approximation of (P). The aim of this section is to approximate the control
problem (P) by a sequence of finite horizon optimal control problems and to obtain
estimates on the error of these approximations. For every 0 < T < oo we consider
the control problem

(Pr)  min Jr(u) = Fr(u) + vjr(u),

WEUT, aa
where
Ur,aa ={u € LQ(QT,M) tug < u(z,t) <wup for aa. (x,t) € Qro},
Fr(u) = 5llyru — deQLg(QT) + %HUH%%QM), Jr(u) = |lullro,r;r2(w))s Y7 is the

solution of (2.1) corresponding to u, and Q7. = w x (0,T).

Given a solution (or a local minimizer) ur of (Pr), we denote by yr its associ-
ated state. For every control u € LQ(QT,N) with associated state yr, we consider
extensions to @, and @, denoted by ur and gz, by setting tp(z,t) =0if ¢t > T
and ¢r,, the corresponding solution of (1.1) associated with the extension 4. Let us
observe that if w € Ur 44, then @ € U,q due to our assumptions on u, and ;. Using
this notation, we prove the following theorem.

THEOREM 5.1. For every T > 0 the control problem (Pr) has at least one solution
ur. The extensions {ir >0 of any family of solutions are bounded in L?(Q.,). Every
weak limit @ in L*(Q,) of a sequence {tg, }32, with T, — 0o as k — oo is a solution
of (P). Moreover, the strong convergence i, — i in L?(Qy) holds.

Proof. The existence proof of a solution is analogous to the one for (P). Let us
denote by y° the solution of (1.1) corresponding to the control v = 0. From Theorem
2.1 we know that y° € L2(Q). Then, using the optimality of ur we get

V. A
i‘luT”iQ(Qw) + a7l L1 (0,00:2(w)) < Jr(ur) < J(0).
This implies the boundedness of {lr}r~o in U. Therefore, there exists a sequence

{T}}32., converging to oo such that 47, — @ in L?*(Q,). Then, using Lemma 2.2 we
get that g7, — ¢ in H1(Q). These facts yield

lllL2(q,) < lminf ||, [[22(q.),
{ k—oo k (5.1)

15 = yallzz @) = Bmint |7, = yallzz @)

Moreover, the continuous inclusion L2(0,T; L?*(w)) € LY(0,T; L?(w)) for all T > 0
implies for v > 0

_ .. . .. . 1
all 10,22 w)) < limnf {lag || 0,22 w)) < Hminf ag ||z 0,002 ) < ;J(O)
From here we get

]| 21 (0,00:22 (w)) = sup %]l 21 0,7502 (w)) < lim inf T, |1 (0,00;22(w)) < 00 (5.2)
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From (5.1), (5.2), and the optimality of ur we infer for every u € Uyq

1 o0
J(@) < liminf J(ip,) < hmmf Jr, (ur,) + limsup = 5 / e~ i, (t) — yd(t)||2L2(Q) dt

< liminf Jr, (u) = J(u).
k—o0
Above we have used the inequality
1Yulleqo,ryLz @) < Kf(||ZUOHL2(Q) + (9]l oe 0,00:22 (02 + VT + ||“||L2(Qw))v (5.3)

see [5, Theorem 2.2], and the fact that y4 € L>(0, 00; L2(£2)) to deduce

. L[ - ® etn
timsup 5 [ e g (0) — yalt) [y de < 2limsup [ e i, (O] dt

k— o0 Ty k—o0 Ty
[o ] o0
+2nmsup/ e lya(t)||72(q) dt < Chmsup/ (t+ e "dt =0
k—o0 Tk k—o0 T}

This proves that @ is a solution of (P). Let us prove that the convergence of {ar, }3°
to u is strong. First we observe that the above convergence to zero and the optimality
of up, imply

J(@) <liminf J(tr,) < limsup J (i, ) = limsup Jr, (ur, ) < limsup Jr, (@) = J(a@),

k—o0 k— o0 k—oo k—o0

which implies that J(@) = limy_ o0 J(tp, ). This identity along with (5.1) and (5.2),
and Lemma 5.2 below lead to limy oo [|U7y [|22(0.) = l|@llL2(.,). Thus, 47, — @ in
L?(Q.,) holds. O

LEMMA 5.2. For every j =1,...,k with k > 2, let {o;j r}r>0 be a family of real
numbers satisfying

aj < liTrgngfo‘ﬁT for1<j <k and lim Zaij = Zozj,

where {o;}¥_; C R. Then, the equalities limp_,o ajr = oy hold for every j =
1,...,

Proof. We proceed by induction on k. First, we assume that k = 2. The conver-
gence oyt — o is obtained as follows

a; < hm mf a1r <limsup oy p
T— o0

<limsup(oa,r + as,1) — hmlnf asr < (o +a2) — g = aq.
T—o0

Now the convergence limy_, a2 7 = ay is immediate. Let us take k£ > 2 and assume
that the statement is valid for k£ — 1. Proceeding as above we get

ap < hrn mf o7 <limsupag 1
T— 00

k k

k k
<hmsupZa]k—hm1anaJk SZaj —Zaj =«
j=1

T— o0 j=1 — =
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Then, we have from the above inequalities and the assumption of the lemma

k k
Th_I)I(l)o a7 = ap and %ﬂo;a]‘j = ;aj.
Now, the statement follows by the induction hypothesis. O

THEOREM 5.3. Let @ be a strict local minimizer of (P). Then, there exist Tp > 0
and a family {ur}rs7, of local minimizers to (Pr) such that ip — 4 in L*(Q,,) as
T — oo.

Proof. Since @ is a strict local minimizer of (P), there exists p > 0 such that
J(u) < J(u) for every u € Uqaq N B,(u) with u # @, where B, (u) is the closed ball in
L?(Q.,) centered at 4 and radius p > 0. We consider the control problems

(Py) ueBZI(l%lnuud J(u) and (Pr,) ueBT,?(l%lnuT,ad Jrw),
where By ,(4) = {u € L*(Qrw) : lu — tl|12(q,.) < p}- Obviously @ is the unique
solution of (P,). Existence of a solution ur of (Pr,,) is straightforward. Then, arguing
as in the proof of Theorem 5.1 and using the uniqueness of the solution of (P,), we
deduce the convergence i — @ in L?(Q,,). This implies the existence of Ty > 0 such
that [ur —allz2(q,.,, < [lir —ullz2(q,) < p for all T' > Ty. Hence, ur is also a local
minimizer of (Pr) for T'> Tp. O

THEOREM 5.4. Assume that o > 8Ay, uq < 0 < up if v > 0, and let u be
a local minimizer of (P) satisfying the sufficient second order optimality condition
F"(w)v? + ~5"(@;v%) > 0 for all v € Cz \ {0}. Let {ur}rsm, be a family of local
minimizers of (Pr) as selected in Theorem 5.3. Then, there exists a constant C
independent of T such that

lor —allzu) < -5 (T + 1)e-”T VT > Th. (5.4)

In addition, for every o > 4Ay there exists a constant C such that

C(\/ —
lor —glly., < n <T + 1)0 T 9T > Ty. (5.5)

O — Af

Proof. Under our hypotheses, Theorem 4.4 is applicable. Accordingly let € > 0
and 0 > 0 be such that (4.7) holds. Following the proof of Theorem 5.3 with p = ¢,
we have that ur is a solution of (Pr ,). Using (4.7), the optimality of ur and the fact
that 4(x,t) = 0 for t > T we get

o, . _ R _ _
lar — 720,y < Jlar) — J(a) < Jp(ur) — Jr(a)

1 00 ot ) 1 00 ot )
- 7 - dt — - Ny — dt 5.6
T3 /T e 797 — yallz2(a) 5 /T e 7y — yallz2(a) (5.6)
<t [Tee Ollir - vall 2y dt — % [ e (17 = yall L2 o) dt
<3 ; X(T,00) Y1 — YdliL2 () 2 ) X(T,0) Y — YdllL2(q) 4T,

where (7o) denotes the characteristic function of the interval (7', 00).
Let F: L*(Q.) — R be the function defined by

1

(o)
F =5 [ e 5 Ollv = vl .
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By [5, Theorem 3.3] and the chain rule we infer that F is of class C2?. Arguing as in
the proof of Theorem 3.4 we get

]-"(u)v:/ v de dt,

w

where @, is the solution of the adjoint state equation

dy -0 i
—; ~ A+ ap+ [(y)e = e X(r00) (Yu = ya) in Q (5.7)
Onip =0 on X, limy o0 ™ |p(t) || £2() = 0.

Applying the mean value theorem in the right hand side of (5.6) we infer

0. . _ 2 . _ . _

§||UT —tll72q,) < . vor (U — u) dr dt < [|pgr || 2(Qu) lir — @llL2(Qu)»
which implies

. _ 2
a7 — allr2(q.) < g\l@eTHLZ(Qw)» (5.8)

where ¢g,. is the solution of (5.7) with y,, replaced by ys,, the state associated with
g, = U+ Orp(ar — @), Oy € (0,1). We use that {ug, }r>7, is bounded in L?(Q),
ya € L°°(0,00; L2(£2)) to estimate @p,.. First, we test the equation satisfied by ¢,
with €227, and integrate in (¢,7) for > T and ¢ € (0,7)

e2Aft 2

2

T
O+ [ a5 oy ds

L2(Q

T
+ Af/ e /QHWeTP +agh, + f'(y)ei, ) dds
t

Q2AsT

7 ~ 112
_ / e(2Af70)S / (yGT — yd)gpgT dx ds + D) H‘PGT (T)
T Q

L2(©)

Arguing as in the proof of (3.8), using that lim;_,, e*/*|l¢g, (£)||2(0) = 0 and taking
the limit as 7' — oo, we infer

ess sup M lpor (0l L2+l 2o ||L2;2Af (0,001 () < C1lIX(7,00) (Y0r —Ya) ||L§(07Af)(Q)-
t>

Additionally, taking 7' = T in the above inequalities we get esssup ||¢a, (¢)]| 2(Q) <
t€[0,T]

llo (T)||L2(2)- Then, we have

0r |l r2(Qe) < VT eSS[SUI]) lor (Ol L2y < VTllgor (T)ll2()
tel0,T

< e MTVTeM T gy, (M)llz2) < CleiAfT\/THX[T,OO)(yeT —ya)ll 2 Q)

2(0—Aj)
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Finally, we get

o] 1
2
Ionlliaa) < looeliziar) + ([ loos @t ) < lonrllizar)

+e M7 g, HLzzAf(Q) < Cre ™I (VT + 1) Ixr,00) (W0 — yd)||Lg(Hf)(Q)
1

= Cre VT (VT +1) (/T A= lyg,. (8) — ya()| 720 dt)

< CoeMT(VT +1) (/ 2(Ar=)t (4 4 1) dt> < % (T + 1)e*0T.

T o — Ay

This estimate along with (5.8) leads to (5.4).
The estimate (5.5) follows from (5.4) and the generalized mean value theorem

197 = gllv. < sup |GG (a+0(ir — a)ll|lar — allL2(q.),
0€[0,1]

where |G/, (i + 0(Gr — 1))|| denotes the norm in £(L?*(Q,,),Ys). O

Remark 5.5. In the formulation of the control problem (P), the discount factor
could be introduced after some period of time. This means that the weight e~ could
be replaced by weights of type

(t) = 1 ift<T,
W= emet-D) ift >T.

The results proved in this paper can be easily modified to include this type of weights.
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